MATH60604A Statistical modelling §2e - Coefficient of determination

HEC Montréal Department of Decision Sciences

Pearson's linear correlation coefficient

- The correlation coefficient quantifies the strength of the linear relationship between two random variables *X* and *Y*.
- Suppose that we're studying n pairs of observations
 (X₁, Y₁), ..., (X_n, Y_n), where (X_i, Y_i) are the values of X and Y for individual *i*.
- Pearson's correlation coefficient is

$$R = \frac{\widehat{\mathsf{Co}}(X,Y)}{\sqrt{\widehat{\mathsf{Va}}(X)\widehat{\mathsf{Va}}(Y)}} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}},$$

where \overline{X} and \overline{Y} are the sample means of X and Y.

Properties of Pearson's linear correlation coefficient

Properties of Pearson's linear correlation coefficient

- −1 ≤ r ≤ 1
- r = 1 (r = -1) if and only if the *n* observations fall exactly on a positively (negatively) sloped line. In other words, there exist two constants *a* and b > 0 (b < 0) such that $y_i = a + bx_i$ for any *i*.

From left to right, the fours samples have linear correlation 0.1, 0.5, -0.75 and 0.95.

Pearson's linear correlation coefficient

- If r > 0 (r < 0), the two variables are positively (negatively) associated, meaning that Y increases (decreases) on average with X.
- The larger |r|, the less scattered the points are.
- Independent variables are uncorrelated (not the other way around).
- A correlation of zero does not imply that there is no relationship between the two variables. It only means that there is no **linear** dependence between the two variables.

The four datasets (bullseye, Anscombosaurus, star, cross) have the same correlation of -0.06, yet the variables are clearly not independent.

- Once the model has been fitted, it is be useful to have a measure that will tell us whether the model fits the data well.
- The coefficient of determination, R^2 , measures the strength of the linear relationship between \hat{Y} and Y.
- It is interpreted as the proportion of the variation in Y explained by the **X**'s.
- R^2 is the squared correlation between the predicted values and the response, $(\hat{Y}_1, Y_1), \dots, (\hat{Y}_n, Y_n)$.

Sum of squares decomposition

• Suppose that we do not use any explanatory variable (i.e., the intercept-only model). In this case, the fitted value for Y is the overall mean and the sum of squared centered observations

$$SS_c = \sum_{i=1}^n (Y_i - \overline{Y})^2.$$

• When we include **X**, the fitted value of Y_i is rather $\widehat{Y}_i = \widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_1 X_{ij}$ and the sum of the squared residuals is

$$SS_e = \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2.$$

The SS_e is non-increasing when we include more variables.

 R² measures the proportion of the variance in Y explained by the set of predictor variables X₁, ..., X_p,

$$R^2 = \frac{SS_c - SS_e}{SS_c}.$$

- When there is more than one explanatory variable, the square root of *R*² is also called the multiple correlation coefficient.
- R^2 always takes a value between 0 and 1.

Coefficient of determination and interpretation

R-Square	Coeff Var	Root MSE	intention Mean
0.449726	27.41959	2.264401	8.258333

- In the model with all of the explanatory variables, $R^2 = 0.45$. Together, the explanatories explain 45% of the variability in intention.
- For the simple linear model with only fixation as covariate, $R^2 = 0.182$. That means the variable fixation explains 18.2% of the variability in intention.

- **Warning**: the more regressors you include in your model, the higher the R^2 (regardless of whether these variables are useful from an inference or predictive perspective).
- *R*² is therefore not a goodness-of-fit criterion.
- Software sometimes report the adjusted R², which includes a penalty,

$$R_a^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1}.$$

The coefficient loses its interpretability and can be negative.