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Linear regression for the revenge data

• Let’s start by fitting an ordinary regression model, which will serve
as a basis for the next analyses.

• This model ignores the possible within-person correlation, and
proceeds as if these observations are independent.
• The desire for revenge for a person at a certain time is likely correlated
with the desire for revenge at other times, simply because these
measurements came from the same person.

• If this is true, the assumption that the error terms are independent is
not valid; therefore, any inference made through this model is not valid.

• The linear model is

revenge = β0 + β1sex + β2age + β3vc + β4wom + β5t + ε,

where the error terms ε are assumed independent.
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Modelling the time effect

• There are two natural ways of modeling the time variable:
• We could assume a linear effect between t and revenge (continuous
variable).

• We could instead include t as a categorical variable.
• We will use proc mixed in order to familiarize you with this
procedure.

SAS code to fit a linear model

proc mixed data=statmod.revenge method=reml;
model revenge = sex age vc wom t / solution;
run;
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proc mixed output for linear regression

The output of proc mixed is more complicated than that of proc glm.
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Mean parameter estimates

We see that all the variables are significant, though just barely for sex.
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Interpretation of parameters for linear regression

• The more the person had initial behaviour of type vc or wom, the
higher the desire for revenge.

• The effect of time is particularly interesting here. We see that the
effect is negative. In each questionnaire, the value of revenge
decreases by 0.568, on average, when all other variables remain
constant. This is exactly what we saw in our earlier plots.

• But can we be confident in our hypothesis tests? The answer is no.
Any kind of inference (tests and confidence intervals) will not be
valid when we ignore the within-person correlation.
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Notation

• Suppose that we collect observations fromm groups such that:
1. There are ni observations within group i (i = 1, ... ,m).
2. Any two observations from the same group are possibly correlated.
3. Any two observations from different groups are assumed independent.

• Groups can be formed in several ways:
• Several measures can be taken from the same subject (repeated
measures) and each individual forms a group.

• A group could also consist of individuals from the same school,
department, or family.

• As before, we assume that we have a response variable and a
collection of p explanatory variables.

• To simplify the notation, we’ll call Xi the set of all explanatory
variables for all observations in group i.
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Notation

• We use the index i to indicate the group, and j to indicate an
observation within a group.
• If the group is a business, then i represents the business, and j
represents the subject.

• For longitudinal data, i represents the subject and j represents an
observation for that subject at a specific time.

• We call Yi = (Yi1, ... , Yini) the set of observations of the outcome
variable for group i.

• For the explanatory variables, we now need three indices, namely
• i for the group,
• j for the observation number within the group
• k for the explanatory variable.

• We call Xij = (1,Xij1, ... ,Xijp) the set of p explanatory variables for
observation j in group i.
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Linear model with correlated errors

The linear regression model is

Yij = β0 + β1Xij1 + · · · + βpXijp + εij

for i = 1, ... ,m and j = 1, ... , ni, where εij is the error term for
observation j in group i.

• As before, we assume that E (εij | Xij) = 0 and therefore

E (Yij | Xi) = β0 + β1Xij1 + · · · + βpXijp.
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Covariance/correlation structure

• When we assume that the X terms are fixed, correlation between
error terms ε is equivalent to correlation among the responses Y.

• We will allow dependence between observations within the same
group.

• We assume the groups are independent from one another, so
Cov (εij, εi′j′) = 0 if i ̸= i′.

• Wemodel the within-group correlation by assuming that the
covariance matrix of Y for group i is

Cov (Yi | Xi) = Σi,
or equivalently

Cov (εi | Xi) = Σi,

where εi = (εi1, ... , εini) is the vector of errors for group i.
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Block covariance structure for longitudinal data

• Assume for simplicity that data are ordered by group.
• We assume that observations for group i are correlated, but the
observations for different groups are independent.

• The full covariance matrix of themeasurements is therefore
block-diagonal, i.e.,

Cov (Y) =


Σ1 O · · · O
O Σ2 · · · O
...

. . .
. . .

...
O O · · · Σm

 .

• In our revenge example, we have n = 80 × 5 = 400 observations.
• The within-group covariance matrix,Σi, is 5 × 5 because we have a
balanced sample (n1 = · · · = nm = 5). The blockΣi is thus identical for
each group.

• The between-group covariance is zero (O) because we assumed data
for different individuals are independent from one another.
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Covariance/correlation structure

• Generally, the covariance structure will depend on several
parameters that will be estimated at the same time as the β
parameters.

• The covariance structure is specified by the analyst. Sometimes,
several covariance structures can be fitted to see which is most
appropriate for the data at hand.
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