MATH 60604A Statistical modelling § 6e - Random slope model

HEC Montréal
Department of Decision Sciences

We consider a linear mixed model with a random slope and a random intercept for the revenge data, of the form

$$
\begin{aligned}
Y_{i} \mid \boldsymbol{\mathcal { B }}_{i}=b_{i} & \sim \mathrm{No}_{5}\left(\mathbf{X}_{i} \boldsymbol{\beta}+\mathbf{Z}_{i} b_{i}, \sigma^{2} \mathbf{I}_{5}\right) \\
\boldsymbol{\mathcal { B }}_{i} & \sim \mathrm{No}_{2}\left(\mathbf{0}_{2}, \boldsymbol{\Omega}\right)
\end{aligned}
$$

where $\mathbf{Z}_{i}=\left[\mathbf{1}_{5}\right.$, time $\left._{i}\right]$ is a 5×2 model matrix for the random effects and $\Omega=\left(\begin{array}{cc}\omega_{11} & \omega_{12} \\ \omega_{12} & \omega_{22}\end{array}\right)$.
The columns of \mathbf{Z}_{i} typically include as covariates

- time or
- indicators for categorical variables (group effect).

Suppose the matrix $\mathbf{Z}_{i}=\left[\mathbf{1}_{n_{i}}, \mathbf{X}_{i]}\right]$.

$$
Y_{i j}=\left(\beta_{0}+b_{0 i}\right)+\left(\beta_{1}+b_{1 i}\right) X_{i j 1}+\beta_{2} \mathrm{X}_{i j 2}+\cdots+\beta_{p} \mathrm{X}_{i j p}+\varepsilon_{i j} .
$$

- The conditional effect of the variable X_{1} for group i is $\beta_{1}+b_{1 i}$
- The parameter β_{1} is the "slope" of X_{1} averaged over the entire population.
- $\beta_{1}+b_{1 i}$ is the effect of X_{1} specific to group i.

Covariance of the response

- The covariance matrix of $Y_{i j}$ depends on the predictors in \mathbf{Z}_{i} which have random effects.
- For example, if $\mathbf{Z}_{i}=\left[\mathbf{1}_{n_{i}}, \mathbf{X}_{1 i}\right]$, the marginal variance of $Y_{i j}$ is

$$
\operatorname{Var}\left(Y_{i j} \mid \mathbf{X}_{i}\right)=\omega_{11}+X_{i j 1}^{2} \omega_{22}+2 X_{i j 1} \omega_{12}+\sigma_{\varepsilon}^{2}
$$

- With independent errors, the covariance between two observations in the same group is

$$
\operatorname{Cov}\left(Y_{i j}, Y_{i k} \mid \mathbf{X}_{i}\right)=\omega_{11}+\mathrm{X}_{i j 1} \mathrm{X}_{1 i k} \omega_{22}+\left(\mathrm{X}_{i j 1}+\mathrm{X}_{1 i k}\right) \omega_{12}
$$

- It may be difficult to estimate parameters if the errors has a complex covariance structure (not to mention computational costs).

SAS code for random slope model

proc mixed data=statmod.revenge;
class id;
model revenge $=$ sex age vc wom t / solution;
random intercept t / subject=id type=un v=1 vcorr=1; run;

The output includes information about the number of covariance parameters, the number of random effects, etc.

Dimensions	
Covariance Parameters	4
Columns in X	6
Columns in Z per Subject	2
Subjects	80
Max Obs per Subject	5

Covariance matrix of response

Covariance Parameter Estimates			Estimated V Matrix for Subject 1					
			Row	Col1	Col2	Col3	Col4	Col5
Cov Parm	Subject	Estimate	1	0.4239	0.1830	0.1476	0.1122	0.07682
UN(1,1)	id	0.3064	2	0.1830	0.3704	0.1468	0.1287	0.1106
UN(2,1)	id	-0.05268	3	0.1476	0.1468	0.3515	0.1452	0.1444
UN(2,2)	id	0.01730	4	0.1122	0.1287	0.1452	0.3672	0.1782
Residual	id	0.2055	5	0.07682	0.1106	0.1444	0.1782	0.4175

- The variance of the random intercept is $\omega_{11}=0.3064$
- The variance of the random slope is $\omega_{22}=0.01730$
- The correlation between the random effects is -0.72 .
- We can test whether $\mathscr{H}_{0}: \omega_{12}=0$ versus $\mathscr{H}_{a}: \omega_{12} \neq 0$ by fitting the model with diagonal covariance and performing a likelihood ratio test (REML, since they have the same fixed effects)
- in SAS, change type=un to type=vc (default option)
- the test statistic is $R=8.98$
- its null distribution is χ_{1}^{2} (regular problem, covariance can be negative)
- the p-value is 0.002 :
- the correlation between the random effects is strongly significant.

Model comparison

- We can do similar comparisons with the random intercept-only model,
- this corresponds to $\mathscr{H}_{0}: \omega_{22}=0$, so $\frac{1}{2} \chi_{1}^{2}$ for uncorrelated random errors.
- for correlated errors, setting one of the two variance parameters to zero forces $\omega_{12}=0$ and one additional parameter is lost...
- the asymptotic null distribution approximation is complicated, Andrews, D.W. (2001), Testing when a parameter is on the boundary of the maintained hypothesis, Econometrica, 69 (3)
The approximation is also poor ...most people thus resort to the use of information criteria.

