
EVA 2023 Software tutorial
Times series extremes
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Plan for this part

Modeling aspects, implementations and worked-out code examples for two settings:

• Extremes in time series

• Conditional extremes

Note: In the following, Belzile et al. (2023+) refers to our software review,

Belzile, L. R., Dutang, C., Northrop, P. J., & Opitz, T. (2022). A modeler’s guide to
extreme value software. arXiv preprint arXiv:2205.07714.

A near-exhaustive list of available implementations on the CRAN is given in the Task
View of Extreme-Value Analysis:

https://cran.r-project.org/web/views/ExtremeValue.html
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Modeling aspects for time series extremes

• Exploration and summaries for temporal clustering: extremogram, extremal
index...

• Estimation of marginal tails under serial dependence

• Models for serially dependent extremes, such as Markov chains

• Nonstationarity (e.g. seasonality)

We have to decide if temporal extremal dependence is simply a nuisance for estimation
of univariate tails, or if we seek to fully characterize it using a generative model.
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Illustration: A stationary dependent sequence

The default assumption for many theoretical results and estimation techniques is
stationarity of the time series

X1,X2, . . .

If the observed series is not stationary, this may require steps of data pre-processing
(choice of a nonstationary threshold; marginal pre-transformation of data...)

0 200 400 600

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Index

O
bs

er
va

tio
ns

4/20



Stationarity

If not stated otherwise, we assume that the variables X1,X2, ... define a stationary
time series, such that blocks of the same length possess the same joint distribution:

(Xk1+1, . . . ,Xk1+m)T
d
= (Xk2+1, . . . ,Xk2+m)T for any k1, k2,m ≥ 1.

Possible consequences of dependent observations:

• A nondegenerate asymptotic distribution of maxima Mn = maxni=1 Xi may not
exist, or may be different from the GEV distribution.

• Consecutive excesses over a high threshold may be dependent, for instance by
arising in clusters.

D(un)-condition

For stationary processes, this standard mixing condition allows defining the extremal
index and preserves the GEV and GPD limits for maxima and threshold exceedances,
respectively.
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Extremogram (Tail autocorrelation function)

Autocorrelation functions are important tools in classical time series analysis.
The extremogram is an extreme-value analogue.
Suppose that Xi ∼ F , i = 1, 2, . . .

Given a time lag h ∈ {0, 1, 2 . . .}, we consider the conditional exceedance probability

χ(h; u) = Pr(F (Xi+h) > u | F (Xi ) > u) =
Pr(F (Xi+h) > u,F (Xi ) > u)

Pr(F (Xi ) > u)
, u ∈ (0, 1).

Here, we define the extremogram as the limit (if it exists)

χ(h) = lim
u→1

χ(h; u) ∈ [0, 1], h = 0, 1, 2 . . .

• The general definition of the extremogram in the literature allows for extreme
event sets that are more general than [u, 1] but the above formulation is
commonly used in practice.

• The function χ(h) is sometimes also called tail autocorrelation function or
auto-tail dependence function.
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Properties of the extremogram

• χ(h) characterizes co-occurrence probabilities of high values at temporal lag h.
There are also variants for spatial processes where h is spatial distance.

• By definition, χ(0) = 1.

• With independent observations, χ(h) = 0 for h > 0
(but χ(h; u) = 1− u > 0 for “subasymptotic” u < 1).

• The series {Xi} is called asymptotically independent at lag h if χ(h) = 0.

• For data, an empirical version can be estimated using χ(h; u) with empirical
probabilities, that is, with F replaced by the empirical distribution function Fn.

• Cross-extremogram: With two time series X
(1)
i ∼ F1 and X

(2)
i ∼ F2, i = 1, 2, . . .,

we can consider

χ12(h) = lim
u→1

Pr
(
F2(X

(1)
i+h) > u | F1(X

(1)
i ) > u

)
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Illustration: Empirical tail autocorrelation function
Top row: independence; bottom row: asymptotic dependence
Left column: u = 0.95; right column: u = 0.99
Dashed red line corresponds to theoretical χ(h; u) for independence.
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R implementations of the extremogram

• Dedicated package extremogram, but not (yet) very stable; provides also
cross-extremograms and confidence bounds

• atdf function in extRemes package provides a time-series version of χ
(extremogram) and also of χ
(B notation used in the package is ρ instead of χ)
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The extremal index

The extremal index θ ∈ (0, 1] can be defined as the reciprocal of the limit of the
expected cluster size in exceedances above an increasingly high threshold:

1

θ
= lim

n→∞
E

(
ρn∑
i=1

I(Xi > un) | Mρn > un

)

where

• Mρn = maxρni=1 Xi ,

• ρn →∞ and ρn/n→ 0 as n→∞,

• I(A) = 1 if the event A occurs, and 0 otherwise, is the indicator function,

• threshold un with n(1− F (un))→ λ with some 0 < λ <∞.

Interpretation: If at least one Xi exceeds a very high threshold in a block of
consecutive observations, then on average there are 1/θ “nearby” observations that
exceed this threshold.
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Illustration: Clusters of exceedances
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The average length of the intervals in red tends to 1/θ when we increase the threshold
(black horizontal line).
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Example: Estimation based on the runs-method
Estimation of the extremal index through threshold exceedances:

θ̂ =
1

average cluster length

How can we define and identify clusters in practice?

The runs method
Principle: two exceedances are part of the same cluster if there are at most k − 1
consecutive non-exceeding observations in-between, with a tuning parameter k ≥ 1.

1 Fix a high threshold u, such as the empirical 95%-quantile of data.

2 Fix k. Often k = 1 or k = 2.

3 Look for the index i0 with first threshold exceedance Xi0 > u in Xi , i = 1, 2 . . .
⇒ the first cluster begins at i0.

4 If at least one of Xi0+1, . . . ,Xi0+k exceeds u, then i0 + 1 is still part of the first
cluster.

5 Iterate until k consecutive non exceedances above u are found.

6 The first cluster goes from i0 until the last found exceedance.

7 Continue and iterate through Steps 3 to 6 to detect the second cluster, third
cluster, and so on.
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Extremal index: available estimators

Taken from Belzile et al. (2023+)
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Extremal index: available R implementations

Taken from Belzile et al. (2023+)
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Declustering for marginal POT modeling

If exceedances in threshold-exceedance models may be dependent, we can obtain an
(approximately) independent sample by considering only the most extreme observation
among each ”cluster” of extremes.

Steps for peaks-over-threshold with declustering

1 Use an empirical rule to define clusters of exceedances, for instance the runs
method.

2 Identify the maximum excess of each cluster.

3 Assume cluster maxima to be independent, with their excesses Xj − u > 0
following the GPD

4 Estimate the GPD for the sample of threshold excesses of cluster maxima.

Interestingly, under the usual mixing conditions, the GPD limit distribution for the
maximum excess is exactly the same as the one for excesses without declustering!

B We could apply standard GPD estimators without declustering but then uncertainty
estimates (e.g. confidence intervals) would be biased.

B Results of the GPD model have to be interpreted with respect to cluster maxima.
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R implementations of declustering and GPD estimation

• evd package, function clusters

• argument r for k of runs estimator
• cmax argument to extract cluster maxima
• threshold can be time-varying
• plotting is available

• POT package, function clust

• argument tim.cond for k of runs estimator
• clust.max argument to extract cluster maxima
• plotting is available

• extRemes package, function decluster

• argument r for k of runs estimator
• application of various cluster functions, such as maximum
• result can be used directly for declustered GPD estimation with fevd function

• texmex package, function declust

• argument r for k of runs estimator
• cluster maxima are returned
• result can be used directly for declustered GPD estimation with evm function

Estimation without explicit declustering: package lite, function flite

• Based on an appropriately “post-processed” likelihood assuming independent
exceedances

• Estimates and estimation uncertainty for (θ, ξ, σu) and exceedance probability pu
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Models for extremal dependence in time series

As before, we assume that X1,X2... is a stationary time series.

Some options for modeling the serial dependence:

• Apply a model for multivariate extremes of d-variate random vectors to
(Xt ,Xt+1, . . . ,Xt+d ) by splitting the time series into d-vectors

• Apply a model for conditional extremes to (Xt+1, . . . ,Xt+d ) | (Xt > u)
; texmex and tsxtreme packages

• Apply a first-order Markov chain model to exceedances above u:
• Marginal model (Xt − u) | (Xt > u) ∼ GPD(ξ, σu)
• Dependence model: assume the first-order Markov chain property

Xt+1 | (Xt ,Xt−1, . . . ,X1)
d
= Xt+1 | Xt

• Use the conditional distributions of a bivariate Multivariate Generalized Pareto
Distribution to model Xt+1 | Xt if max(Xt ,Xt+1) > u.

; fitmcgpd function in POT package
(joint estimation of marginal and dependence parameters is possible)
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Time series extremes: Overview of R implementations

Taken from Belzile et al. (2023+)
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Strategies for handling marginal nonstationarity

Often, data are marginally nonstationary (intra-day variability, seasonalities...):

• Estimation and interpretation of clusters and of the extremal index could still
make sense in a nonstationary setting but with possibly very large clusters due to
the nonstationarity.

• Sometimes, we can simply subset the data (for instance, use only a specific
season) to get approximate stationarity.

• To remove marginal nonstationarities, it makes sense to use regression models
where time is a covariate, for instance by defining a nonstationary threshold as a
high quantile estimated through quantile regression.

• Example: If estimation is based only on exceedance indicators I(Xi > u), we can
estimate a high nonstationary quantile ũi and then use the threshold u = 0 for
Xi − ũi .
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Wrap-up: Approaches for time series extremes

• Exploration and dependence summaries:

• Extremal index: a key summary parameter that can be estimated and interpreted
• Extremogram:

• An analogue of the classical autocorrelation function based on the χ-measure to explore the
strength of temporal dependence among extremes at fixed lags h = 1, 2, . . .

• Variants using χ to assess asymptotic independence have also been proposed (called ρ in the
extRemes package and Λτ in the POT package).

• Marginal estimation:

• With the block-maximum approach, we can proceed as in the i.i.d. case, if the
dependence between blocks is negligible.

• With the POT-approach using the GPD, we can also proceed similar to the i.i.d. case if
we first “decluster” the threshold exceedances.

• Joint marginal and dependence modeling:

• More complex in general, only few available models.

• Markov chain assumption provides useful models.

• Any multivariate extremes models (such as conditional extremes) could be used to
model extremes arising for random vectors composed of d consecutive time steps.

• Assumption of asymptotic stability: In case of serial asymptotic independence,
clusters could ultimately vanish at very high thresholds levels u, but this is hard
to detect in practice if there are too few observed exceedances for such levels.
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