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Setting of conditional extremes

Consider a random vector X = (X1, . . . ,Xd ).
We denote by X−j the vector X with component Xj removed for j ∈ {1, . . . , d}.

What is possible conditional behavior of

X−j | (Xj > u)

for a high threshold u with Pr(Xj > u) > 0 small?

Asymptotic framework as u → u? = F−1
Xj

(1−)?

Flexible statistical models?

⇒ Multivariate conditional extremes (Heffernan & Tawn, 2004, JRSSB)
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Asymptotic framework

• Standard exponential tails Pr(Xj > x) ≈ c × exp(−x) as x →∞ (with c > 0)

• Useful choice: Standard Laplace distribution FLaplace with density 1
2

exp(−|x |)
⇒ Pretransformation Xj 7→ F−1

Laplace

(
FXj

(Xj )
)

.

Asymptotic setting for Xj with exponential tails

We assume: there are normalizing function vectors a|j and b|j > 0 such that

Pr

{Xk − ak|j (Xj )

bk|j (Xj )

}
k 6=j

≤ z−j

∣∣∣∣ Xj ≥ u

 → Pr
(
Z|j ≤ z−j

)
, u →∞,

with nondegenerate residual random vector Z|j with components Zk|j for k 6= j .
(Note: z−j is z = (z1, . . . , zd ) with component zj removed.)

• We have (Xj − u) | (Xj > u)→ E ∼ Exp(1) and E ⊥ Z|j
• Location-scale transformation ensures non-degenerate limit

• Under mild conditions, we can replace the condition Xj ≥ u by Xj = u

• By considering j ∈ {1, . . . , d}, we get d limit relations.
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Statistical modeling of conditional extremes

In practice, we fix a threshold u and consider the location/scale normalizations as
parameters to be estimated. We focus on the approach as implemented in texmex.

General model
Given X with exponential tails, we fix a high threshold u and assume

X−j | (Xj > u) = a|j (Xj ) + b|j (Xj )Z|j

with deterministic parametric functions a|j and b|j > 0, and residual vector Z|j .

Semiparametric nonlinear regression model

Given X with exponential tails, we fix a high threshold u and assume

X−j | (Xj > u) = α|jXj + X
β|j
j Z|j

with α|j ∈ [−1, 1]d−1 and β|j ∈ (−∞, 1]d−1, and with unspecified residuals Z|j .

Pseudo-likelihood estimation: Estimate α|j ,β|j by assuming

Z|j ∼ Nd−1(µ|j , diag(σ2
|j ) with nuisance parameters µ|j and σ2

|j .
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Bivariate dependence properties

Assume without loss of generality X = (X1,X2).

Tail correlation / χ-measure

χ = limu→1 χu ∈ [0, 1] where

χ(u) = Pr(FX2
(X2) > u | FX1

(X1) > u) =
Pr(FX1

(X1) > u,FX2
(X2) > u)

Pr(FX1
(X1) > u)

, u ∈ (0, 1).

Interpretation:
Asymptotic dependence for χ > 0, otherwise asymptotic independence

Behavior of the conditional extremes model for X2 | (X1 > u)

• Asymptotic dependence only if α2|1 = 1 (and β2|1 = 0)

• Positive extremal dependence if α2|1 > 0

• Negative extremal dependence if α2|1 < 0

• Near independence if α2|1 = 0 and β2|1 = 0

Usually we assume 0 < β2|1 ≤ 1 to avoid strange limiting behavior.
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Strategies for marginal normalization

• Real data usually do not come with exponential tails.

• We therefore have to transform marginal distributions using a Probality Integral
Transform, by default to the Laplace distribution.

• For the components Xk different from the conditioning component Xj , we also
model the values below the threshold u. Therefore, we need a transformation of
the whole distribution and not only for threshold exceedances.

• The default approach is to use a Generalized Pareto distribution GPD(ξj , σu,j )
above u, with threshold exceedance probability pj , and to use the empirical
distribution (that is, the rank transform) below the threshold.

• In certain modeling contexts, other choices may be relevant:

• Pretransform data using only the empirical distribution (for bulk and tail).

• Use a parametric distribution that jointly models bulk and tail, such as a variant of
Extended Generalized Pareto Distributions (EGPD).

• Use a different way of combining a bulk model and tail model, such as linear
interpolation of regression quantiles for a grid of non-extreme quantile levels (such as
0.01, 0.02, . . . , 0.95).

• If the marginal distributions depend on covariates, then using the rank transform is
difficult.
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Marginal normalisation (default approach)

We have to estimate marginal distributions F̂j (x) for j = 1, . . . , d .

Let us write Xj,1,Xj,2, . . . ,Xj,n for the sample of component j .

Two options for obtaining a threshold uj :

• Fix the quantile uj , and estimate the exceedance probability pj = Pr(Xj > u)

• Fix the exceedance probability pj , and estimate the quantile uj = F−1
j (pj )

Estimated marginal distribution

We fit a GPD(ξ̂j , σ̂u,j ) for threshold exceedances above u and use the empirical
distribution below:

F̂j (x) =

{
Fj,n(x), x ≤ u,

1− pj + pj ×GPD(x − u; ξ̂j , σ̂u,j ), x > u.
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Uncertainty quantification

How can we obtain standard errors and confidence intervals for the parameters?

The pretransformation with estimated marginal distribution must be considered.

texmex implements a non-standard bootstrap approach to obtain standard errors and
other uncertainty measures for estimates of marginal GPD parameters and α̂|j , β̂|j ;
see Heffernan & Tawn (2004).
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Simulation and risk estimation

Simulation with extrapolation towards very-low-probability events is possible by using
a higher threshold v > u for Xj .

Generation of a new extreme event conditional to Xj > v

• Simulate xj ∼ v + Exp(1)

• Draw z|j at random from the empirical distribution of residuals

• Set x−j = α̂|j + x
β̂|j
j z|j

• Backtransform x−j to original marginal scale of data:

xk 7→ F̂−1
j

(
FLaplace(xk )

)
, for k 6= j

• Return the simulated vector x .

To predict Pr(E) for various types of risk regions, we can repeatedly simulate from the
conditional models and then construct a Monte-Carlo estimate.
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Joint exceedance curves
Among the numerous inferences that can be drawn based on conditional extremes
models, joint exceedance curves and their graphical display are implemented in texmex.

In a bivariate setting for 1 ≤ j1 < j2 ≤ d and for a given probability p0,
the joint exceedance curve is defined as the set

{(x1, x2) : Pr
(
Xj1 > x1,Xj2 > x2) = p

)
}

Simulation-based joint exceedance curves for three extreme probability levels:
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Issues of self-consistency

Consider the bivariate case and the two conditional extremes models for

X L
2 | X L

1 > u, X L
1 | X L

2 > u

• B Models where Pr(X2 > x | X1 > u) > c × exp(−x) are not consistent with the
marginally normalized exponential tails

• Both conditional models fully characterize the behavior of (X1,X2) in the region
{(x1, x2) ∈ R2 | x1 > u, x2 > u}.
However, it is challenging to impose conditions on the parameters α and β and
on the residual distributions Z that ensure consistency of the two models.

• This does not prevent the model from providing very useful estimations and
predictions!

Some necessary consistency conditions were stated by Keef et al. (2013) and are
imposed in texmex when using Laplace marginal distributions.
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Pros and cons of models for conditional extremes

Pros

• Modeling flexibility beyond asymptotic stability and asymptotic dependence

• Semiparametric formulation and uncertainty assessment is strongly data-driven

• Complete software implementation with state-of-the-art visualization

Cons

• Lack of self-consistency of the conditional distributions
(usually only some necessary conditions are imposed)

• Semi-parametric approach does not scale well to higher dimensions

• Asymptotic dependence summaries (such as χ) can vary with threshold u

There is various ongoing research on theoretical properties and modeling extensions!
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Wrap-up: Approaches for conditional extremes

• Main implementation in the texmex package, which further provides
implementations for marginal Peaks-Over-Threshold modeling
(including declustering strategies and estimation of the Extremal Index).

• Theoretical self-consistency issues are no impedement to robust statistical
modeling in practice.

• Many recent works on spatial and spatiotemporal conditional extremes where Z is
a Gaussian process (sometimes marginally transformed).
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