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Introduction

• Linear models are only suitable for data that are (approximately)
normally distributed.

• However, there are many settings where we may wish to analyse a
response variable which is not necessarily continuous, including
when
• Y is binary,
• Y is a count variable,
• Y is continuous, but non-negative,

• We consider particular distributions for binary/proportion and
counts data, in order to do likelihood-based inference.
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Binary response variables

• If the response variable Y takes values in {0, 1}, we may assume
that Y follows a Bernoulli distribution, meaning

P (Y = y) = πy(1 − π)1−y, y = 0, 1.

• For Bernoulli random variables, E (Y) = π and Var (Y) = π(1 − π).
• By convention, failures (no) are zeros and successes (yes) ones.
• Potential research questions with binary responses include

• Did a potential client respond favourably to a promotional offer?
• Is the client satisfied with service provided post-purchase?
• Will a company declare bankruptcy in the next three years?
• Did a study participant successfully complete a task?
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Aggregated binary response variables

If the data are aggregated independent binary events with Bernoulli
distribution, the distribution of the number of successes Y out ofm
trials is Binomial, denoted Bin(m, π) with mass function

P (Y = y) =

(
m

y

)
πy(1 − π)m−y, y = 0, 1, ... ,m.

The likelihood is the same (up to a normalizing constant that does not
depend on π) as that ofm independent Bernoulli random variables and
E (Y) = mπ, Var (Y) = mπ(1 − π).
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Count response variables

• If the probability of an event is rare, we often assume that the
number of successes in a given time interval Y follows a Poisson
distribution,

P (Y = y) =
exp(−µ)µy

Γ(y+ 1)
, y = 0, 1, 2, ...

• The parameter µ of the Poisson distribution characterizes both its
mean and variance, meaning E (Y) = Var (Y) = µ.

• Examples of response variables include the number of
• insurance claims made by a policyholder over a year,
• purchases made by a client over a month on a website,
• number tasks completed by a study participant in a given time frame.
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Notation for generalized linear models

• The starting point is the same as for linear regression:
• We have a random sample of independent observations

(Yi,Xi1, ... ,Xip), i = 1, ... , n

where Y is the response variable and X1, ... ,Xp are p explanatory
variables or covariates which are assumed fixed (non-random).

• The goal is to model the response variable as a function of the
explanatory variables.

• Let µi denote the (conditional) mean of Yi given covariates,

µi = E (Yi | Xi1, ... ,Xip) .

• Let ηi denote the linear combination of the covariates that will be
used to model the response variable,

ηi = β0 + β1Xi1 + · · · + βpXip.
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Definition of generalized linear model

• There are three building blocks to the generalized linear model:
• A probability distribution for the outcome Y that is a member of the
exponential family (normal, binomial, Poisson, gamma, …).

• The linear predictors η = Xβ.
• A function g, called link function, that links the mean of Yi to the
predictor variables, g(µi) = ηi.
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Link function

• The link function connects the mean to the explanatory variables,

g(µi) = ηi = β0 + β1Xi1 + · · · + βpXip

⇔ µi = g−1(ηi) = g−1(β0 + β1Xi1 + · · · + βpXip).

• In the ordinary linear regression model, we do not impose constraints on
the mean µi and µ̂i = β̂0 + β̂1Xi1 + · · · + β̂pXip can take on any value in
(−∞, ∞).

• For some response variables, we would need to impose constraints on the
mean.

• For Bernoulli responses, the mean µ = π must lie in the interval (0, 1).
• For Poisson responses, the mean µmust be positive.

• An appropriate choice of link function sets µi equal to a transformation of
the linear combination ηi so as to avoid any parameter constraints on β.
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Choice of link function

Certain choices of the link function facilite interpretation or make the
likelihood function convenient for optimization.

• For the Bernoulli and binomial distributions, an appropriate link
function is the logit function,

logit(µ) := ln

(
µ

1 − µ

)
= η ⇔ µ =

exp(η)

1+ exp(η)
.

• For the Poisson distribution, an appropriate link function is the
natural logarithm,

ln(µ) = η ⇔ µ = exp(η).

• For the normal distribution, an appropriate link function is the
identity function, µ = η.
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Generalized linear model: linear regression

• Ordinary linear regression is a special case of generalized linear
models, with

Yi = β0 + β1Xi1 + ... + βpXip + εi, (i = 1, ... , n)

where εi
iid∼ N (0, σ2), i.e., ε1, ... , εn are independent and identically

distribution normal random variables with mean 0 and variance σ2.
• This is equivalent to stating

Yi | Xi
ind∼ No(β0 + β1Xi1 + ... + βpXip, σ2)

• Linear regression is a generalized linear model with
• a normal distribution for the response and
• the identity function as link function.
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