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Likelihood

• The likelihood L(θ) is a function of the parameters of the
distribution, say θ.
• The likelihood gives the probability of observing a sample under a
postulated distribution whose parameters are θ.

• The likelihood treats the observations as fixed.
• The maximum likelihood estimator θ̂ is the value of θ that
maximizes the likelihood.
• the value that makes the observed sample the most likely or plausible.
• scientific thinking: whatever we observe, we have expected to observe.
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Bernoulli trials

• Suppose we want to estimate the probability that an event occurs,
which we assume is constant.

• For example, whether a customer buys a product or not, whether a
study participant completes a task or not, etc.

• We have a sample size of n with Xi assumed to come from a
Bernoulli distribution with probability p, meaning

P (Xi = 1) = p, P (Xi = 0) = 1 − p.

• By convention, “1” denotes a success and “0” a failure.
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Joint probability of outcomes in Bernoulli example

A compact way of writing the mass function is

P (Xi = xi | p) = pxi(1 − p)1−xi , xi ∈ {0, 1}.

Since the observations are independent, the joint probability of a given
result is the product of the probabilities for each observation,

P (X1 = x1, ... ,Xn = xn | p) =
n∏
i=1

P (Xi = xi | p)

=
n∏
i=1

pxi(1 − p)1−xi .
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Likelihood of the Bernoulli model

The likelihood for the random sample is

L(p;X) =
n∏
i=1

pXi(1 − p)(1−Xi)

= pΣ
n
i=1Xi(1 − p)n−Σn

i=1Xi .

This likelihood is (up to normalizing constant) the same as that of a
binomial sample of size n with probability of success p.

• the likelihood only depends on the number of successes, regardless
of the ordering.

Suppose that we have n = 10 observations, eight of which are
successes.

• The likelihood is L(p) = p8(1 − p)2.
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Plot of the likelihood function L(p)
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Log-likelihood for Bernoulli sample

• The log-likelihood function is

ℓ(p) =
n∑
i=1

ln
{
pxi(1 − p)1−xi

}
• Using the property ln(ab) = b ln(a), rewrite

ℓ(p) = ln(p)
n∑
i=1

xi + ln(1 − p)

(
n −

n∑
i=1

xi

)
.

• In our numerical example, with eight ones and two zeros, the
log-likelihood is ℓ(p) = 8 ln(p) + 2 ln(1 − p).
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Plot of the log-likelihood function ℓ(p)
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Maximum likelihood estimator

Differentiating ℓ(p) with respect to p,

d

dp
ℓ(p) =

1

p

n∑
i=1

xi −
1

(1 − p)

(
n −

n∑
i=1

xi

)
.

Solving the score equation U(p) = dℓ(p)/dp = 0, we find

p̂ =
1

n

n∑
i=1

xi = x.

The second derivative,

d2ℓ(p)

dp2
= − 1

p2

n∑
i=1

xi −
1

(1 − p)2

(
n −

n∑
i=1

xi

)
,

is negative, so L(p) thus achieves a maximum at p̂ and the maximum
likelihood estimator of p is the sample proportion of ones.
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Information

The observed information j(p) = −d2ℓ(p)/dp2 and

j(p̂) =
n

x
+

n

(1 − x)
=

n

x(1 − x)

so, the estimated variance of p̂ is j−1(p̂) = 0.016 and the standard error
0.1265.
The Fisher information is

i(θ) =
n

p(1 − p)
.

• For independent and identically distributed data, the total
information in the sample is n times that of an individual
observation (information accumulates linearly).
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Testing procedure

Suppose we are interested in the two-sided hypothesis

H0 : p0 = 0.5 versus Ha : p0 ̸= 0.5.

The three likelihood-based tests for this hypothesis are:
• the Wald test

W(p0) =
(p̂ − p0)

2

Var (p̂)
=

(p̂ − p0)
2

p̂(1 − p̂)/n

• the score test

S(p0) =
U2(p0)

i(p0)
=

(p̂ − p0)
2

p0(1 − p0)/n

• the likelihood ratio test

R(p0) = 2{ℓ(p̂) − ℓ(p0)}

= 2
{
y ln

(
p̂

p0

)
+ (n − y) ln

(
1 − p̂

1 − p0

)}
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Illustration of likelihood-based tests
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Numerical results and confidence intervals

• With 8 successes out of 10 trials, the statistics equalW = 5.62,
S = 3.6, R = 3.855;

• we compare these values with the 0.95 quantile of the χ2
1

distribution, 3.84.
• In small sample size or when the sampling distribution is strongly
asymmetric, the Wald test is unreliable.

• Inverting the Wald statistic gives a 95% confidence interval

p̂ ± z1−α/2

√
p̂(1 − p̂)

n

• The 95%Wald-based confidence interval is
0.8 ± 1.96 · 0.1265 = [0.55, 1.048]!

• Compare with the 95% confidence intervals based on
• the likelihood ratio statistic, [0.5005, 0.964].
• the score statistic, [0.49, 0.943].

Solve {p : S(p) ≤ 3.84} and {p : R(p) ≤ 3.84} via root finding.
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