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Extensions to Poisson to deal with overdispersion

• The Poisson distribution is not very flexible, because it only includes
one parameter, which is equal to both the mean and the variance.

• In most cases, this assumption is not valid. In the previous output,
the deviance divided by the degrees of freedom was
203.2710/110 = 1.85, suggesting the Poisson model is not adequate
(p-value less than 10−5).

• The underlying reason is that the observed variability in counts is
much larger than the mean in this example, a phenomenon termed
overdispersion.

• The negative binomial model if often used as replacement for
overdispersed count data.
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Negative binomial distribution

• The negative binomial distribution is a probability distribution for
integer random variables with two parameters.

• We restrict attention the most common parametrization used in
modelling. The probability mass function is

P (Y = y) =
Γ(y+ 1/k)

Γ(y+ 1)Γ(1/k)

(
1/k

1/k+ µ

)1/k (
µ

1/k+ µ

)y

for y = 0, 1, 2, 3, ..., where Γ denotes the gamma function. Both
parameters are positive, meaning µ > 0 and k > 0.

• The mean and the variance are

E (Y) = µ, Var (Y) = µ + kµ2.

• The variance of the negative binomial distribution is always larger
than its mean.
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Negative binomial regression

• Negative binomial regression usually assumes that the response
variable Y follows a negative binomial distribution and that the link
function is the logarithmic function

g{E (Yi)} = ln{E (Yi)} = β0 + β1Xi1 + ... + βpXip.

• Equivalently, we assume that each observation Yi follows a negative
binomial distribution with mean

E (Yi) = exp(β0 + β1Xi1 + ... + βpXip)

• The interpretation of the parameters is the same as for Poisson
regression.

• There is a second parameter, k, which is assumed to be the same for
every observation and therefore doesn’t depend on the predictor
variables.

Mathematical aside: The negative binomial model is not a generalized linear model per say because it is part of
exponential-dispersion family, but we can use maximum likelihood and the GLMmachinery to fit the model.
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Negative binomial regression with proc genmod

The only difference from the Poisson model is that we specify
dist=negbin.

SAS code to fit a negative binomial model

proc genmod data=statmod.intention;
class educ revenue;
model nitem=sex age revenue educ marital

fixation emotion / dist=negbin link=log lrci;
run;

In R, the parametrization of MASS::glm.nb is such that θ = 1/k.
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Goodness-of-fit diagnostics for negative binomial

The deviance over degrees of freedom is closer to unity. Only revenue,
fixation and emotion are statistically significant.

MATH 60604A § 4f - Overdispersed count data 6/11



Parameter estimates for the negative binomial model

The scale parameter k̂ = 0.584. Note that the likelihood-ratio based 95% confidence
interval may lead to different inference than the Wald tests and their p-values; prefer
the former as they are more reliable.
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Model selection

• The deviance indicates that the negative binomial model is
preferable to the Poisson, but this is informal.

• Another to answer this would be to look at information criteria
(smaller is better): the negative binomial model is selected by both
AIC and BIC.

Model Poisson neg. binom.

AIC 392.33 371.25
BIC 420.20 301.91
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Negative binomial distribution versus Poisson

• As k approaches zero, we recover the Poisson distribution.
• We can actually compare these two models using the likelihood
ratio test since they are nested.

• We can test the hypothesesH0 : k = 0, H1 : k ̸= 0 using a
likelihood ratio test
• beware! the null distribution is non-regular because when n → ∞,
there is a 0.5 probability that the deviance will be exactly zero and 0.5
that it follows a χ2

1 underH0.

• The asymptotic null distribution is

2{ℓnegbin(µ̂negbin, k̂) − ℓpois(µ̂pois)}
·∼ 1

2
χ2
1 +

1

2
δ0;

Practical aspect: if we do not observe k̂ = 0, we calculate the
p-value as usual using the χ2

1 distribution and divide it by two to get
the correct result.
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Likelihood ratio test (non-regular)

This shows how to to the calculations by hand using the output.

SAS code for likelihood ratio test (non-regular)

data pval;
pval=(1-CDF('CHISQ',23.08,1))/2;
run;
proc print data=pval;
run;
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• The “Full Log Likelihood” give the fitted likelihood of the model,
−174.6250 for the negative binomial model and−186.1639 for the
Poisson model.

• The difference is 11.5389 and the likelihood ratio statistic is 23.08.
• The probability that a χ2

1 is larger than 23.08 is 1.55 × 10−7.
• Since the problem is non-regular, we halve this probability and so
our p-value is 7.7 × 10−8.

• There is overwhelming evidence that the negative binomial model is
preferable.
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