MATH 60604A Statistical modelling § 4d - Poisson regression

> HEC Montréal Department of Decision Sciences

Poisson regression

• Poisson regression assumes that the outcome variable Y_i follows a Poisson distribution with parameter μ_i , $Y_i \sim Po(\mu_i)$, where

$$\mu_i = \mathsf{E}\left(Y_i\right) = \mathsf{Var}\left(Y_i\right).$$

• We use the natural logarithm $\ln(x)$ as link function,

$$g\{\mathsf{E}(Y_i)\} = g(\mu_i) = \ln\{\mathsf{E}(Y_i)\} = \beta_0 + \beta_1 \mathsf{X}_{i1} + \cdots + \beta_p \mathsf{X}_{ip}.$$

• Equivalently, we could say that the outcome for individual *i*, *Y_i*, follows a Poisson distribution with mean

$$\mathsf{E}(Y_i) = \mu_i = \exp(\beta_0 + \beta_1 \mathsf{X}_{i1} + \cdots + \beta_p \mathsf{X}_{ip}).$$

Coefficient interpretation for β_k in Poisson regression

• Let x, x_+ be two vectors which differ only in their *k*th components, respectively x_k and $x_k + 1$.

When $\mathbf{X} = x$, the model linking the mean to the variable Y is

$$\mu_i(x) = \mathsf{E}\left(Y_i \mid \mathbf{X} = x\right) = \exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j\right),\,$$

whereas, when $\mathbf{X} = x_+$, we have

$$\mu_i(x_+) = \mathsf{E}\left(Y_i \mid \mathbf{X} = x_+\right) = \exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j + \beta_k\right).$$

- The ratio between two means, $\mu_i(x_+)/\mu_i(x)$, is $\exp(\beta_k)$.
- When X_k increases by one unit, the mean of Y is **multiplied** by $\exp(\beta_k)$.

We now consider a Poisson model for the number of items bought by participants following the advertisement.

```
SAS code to fit a Poisson regression
```

```
proc genmod data=statmod.intention;
class educ revenue;
model nitem=sex age revenue educ marital
    fixation emotion / dist=poisson link=log
    lrci type3;
```

run;

LR Statistics For Type 3 Analysis								
Source	DF	Chi-Square	Pr > ChiSq					
sex	1	10.97	0.0009					
age	1	1.58	0.2089					
revenue	2	65.18	<.0001					
educ	2	4.11	0.1281					
marital	1	7.40	0.0065					
fixation	1	76.25	<.0001					
emotion	1	30.61	<.0001					

Five explanatory variables are statistically significant according to the likelihood ratio tests.

Analysis Of Maximum Likelihood Parameter Estimates										
Parameter		DF	Estimate	Standard Error	Likelihood Ratio 95	% Confidence Limits	Wald Chi-Square	Pr > ChiSq		
Intercept		1	-1.6305	0.6618	-2.9427	-0.3466	6.07	0.0137		
sex		1	0.5361	0.1649	0.2168	0.8640	10.57	0.0011		
age		1	-0.0228	0.0183	-0.0590	0.0127	1.56	0.2115		
revenue	1	1	1.2463	0.2461	0.7712	1.7374	25.64	<.0001		
revenue	2	1	-0.1250	0.2532	-0.6213	0.3736	0.24	0.6216		
revenue	3	0	0.0000	0.0000	0.0000	0.0000				
educ	1	1	0.2497	0.2226	-0.1800	0.6948	1.26	0.2620		
educ	2	1	0.4040	0.2044	0.0123	0.8159	3.90	0.0482		
educ	3	0	0.0000	0.0000	0.0000	0.0000				
marital		1	-0.4218	0.1558	-0.7291	-0.1175	7.33	0.0068		
fixation		1	0.5501	0.0614	0.4296	0.6708	80.16	<.0001		
emotion		1	0.7887	0.1396	0.5133	1.0610	31.92	<.0001		
Scale		0	1.0000	0.0000	1.0000	1.0000				

The scale parameter is unity because it is completely determined by the mean-variance relationship.

Interpretation of significant parameters

- The estimate $\widehat{\beta}_{sex} = 0.5361$, meaning that women made more purchases than men, on average. When the other variables remain constant, the mean number of purchases for women is $\exp(0.5361) = 1.71$ times that of men. So, the mean for women is 71% higher than for men.
- The parameter estimate for fixation is $\hat{\beta}_{\texttt{fixation}} = 0.5501$ and it's significantly different from 0. The higher the value of fixation, the higher the number of purchases, on average. When the other variables remain constant, increasing fixation by one unit means the mean number of purchases is multiplied by $\exp(0.5501) = 1.73$.
- *Ceteris paribus*, the average number of items bought by people with low revenue is 3.47 higher than those with high income, a relative mean increase of 247%.

- The SAS output includes a table containing the log-likelihood (full log-likelihood) and information criteria.
- For the Poisson regression model, the deviance and Pearson X^2 statistics are two goodness-of-fit indicators used to determine if the model is adequate.

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	110	203.2710	1.8479				
Scaled Deviance	110	203.2710	1.8479				
Pearson Chi-Square	110	216.2705	1.9661				
Scaled Pearson X2	110	216.2705	1.9661				
Log Likelihood		3.2104					
Full Log Likelihood		-186.1639					
AIC (smaller is better)		392.3279					
AICC (smaller is better)		394.3462					
BIC (smaller is better)		420.2028					

The first two lines are duplicated; the Poisson model has no separate scale parameter, since the variance is fully determined by the mean (unlike linear regression).