MATH 60604A Statistical modelling § 7b - Likelihood for survival analysis

HEC Montréal Department of Decision Sciences

MATH 60604A § 7b - Likelihood for survival analysis

Survival and hazard functions

Let *T* denote the survival time

- The survival function, S(t) = P(T > t), completely caracterizes the law of *T*.
- Often, we are more interested in knowing what time periods are characterized by higher failure rates. The hazard of *T* is

$$h(t) = \lim_{\delta \to 0} \frac{\mathsf{P}\left(t < T < t + \delta \mid T > t\right)}{\delta}$$
$$= \lim_{\delta \to 0} \frac{1}{\delta} \frac{\mathsf{P}\left(t < T < t + \delta\right)}{\mathsf{P}\left(T > t\right)}$$
$$= \frac{f(t)}{S(t)}$$

We can think of the hazard rate as being the instantaneous probability of "dying" at time *t*, given survival to time *t*.

Survival function and hazard function

The survival function decreases monotically from S(0) = 1. The higher the hazard h(t), the fastest the decrease of the survival function.

Bathtub shaped hazard

Typical hazard shape: the risk rate is high (e.g., childhood mortality, manufacturing defect) initially, then decreases and plateau. As time goes on, the hazard increases steadily.

We observe $T_i = \min{\{T_i^0, C_i\}}$. If an observation is right-censored at time c, we know that $S(c) = P\left(T_i^0 > c\right)$

• in other words, survival time exceeds *c*.

If we have censoring, the database includes an indicator variable δ_i where

$$T_{i} = \begin{cases} T_{i}^{0}, & \delta_{i} = 1 \text{ (observed failure time)} \\ C_{i}, & \delta_{i} = 0 \text{ (right-censored)} \end{cases}$$

Let $S(t; \theta) = P(T_i^0 > t)$ denote the survival function of T_i^0 . If T_i^0 is independent of C_i , the likelihood contribution of each observation is

$$L_i(\boldsymbol{ heta}) = egin{cases} f(t_i; \boldsymbol{ heta}), & \delta_i = 1 ext{ (observed failure time)} \ S(t_i; \boldsymbol{ heta}), & \delta_i = 0 ext{ (right-censored)} \end{cases}$$

We can therefore write the log likelihood as

$$\ell(\boldsymbol{\theta}) \equiv \sum_{i:\delta_i=1} \ln f(t_i; \boldsymbol{\theta}) + \sum_{i:\delta_i=0} \ln S(t_i; \boldsymbol{\theta})$$

Many avenues are open for estimating the survival function (or hazard).

- parametric: choose a family of distributions (Weibull, log normal, Gompertz, exponential) for *T*.
 - + can easily incorporate explanatories
 - + continuous function, can be used to extrapolate
 - subject to model misspecificiation
 - not flexible: can fit poorly to the data.
- nonparametric: no distributional assumption
 - no explanatory variable
 - + minimal hypotheses, theoretical guarantees for large sample size
 - + flexible
 - yields discontinuous estimates
 - cannot extrapolate beyond the largest observed time.

Consider $T_i \stackrel{\text{iid}}{\sim} \mathsf{E}(\lambda)$, i.e., exponential variables with expectation λ^{-1} .

- The survival function of T is $S(T) = \exp(-\lambda t)$ and
- the hazard $h(t) = \lambda$ is **constant**.

The log likelihood for a random sample of size *n* is

$$\ell(\lambda) = \sum_{i=1}^{n} \{\delta_i \ln \lambda - \lambda T_i\}.$$

The maximum likelihood estimator is $\hat{\lambda} = \sum_{i=1}^{n} \delta_i / \sum_{i=1}^{n} T_i$.

- The estimated survival time is infinite if no one failed.
- The standard errors are obtained from the observed information matrix $j(\hat{\lambda}) = \sum_{i=1}^{n} \delta_i / \hat{\lambda}^2$; censored observations contribute no information.