MATH 60604A
 Statistical modelling
 § 4b-Logistic regression

HEC Montréal
Department of Decision Sciences

Generalized linear model for binary variables

- In the case of a binary response variable, assume Y_{i} follows a Bernoulli distribution with parameter $\pi_{i}, Y_{i} \sim \operatorname{Bin}\left(\pi_{i}\right)$, where

$$
\pi_{i}=\mathrm{P}\left(Y_{i}=1 \mid \mathbf{X}_{i}\right)=\mathrm{E}\left(Y_{i} \mid \mathbf{X}_{i}\right)
$$

- An appropriate link function for binary responses is the logit function

$$
g(z):=\operatorname{logit}(z)=\ln \left(\frac{z}{1-z}\right)
$$

- The logistic regression model is

$$
g\left(\pi_{i}\right)=\ln \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\eta_{i}:=\beta_{0}+\beta_{1} \mathrm{X}_{i 1}+\cdots+\beta_{p} \mathrm{X}_{i p} .
$$

- The logit function g is the quantile function of the logistic distribution and links $\mathrm{E}\left(Y_{i} \mid \mathbf{X}_{i}\right)=\pi_{i}\left(\mathbf{X}_{i}\right)$ and η_{i}.

Logistic regression: logit function

- The logistic model is

$$
\eta_{i}=\ln \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{i 1}+\cdots+\beta_{p} \mathrm{X}_{i p}
$$

- This model can also be written on the mean scale by using the inverse-logit (expit) function,

$$
\mathrm{E}\left(Y_{i} \mid \mathbf{X}_{i}\right)=\pi_{i}=\frac{\exp \left(\beta_{0}+\beta_{1} \mathrm{X}_{i 1}+\cdots+\beta_{p} \mathrm{X}_{i p}\right)}{1+\exp \left(\beta_{0}+\beta_{1} \mathrm{X}_{i 1}+\cdots+\beta_{p} \mathrm{X}_{i p}\right)}
$$

- We have an expression for the mean $\pi_{i}=\mathrm{E}\left(Y_{i} \mid \mathbf{X}_{i}\right)$ as a function of the explanatory variables \mathbf{X}_{i}, but...
- what does this function look like?
- what does this tell us about the relationship between π_{i} and η_{i} (and thus \mathbf{X}_{i})?

Logistic distribution function

- Notice π is an increasing function of $\eta=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{j}$.
- If β_{j} is positive and X_{j} increases, $\mathrm{P}(Y=1)$ also increases.
- If β_{j} is negative and X_{j} increases, $\mathrm{P}(Y=1)$ decreases.
- We also see that the relationship between $\mathrm{P}(Y=1)$ and η (and thus each X_{j}) is non-linear.
- Quantifying the effect sizes in logistic regression is not easy because it's a nonlinear model.
- The coefficients can be interpreted in terms of odds and odds ratios.
- Let $\pi=\mathrm{P}\left(Y=1 \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{p}\right)$, the logistic regression model is

$$
\ln \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

- By exponentiating both sides, we obtain

$$
\operatorname{odds}(Y \mid \mathbf{X})=\frac{\pi(\mathbf{X})}{1-\pi(\mathbf{X})}=\exp \left(\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}\right)
$$

where $\pi(\mathbf{X}) /\{1-\pi(\mathbf{X})\}$ are the odds of $\mathrm{P}(Y=1 \mid \mathbf{X})$ relative to $\mathrm{P}(Y=0 \mid \mathbf{X})$.

- The logit function corresponds to modelling the log-odds.
- The odds for binary Y are the quotient

$$
\operatorname{odds}(\pi)=\frac{\pi}{1-\pi}=\frac{\mathrm{P}(Y=1)}{\mathrm{P}(Y=0)}
$$

- For example, an odds of 4 means that the probability that $Y=1$ is four times higher than the probability that $Y=0$.
- An odds of 0.25 means the probability that $Y=1$ is only a quarter times the probability that $Y=0$, or equivalently, the probability that $Y=0$ is four times higher than the probability that $Y=1$.

$\mathrm{P}(Y=1)$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Odds	0.11	0.25	0.43	0.67	1	1.5	2.33	4	9
Odds (frac.)	$\frac{1}{9}$	$\frac{1}{4}$	$\frac{3}{7}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{7}{3}$	4	9

- When $\mathrm{X}_{1}=\cdots=\mathrm{X}_{p}=0$, it is clear that

$$
\operatorname{odds}\left(Y \mid \mathbf{X}=\mathbf{0}_{p}\right)=\exp \left(\beta_{0}\right)
$$

and

$$
\mathrm{P}\left(Y=1 \mid \mathrm{X}_{1}=0, \ldots \mathrm{X}_{p}=0\right)=\frac{\exp \left(\beta_{0}\right)}{1+\exp \left(\beta_{0}\right)}
$$

which represents the probability that $Y=1$ when $\mathbf{X}=\mathbf{0}_{p}$.

- As for linear regression, $X_{1}=\cdots=X_{p}=0$ might not be physically possible, in which case there is no sensible interpretation for β_{0}.

Consider for simplicity a logistic model of the form

$$
\operatorname{logit}(\pi)=\beta_{0}+\beta_{1} x
$$

The factor $\exp \left(\beta_{1}\right)$ is the change in odds when X increases by one unit,

$$
\operatorname{odds}(Y \mid X=x+1)=\exp \left(\beta_{1}\right) \times \operatorname{odds}(Y \mid X=x)
$$

- If $\beta_{1}=0$ then the odds ratio is unity,
meaning that the variable X is not associated with the odds of Y
- If β_{1} is positive, then the odds ratio $\exp \left(\beta_{1}\right)$ is larger than one,
meaning that, as X increases, the odds of Y increases.
- If β_{1} is negative, the odds ratio $\exp \left(\beta_{1}\right)$ is smaller than one, meaning that, as X increases, the odds of Y decreases.
Note that, when there are several explanatory variables in the model, the interpretation of β_{1} is when all other variables in the model are held constant.

Interpretation of β_{k} in terms of odds ratio

For the logistic model, the odds ratio when $X_{k}=x_{k}+1$ versus $X_{k}=x_{k}$ when $\mathrm{X}_{j}=x_{j}(j=1, \ldots, p, j \neq k)$ is

$$
\begin{aligned}
\frac{\operatorname{odds}\left(Y \mid X_{k}=x_{k}+1, X_{j}=x_{j}, j \neq k\right)}{\operatorname{odds}\left(Y \mid X_{k}=x_{k}, X_{j}=x_{j}, j \neq k\right)} & =\frac{\exp \left(\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}+\beta_{k}\right)}{\exp \left(\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}\right)} \\
& =\exp \left(\beta_{k}\right) .
\end{aligned}
$$

When X_{k} increases by one unit and all the other covariates are held
constant, the odds of Y changes by a factor $\exp \left(\beta_{k}\right)$.

- The odds increase if $\exp \left(\beta_{k}\right)>1$, i.e., if $\beta_{k}>0$.
- The odds decrease if $\exp \left(\beta_{k}\right)<1$, i.e., if $\beta_{k}<0$.

The effect of β_{k} is larger when π is near 0.5 than near endpoints of $(0,1)$.

