MATH60604A Statistical modelling §2h - Collinearity

HEC Montréal Department of Decision Sciences

- We say that two variables X_1 and X_2 are collinear if
 - X₁ and X₂ are both correlated with Y
 - X₁ and X₂ are strongly correlated with each other so much so that they contain essentially the same information.
- There could be multicollinearity between more than two variables...in the same way that there could be more than one confounding variable.
- In such a case, multicollinearity (or simply collinearity) describes when an explanatory variable (or several) is strongly correlated with a linear combination of other explanatory variables.
- One potential harm of multicollinearity is a decrease in precision in parameter estimation, as it increases the standard errors of the parameters.

A stupid illustration of multicollinearity

• Consider the log number of Bixi rentals per day as a function of the temperature in degrees Celcius and in Farenheit, rounded to the nearest unit. The postulated linear model is

 $\texttt{lognuser} = \beta_0 + \beta_{\texttt{c}}\texttt{celcius} + \beta_{\texttt{f}}\texttt{farenheit} + \varepsilon.$

- The interpretation of β_c is "the average increase in number of rental per day when temperature increases by 1°C, keeping the temperature in Farenheit constant"...
- The two temperatures units are linearly related,

```
1.8celcius +32 = farenheit.
```

• Suppose that the true effect (fictional) effect of temperature on bike rental is

$$lognuser = \alpha_0 + \alpha_1 celcius + \varepsilon.$$

The coefficients for the model that only includes Farenheit are thus

 $lognuser = \gamma_0 + \gamma_1 farenheit + \varepsilon.$

where $\alpha_0 = \gamma_0 + 32\gamma_1$ and $1.8\gamma_1 = \alpha_1$.

The parameters of the postulated linear model with both predictors,

 $lognuser = \beta_0 + \beta_c celcius + \beta_f farenheit + \varepsilon$,

are not **identifiable**, since any linear combination of the two solutions gives the same answer.

We consider a simple illustration with temperature at 16:00 in Celcius and Farenheit (rounded to the nearest unit for rfarenheit) to explain log of daily counts of Bixi users for 2014–2019.

Parameter	Estimate	Standard Error	t Value	Pr > t	Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	8.844327052	0.02819099	313.73	<.0001	Intercept	7.980926861	0.05132678	155.49	<.0001
celcius	0.048566261	0.00135205	35.92	<.0001	farenheit	0.026981256	0.00075114	35.92	<.0001

Parameter	Estimate		Standard Error	t Value	Pr > t	Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	8.844327052	В	0.02819099	313.73	<.0001	Intercept	9.555086770	1.14747585	8.33	<.0001
celcius	0.048566261	в	0.00135205	35.92	<.0001	celcius	0.088592866	0.06461502	1.37	0.1706
farenheit	0.000000000	в				rfarenheit	-0.022227045	0.03587330	-0.62	0.5356

SAS prints a warning if the data are exactly collinear.

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Generally, collinearity has the following effects:

- The regression coefficients change drastically when new observations are included, or when we include/remove new covariates.
- The standard errors of the coefficients in the multiple regression model are very high, since the β cannot be precisely estimated.
- Consequently, the confidence intervals for these coefficients will be very wide.
- The individual parameters are not statistically significant, but the global *F*-test indicates some covariates are nevertheless relevant.

How do we detect collinearity or confounders?

- If the variables are exactly collinear, SAS or R will drop redundant ones.
 - The variables that are not **perfectly** collinear (e.g., due to rounding) will not be captured by software and will cause issues.
- Look at the **linear correlation** between explanatory variables and look at changes in estimated coefficients between regression models with and without a potential collinear variable.
- The problem is that, when more than two variables are collinear, detection is hard.
- One explanatory variable could be strongly correlated with a linear combination of other variables even though the individual correlations between the variables are not high.

- Another tool we can use is the variance inflation factor (VIF); in SAS, use the option vif inside proc reg.
- For a given explanatory variable X_j, its VIF is

$$\mathsf{VIF}(j) = \frac{1}{1 - R^2(j)}$$

where $R^2(j)$ is the R^2 of the model obtained by regressing X_j on all the other explanatory variables.

• The tolerance factor, $TOL = 1 - R^2(j)$, is the reciprocal of VIF.

- $R^2(j)$ represents the proportion of the variance of X_j that is explained by all the other predictor variables.
- When is collinearity problematic? There is no general agreement, but practitioners typically choose an arbitrary cutoff (rule of thumb)
 - VIF(j) > 4 or TOL < 0.25 implies that R²(j) > 0.75
 - $VIF(j) > 5 \text{ or TOL} < 0.2 \text{ implies that } R^2(j) > 0.8$
 - VIF(j) > 10 or TOL < 0.1 implies that R²(j) > 0.9

Observations for Bixi multicollinearity example

- The value of the F statistic for the global significance for the simple linear model with Celcius (not reported) is 1292 with associated p-value less than 0.0001, suggesting that temperature is statistically significant (5% increase in number of users for each increase of 1°C).
- Yet, when we include both Celcius and Farenheit (rounded), the individual coefficients are not significant anymore at the 5% level.
- Moreover, the sign of rfarenheit change relative to that of farenheit!
- Note that the standard errors for Celcius are 48 times bigger when including the two covariates.
- The variance inflation factors of both rfarenheit and celcius are enormous (2454.68), suggesting identifiability issues.

Added-variable plots for Bixi multicollinearity example

- We consider a fictional example with 100 observations on the outcome variable Y as well as five predictor variables X₁ through X₅.
- The Y values were actually randomly generated under the following model

$$Y = X_1 + X_2 + X_3 + X_4 + X_5 + \varepsilon$$

- The parameter associated with each variable is 1.
- The data can be found in simcollinear.sas7bdat.

Fictional example of multicollinearity

• The correlation matrix between all the variables

```
SAS code for correlation
proc corr data=statmod.simcollinear noprob;
var y x1-x5;
run;
```

	Pearson Correlation Coefficients, N = 100							
	Y	X1	X2	Х3	X4	X5		
Y Y	1.00000	0.45184	0.45549	0.64572	0.41047	0.34706		
X1 X1	0.45184	1.00000	0.05607	0.68896	0.14553	0.01874		
X2 X2	0.45549	0.05607	1.00000	0.64534	0.07247	-0.02981		
X3 X3	0.64572	0.68896	0.64534	1.00000	0.15883	0.00667		
X4 X4	0.41047	0.14553	0.07247	0.15883	1.00000	0.11266		
X5 X5	0.34706	0.01874	-0.02981	0.00667	0.11266	1.00000		

- The correlation between Y and each predictor variable is significant and positive.
- Consequently, if we fit a separate model for each predictor variable, the parameter for each variable would be significant and positive for each one. This is consistent with the true model from which we simulated the data.
- This shows that there are enough observations to estimate the parameters, and to make proper conclusions about their effects, at least when considering one predictor at a time.

Fictional example of multicollinearity

- However, X₁, X₂ et X₃ are highly correlated with each other which could cause multicollinearity problems.
- We fit the model containing all the predictor variables with proc reg, while requesting multicollinearity diagnostics.

SAS code to compute variance inflation factor

```
proc reg data=statmod.simcollinear;
model y=x1-x5 / vif;
run;
proc glm data=statmod.simcollinear;
model y=x1-x5 / ss3 solution tolerance;
```

run;

The glm procedure doesn't include an option to compute the vif; one can either use tol (reciprocal of VIF) or else resort to the reg procedure for fitting linear models.

- By default, diagnostic plots are produced by reg (plots=diagnostics option with glm).
- The reg procedure includes more model selection diagnostics (not used in inference).
- The table of coefficients is automatically printed by reg (solution option in glm).
- The main drawback of reg is that it doesn't handle categorical variables: these must be manually coded using binary indicators (0-1) (**frequent programming mistake**).

Parameter estimates and VIF

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation	
Intercept	Intercept	1	-0.76110	2.43241	-0.31	0.7551	0	
X1	X1	1	0.43149	0.45829	0.94	0.3488	3.75609	
X2	X2	1	0.68894	0.45638	1.51	0.1345	3.38306	
Х3	Х3	1	1.94048	0.77306	2.51	0.0138	6.42789	
X4	X4	1	1.06329	0.24587	4.32	<.0001	1.04162	
X5	X5	1	1.14430	0.23231	4.93	<.0001	1.01507	

Dependent Variable: Y

Tolerances

Variable	Type I Tolerance	Type II Tolerance
Intercept	100	6.3051461638
X1	1	0.2662342154
X2	0.9968564885	0.2955903718
Х3	0.1560669286	0.1555721533
X4	0.9722559013	0.9600474856
X5	0.9851577945	0.9851577945

- Overall, the model seems adequate. The R^2 is 62%.
- However, the variables X₁ and X₂ are no longer significant once other explanatories are accounted for.
- The VIF of X_3 is quite large (6.43) and the variance inflation factors for X_1 and X_2 are between 3 and 4.
- This indicates a possible problem of collinearity. The estimation precision for these parameters is not as good as it would be if there were no multicollinearity.
- Note that the VIF is an individual measure. It does not tell us which particular variables are correlated with each other.