MATH 60604A Statistical modelling § 4h - Logistic model for proportions

HEC Montréal Department of Decision Sciences

MATH 60604A § 4h - Logistic model for proportions

Logistic model for proportions

- Sometimes, we don't have access to individual records, but rather to aggregated counts such as the number of successes (out of *m* trials).
- We may use a binomial model instead by simply specifying the total number of trials associated to each number of successes.
- The parameter interpretation remains the same.

We consider the pass rate for all 346 Great-Britain driving license practical testing sites; the data are from 2018.

- 761 750 people succeeded in their exam out of 1 663 897 attempts.
- A news article from *The Guardian* hinted that exam takers in rural areas got an easy ride. Since we do not have a classification of urban/rural centers, we use the number of tests conducted as proxy.
- Other covariates are sex and the region for England; all of Scotland and Wales are pooled.

Binomial model for driving license pass rate in Great-Britain

Rural test centres tend to have higher pass rates than ones in cities

Source: The Guardian.

SAS code to fit a logistic regression for binomial data

```
data gbdriving;
set statmod.gbdriving;
if(total < 500) then size="small";
else if (total < 1000) then size="medium";
else size = "large";
run:
proc logistic data=gbdriving;
class sex(ref="women") region(ref="London")
    size / param=glm;
model pass/total = sex region size /
    plrl plcl expb;
run;
```

Size of center per region

	size				
	large	large mediu			
	Ν	Ν	Ν		
region					
East Midlands	40	3	3		
East of England	54				
London	48	4	6		
North East England	29	5	8		
North West England	63	3	2		
Scotland	41	17	94		
South East England	78				
South West England	44	6			
Wales	30	9	9		
West Midlands	54	6	2		
Yorkshire and the Hu	32		2		

Scotland boasts the largest number of small centers (fewer than 500 exams per year).

			Model Information				
		Data Set	Data Set WORK Distribution Link Function Response Variable (Events) Response Variable (Trials)		١G		
		Distribution			ial		
		Link Functi			git		
		Response Va			iss		
		Response Va			tal		
		Number	of Observations Read	692			
		Number	Number of Observations Used Number of Events				
		Number					
		Number	of Trials	1663897			
	Moo	del Fit Statistics			Type 3	3 Analysis of 1	Effects
		Intercept	and Covariates		DE	Wald	
Criterion	Intercept Only	Log Likelihood	Full Log Likelihood	Effect	DF	Chi-Square	Pr > ChiSq
AIC	2294792.5	2278217.4	26619.303	sex	1	8510.4974	<.0001
SC	2294804.8	2278390.0	26791.848	region	10	5565.9869	<.0001

-2 Log L

2294790.5

2278189.4

size

26591.303

2

1537.2919

<.0001

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confidence	Limits	
sex men vs women	1.0000	1.335	1.327	1.343	
region East Midlands vs London	1.0000	1.279	1.262	1.297	
region East of England vs London	1.0000	1.241	1.225	1.257	
region North East England vs London	1.0000	1.500	1.475	1.524	
region North West England vs London	1.0000	1.231	1.216	1.246	
region Scotland vs London	1.0000	1.261	1.243	1.280	
region South East England vs London	1.0000	1.257	1.243	1.271	
region South West England vs London	1.0000	1.405	1.385	1.425	
region Wales vs London	1.0000	1.447	1.423	1.472	
region West Midlands vs London	1.0000	1.046	1.033	1.060	
region Yorkshire and the Hu vs London	1.0000	1.094	1.078	1.110	
size large vs small	1.0000	0.614	0.597	0.631	
size mediu vs small	1.0000	0.766	0.741	0.792	

All other things being constant,

- The odds of men are 33% higher than women of obtaining a driver license;
- Greater London is the region with the lowest success rate after accounting for the site volume; the odds of success are 50% higher in North East England and 44.7% higher in Wales, etc.
- The odds of success are 63% higher in small center than in large centers (1/0.614).
- All parameters are statistically significant.

- While the deviance and Pearson X² statistics are reported for logistic binomial model, their distribution depends on the unknown parameter vector β.
- As such, the deviance is approximately χ^2_{n-p-1} only when the number of trials *m* is in the several thousands.
- Comparisons of deviance, which amount to likelihood ratio tests, are however valid.

Revisiting the US road casualties example

We can fit a binomial model for the crash where the "event" is death.

Parameter Estimates and Profile-Likelihood Confidence Intervals						
Parameter		Estim	ate 9	95% Confidence Limits		
Intercept		-10.87	702	-10.8913	-10.8495	
time	e night		0.2593 0.2		0.2815	
year	year 2018		322	0.2101	0.2544	
Odds Ratio Estimates and Profile-Likelihood Confidence Intervals						
Effect	U	nit Es	timate	95% Conf	idence Limits	
time night vs	day 1.0	000	1.296	1.268	3 1.325	
year 2018 vs 2	2010 1.0	000	1.261	1.234	1.290	

- The estimated rate of death dying on the road during the day in 2010 is $\widehat{\pi} = \exp(\widehat{\beta}_0)/\{1 + \exp(\widehat{\beta}_0)\} = 0.000019016$, so a death rate of 1.9 per 100000 inhabitants. This estimate is slightly higher than the one from the negative binomial model.
- The odds of dying during nighttime (relative to daytime) increase by 29.6%, whereas the odds for 2018 (relative to 2010) increase by 26.1%.