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Interactions

• Interactions: combinations of covariates may affect the response
differently than when taking in isolation.

• e.g., health premium are different if the person is a smoker (or not)
versus and if he/she is obese (or not), but obese smokers also pay
an extra premium.

• We say that the covariates X1 and X2 interact on Ywhen the effect of
X1 on Y depends on the value of X2, and vice-versa.

• We consider the idealized fictious data interaction for the sake of
illustration.
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Interaction between a continuous and a binary variable

• We will only use two variables, sex and fixation, to model
intention.

• The base model, without interaction, is

intention = β0 + β1sex+ β2fixation+ ε,

where sex is a binary variable taking value unity for female and zero
for male.

SAS code to fit a linear model

proc glm data=statmod.interaction;
class sex(ref="0");
model intention=sex fixation / ss3 solution;
run;
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Interaction between a continuous and a binary variable

• This model includes no interaction between fixation and sex.
• The model assumes that the effect of the continuous variable
fixation is the same for the two values of the binary variable.

• Likewise, the effect of the binary variable is assumed to be the same
for all possible values of the continuous variable. We can see this on
the plot, as the difference between the lines represents the effect
of sex, is the same for all values of fixation; the lines are parallel.

All parameters are statistically significant at level α = 0.05.
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Illustration of interaction between continuous and binary
variable
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Modelling interactions

• The previous figure shows that a better model would include a
different slope for men and women.

• In order to add a different slope for men and women, we can create
a new variable equal to the product fixation · sex and add it to the
model,

intention = β0 + β1sex+ β2fixation+ β3fixation · sex+ ε.

• Depending on the value of the binary variable sex, we get

intention =

{
(β0 + β1) + (β2 + β3)fixation+ ε, if sex = 1,
β0 + β2fixation+ ε, if sex = 0.

• We recover the so-called main effect model when β3 is zero.
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Interaction between a continuous and a binary variable

SAS code to fit a linear model with an interaction

proc glm data=statmod.interaction;
class sex(ref="0");
model intention=sex fixation fixation*sex

/ ss3 solution;
run;
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Parameter estimates of the interaction model
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Interaction between a continuous and a binary variable

• Testing whether the interaction is significant boils down to using
the testH0 : β3 = 0.

• If we rejectH0, then there is a significant interaction between the
two variables (in this case, the p-value is less than 0.0001).

• The fitted model is
• when sex= 0, we have E (intention) = 2.74+ 0.50fixation;
• when sex= 1, we have E (intention) = 4.05+ 2.64fixation.

• The concept of interactions readily extends to categorical variables
with k levels/categories.
• In this case, we need to use the global F-test to check if the interaction
is statistically significant.
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Technical note

• The tests for fixation in the two tables are not the same because
fixation is included in an interaction with a class variable.

• In the table of coefficients, the p-value corresponds to the t-test for
the two-sided hypothesisH0 : β2 = 0, i.e., the effect of fixation
when sex=0.

• In the table above, the test is rather a test for the mean effect of
fixation,

H0 : {β2 + (β2 + β3)}/2 = 0

• These tests are not of interest. We cannot remove the main effect
fixation unless we remove the interaction first.
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Main effects and arbitrary choice of baseline for factors

• In the model with buying intention as a fonction of sex and
fixation time, we would not remove the main effect of fixation
while keeping the interaction term fixation*sexe, even if we fail
to rejectH0 : β2 = 0.

• the parameter β2 is the slope of fixation for men. Without it, the
model would become

intention =

{
(β0 + β1) + β3fixation+ ε, if sex = 1,
β0 + ε, if sex = 0;

this implies that intention to buy is constant for me, regardless of
the fixation time.

• The choice of baseline is arbitrary, but changing the dummy sex (0
for women, 1 for men), would yield a different model and so
potentially different inferences.

• The baseline would not anymore be arbitrary!
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Interactions between categorical variables

• For two categorical variables with respectively k1 and k2 levels, the
interaction model has

k1k2 = 1+ (k1 − 1) + (k2 − 1) + (k1 − 1)(k2 − 1)

parameters — one for each combination.
• The number of restrictions to go from interaction model to main
effect model is thus (k1 − 1)(k2 − 1).

• The interpretation of the main effects are as before, i.e., they
represent contrasts relative to a baseline, but the latter is
level-dependent.

• We consider interaction terms only if the corresponding main
effects are included.

• If the variance of the subgroup are equal, we can test the restriction
using the F-statistic for global effects.
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Interactions between categorical variables

• Consider a model for residual health insurance charges as a
function of smoking and obesity indicators, after accounting for the
effect of age.

• The fitted average for each group is based on the model

rcharges = β0 + β1smoker+ β2obese1 + β3obese2 + ε.

where obese1 = 1 if 25 ≤ bmi < 30 (overweight) and obese2 = 1 if
bmi ≥ 30 (obese).
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Graphical representation of interactions between
categorical variables
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The diamonds indicate the fitted value for each group for the main effect, whereas the dots show the fitted values for the
interaction model (mean of each group). The health insurance charges are clearly higher for obese smokers, something the main
effect model fails to capture: it underpredicts the charges of obese smokers and overpredicts that of non-obese smokers.

MATH60604A Interactions 14/18



Interaction model with two categorical variables

The linear model with interaction is

rcharges = β0 + β1smoker+ β2obese1 + β3obese2
β4smoker · obese1 + β5smoker · obese2 + ε.

The average charge for

• non-smokers with body mass index less than 25 is β0;
• overweight non-smokers is β0 + β2;
• obese non-smokers is β0 + β3;
• obese smokers is β0 + β1 + β3 + β5…

Testing for the interaction amounts toH0 : β4 = β5 = 0.
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Interpretation of parameters in the interaction model

The linear model with interaction is

rcharges = β0 + β1smoker+ β2obese1 + β3obese2
β4smoker · obese1 + β5smoker · obese2 + ε.

• The interpretation is as before (but less straightforward…)
• β0, the baseline, is the mean charges of people whose body mass index
(BMI) is less than 25 who do not smoke.

• β1 is the difference between the mean charges of smokers and
non-smokers for individuals whose BMI is less than 25.

• β2 is the difference between the mean charges for overweight
non-smokers and non-smokers whose BMI is less than 25.

• β3 is the difference between the mean charges of obese non-smokers
and that of non-smokers whose BMI is less than 25.

• β2 + β4 is the difference between the mean charges for overweight
smokers and smokers whose BMI is less than 25.

• β3 + β5 is the difference between the mean charges of obese smokers
and that of smokers whose BMI less than 25.
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Higher-order interaction

• In theory, we could consider an interaction between any number of
variables. However, in practice we rarely go higher than third-order
because it quickly becomes difficult to interpret the effects.
Additionally, estimating an interaction between several variables
requires a very large sample size.

• The basic principle is still the same. To create an interaction of a
given order between several variables, we also need to include all
the lower-order terms between the variables included in the
higher-order interaction term.

• We interpret the variable effects while fixing the values of all the
other variables in the interaction term.
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Final remarks on interactions

• Don’t remove a lower-order term, even if it’s not significant. The
lower-order terms are needed for proper inference!

• While it is tempting to include interactions between many
categorical variables, beware of sparsely populated sub-categories.

• Algorithms performing model selection often base their variable
choice on predictive performance.
• removing lower-order term may not matter for the development of a
black-box predictive model.

• However, removing main effects implies that the baseline is not
arbitrary and inference is invalid.
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