Statistical modelling #2.b Linear transformations

Dr. Léo Belzile HEC Montréal

Linear transformations

Consider the log number of Bixi rentals per day as a function of the temperature in degrees Celcius (or in Farenheit).

Suppose that the true effect of temperature on log of bike rentals is

lognuser = $\alpha_0 + \alpha_1$ celcius + ε .

The interpretation of α₁: the average increase in the number of log rental per day when temperature increases by 1°C.

The model for log-rentals with temperature expressed in Farenheits is

lognuser = $\gamma_0 + \gamma_1$ farenheit + ε .

SAS output

	Standard							
Parameter	Estimate	Error	t Value	Pr > t				
Intercept	8.844327052	0.02819099	313.73	<.0001				
celcius	0.048566261	0.00135205	35.92	<.0001				
		Standard						
Parameter	Estimate	Standard Error	t Value	Pr > t				
Parameter Intercept	Estimate 7.980926861	Standard Error 0.05132678	t Value 155.49	Pr > t <.0001				

The two units are **linearly** related,

```
1.8celcius +32 = farenheit.
```

so we find that $\alpha_0 = \gamma_0 + 32\gamma_1$ and $\alpha_1 = 1.8\gamma_1$.

Uniqueness of the solution

The parameters of the postulated linear model with both predictors,

 $lognuser = \beta_0 + \beta_{c}celcius + \beta_{f}farenheit + \varepsilon,$

are not **identifiable**, since any linear combination of the two solutions give the same fitted values.

For $k \in \mathbb{R}$, $\beta_0 = k\alpha_0 + (1-k)\gamma_0$, $\beta_1 = k\alpha_1$ and $\beta_2 = (1-k)\gamma_1$ are equivalent.

The rank of ${f x}$ is 2, but the design matrix has 3 columns

- $\mathbf{x}^{\mathsf{T}}\mathbf{x}$ is not invertible.
- the solution to the normal equation is not unique.

Collinearity

	Standard				
Parameter	Estimate		Error	t Value	Pr > t
Intercept	8.844327052	В	0.02819099	313.73	<.0001
celcius	0.048566261	В	0.00135205	35.92	<.0001
farenheit	0.00000000	в			

SAS prints a warning if the data are exactly collinear.

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.