Statistical modelling \#2.c Geometry of least squares

Dr. Léo Belzile HEC Montréal

Linear algebra reminders

For an $n \times p$ matrix, the column space of \mathbf{X} is

$$
\mathrm{S}(\mathbf{X})=\left\{\mathbf{X} \boldsymbol{a}, \boldsymbol{a} \in \mathrm{R}^{p}\right\}
$$

The linear model equation

$$
\boldsymbol{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

corresponds to an (unknown) element of the span of \mathbf{X} plus a disturbance.

Ordinary least squares

Find the element of $\mathrm{S}(\mathbf{X})$ with the minimum distance from \boldsymbol{y} (ordinary least squares), i.e.

$$
\hat{\boldsymbol{\beta}}=\min _{\boldsymbol{\beta} \in \mathrm{R}^{p}}\|\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}
$$

Intuition: $\varepsilon_{1}, \ldots, \varepsilon_{n}$ and $\beta_{0}, \ldots, \beta_{p-1}$ are unknown, but we cannot retrieve them (n observations, $n+p$ unknowns).

Column geometry

We try to find the best p -dimensional approximation onto $\mathrm{s}(\mathrm{X})$.

The solution to the least square problem is the projection of y onto $s(x)$, i.e., Hy, where $\mathrm{H}=\mathrm{X}\left(\mathrm{X}^{\top} \mathrm{X}\right)^{-1} \mathrm{X}^{\top}$.

Orthogonal decomposition

Write

$$
\begin{aligned}
\boldsymbol{y} & =\mathbf{H} \boldsymbol{y}+\left(\mathbf{I}_{n}-\mathbf{H}\right) \boldsymbol{y} \\
& =\mathbf{X} \widehat{\boldsymbol{\beta}}+\boldsymbol{e}
\end{aligned}
$$

The residuals \boldsymbol{e} are orthogonal to the columns of \mathbf{x} and the fitted values $\widehat{\boldsymbol{y}}=\mathbf{x} \widehat{\boldsymbol{\beta}}$

+ By Pythagoras' theorem, $\|\boldsymbol{y}\|^{2}=\|\widehat{\boldsymbol{y}}\|^{2}+\|\boldsymbol{e}\|^{2}$.
Assuming $\mathbf{1}_{n} \in \mathcal{S}(\mathbf{X})$ (intercept included)
+ The sample mean of e is zero.
+ A linear regression of $\widehat{\boldsymbol{y}}$ onto \boldsymbol{e} has zero intercept and slope (they are uncorrelated).

