MATH60604A

 Statistical modelling

 Statistical modelling §3-Likelihood-based inference

HEC Montréal
Department of Decision Sciences

- The likelihood $L(\boldsymbol{\theta})$ is a function of the parameters of the distribution, say $\boldsymbol{\theta}$.
- The likelihood gives the probability of observing a sample under a postulated distribution whose parameters are $\boldsymbol{\theta}$.
- The likelihood treats the observations as fixed.
- The maximum likelihood estimator $\widehat{\boldsymbol{\theta}}$ is the value of $\boldsymbol{\theta}$ that maximizes the likelihood.
- the value that makes the observed sample the most likely or plausible.
- scientific thinking: whatever we observe, we have expected to observe.
- Suppose we want to estimate the probability that an event occurs, which we assume is constant.
- For example, whether a customer buys a product or not, whether a study participant completes a task or not, etc.
- We have a sample size of n with X_{i} assumed to come from a Bernoulli distribution with probability p, meaning

$$
\mathrm{P}\left(X_{i}=1\right)=p, \quad \mathrm{P}\left(X_{i}=0\right)=1-p .
$$

- By convention, "1" denotes a success and "0" a failure.

A compact way of writing the mass function is

$$
\mathrm{P}\left(X_{i}=x_{i} \mid p\right)=p^{x_{i}}(1-p)^{1-x_{i}}, \quad x_{i} \in\{0,1\} .
$$

Since the observations are independent, the joint probability of a given result is the product of the probabilities for each observation,

$$
\begin{aligned}
\mathrm{P}\left(X_{1}=x_{1}, \ldots, x_{n}=x_{n} \mid p\right) & =\prod_{i=1}^{n} \mathrm{P}\left(X_{i}=x_{i} \mid p\right) \\
& =\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}
\end{aligned}
$$

The likelihood for the random sample is

$$
\begin{aligned}
L(p ; X) & =\prod_{i=1}^{n} p^{X_{i}}(1-p)^{\left(1-X_{i}\right)} \\
& =p^{\sum_{i=1}^{n} X_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}} .
\end{aligned}
$$

This likelihood is (up to normalizing constant) the same as that of a binomial sample of size n with probability of success p.

- the likelihood only depends on the number of successes, regardless of the ordering.
Suppose that we have $n=10$ observations, eight of which are successes.
- The likelihood is $L(p)=p^{8}(1-p)^{2}$.

Log-likelihood for Bernoulli sample

- The log-likelihood function is

$$
\ell(p)=\sum_{i=1}^{n} \ln \left\{p^{x_{i}}(1-p)^{1-x i}\right\}
$$

- Using the property $\ln \left(a^{b}\right)=b \ln (a)$, rewrite

$$
\ell(p)=\ln (p) \sum_{i=1}^{n} x_{i}+\ln (1-p)\left(n-\sum_{i=1}^{n} x_{i}\right) .
$$

- In our numerical example, with eight ones and two zeros, the log-likelihood is $\ell(p)=8 \ln (p)+2 \ln (1-p)$.

Plot of the log-likelihood function $\ell(p)$

Differentiating $\ell(p)$ with respect to p,

$$
\frac{\mathrm{d}}{\mathrm{~d} p} \ell(p)=\frac{1}{p} \sum_{i=1}^{n} x_{i}-\frac{1}{(1-p)}\left(n-\sum_{i=1}^{n} x_{i}\right) .
$$

Solving the score equation $U(p)=\mathrm{d} \ell(p) / \mathrm{d} p=0$, we find

$$
\widehat{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}
$$

The second derivative,

$$
\frac{\mathrm{d}^{2} \ell(p)}{\mathrm{d} p^{2}}=-\frac{1}{p^{2}} \sum_{i=1}^{n} x_{i}-\frac{1}{(1-p)^{2}}\left(n-\sum_{i=1}^{n} x_{i}\right)
$$

is negative, so $L(p)$ thus achieves a maximum at \hat{p} and the maximum likelihood estimator of p is the sample proportion of ones.

The observed information $j(p)=-\mathrm{d}^{2} \ell(p) / \mathrm{d} p^{2}$ and

$$
j(\widehat{p})=\frac{n}{\bar{x}}+\frac{n}{(1-\bar{x})}=\frac{n}{\bar{x}(1-\bar{x})}
$$

so, the estimated variance of \hat{p} is $j^{-1}(\widehat{p})=0.016$ and the standard error 0.1265 .

The Fisher information is

$$
i(\theta)=\frac{n}{p(1-p)}
$$

- For independent and identically distributed data, the total information in the sample is n times that of an individual observation (information accumulates linearly).

Testing procedure

Suppose we are interested in the two-sided hypothesis

$$
\mathscr{H}_{0}: p_{0}=0.5 \quad \text { versus } \quad \mathscr{H}_{a}: p_{0} \neq 0.5
$$

The three likelihood-based tests for this hypothesis are:

- the Wald test

$$
W\left(p_{0}\right)=\frac{\left(\widehat{p}-p_{0}\right)^{2}}{\operatorname{Var}(\widehat{p})}=\frac{\left(\widehat{p}-p_{0}\right)^{2}}{\hat{p}(1-\widehat{p}) / n}
$$

- the score test

$$
S\left(p_{0}\right)=\frac{U^{2}\left(p_{0}\right)}{i\left(p_{0}\right)}=\frac{\left(\hat{p}-p_{0}\right)^{2}}{p_{0}\left(1-p_{0}\right) / n}
$$

- the likelihood ratio test

$$
\begin{aligned}
R\left(p_{0}\right) & =2\left\{\ell(\hat{p})-\ell\left(p_{0}\right)\right\} \\
& =2\left\{y \ln \left(\frac{\widehat{p}}{p_{0}}\right)+(n-y) \ln \left(\frac{1-\widehat{p}}{1-p_{0}}\right)\right\}
\end{aligned}
$$

Illustration of likelihood-based tests

- With 8 successes out of 10 trials, the statistics equal $W=5.62$, $S=3.6, R=3.855$;
- we compare these values with the 0.95 quantile of the χ_{1}^{2} distribution, 3.84.
- In small sample size or when the sampling distribution is strongly asymmetric, the Wald test is unreliable.
- Inverting the Wald statistic gives a 95\% confidence interval

$$
\widehat{p} \pm \mathfrak{z}_{1-\alpha / 2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}
$$

- The 95\% Wald-based confidence interval is $0.8 \pm 1.96 \cdot 0.1265=[0.55,1.048]$!
- Compare with the 95\% confidence intervals based on
- the likelihood ratio statistic, [0.5005, 0.964].
- the score statistic, $[0.49,0.943]$.

Solve $\{p: S(p) \leq 3.84\}$ and $\{p: R(p) \leq 3.84\}$ via root finding.

