MATH 60604A
 Statistical modelling
 § 7c - Kaplan-Meier estimator

HEC Montréal
Department of Decision Sciences

We consider a continuous random variable T and an associated sample of size n.

- Suppose that there are D distinct event times
- Let $0 \leq t_{1}<t_{2}<\cdots<t_{D}$ denote these ordered D failure times.
- Let r_{j} denote the number of individuals who are at risk at time t_{j}.
- That is, these individuals have not had experienced the event (nor been censored) before time t_{j}.
- Thus, r_{j} is the number of known survivors just before time t_{j} who are "at risk" of experiencing the event at time t_{j}.
- Let $d_{j} \in\left\{0, \ldots, r_{j}\right\}$ denote the number of failures at time t_{j} (there are d_{j} deaths at time t_{j}).

Derivation of Kaplan-Meier estimator

The probability of dying in the time window $\left(t_{j}, t_{j+1}\right]$ given survival until t_{j} is

$$
h_{j}=\mathrm{P}\left(t_{j}<T \leq t_{j+1} \mid T>t_{j}\right)=\frac{S\left(t_{j}\right)-S\left(t_{j+1}\right)}{S\left(t_{j}\right)} .
$$

This recursion yields

$$
S(t)=\prod_{j: t_{j}<t}\left(1-h_{j}\right) .
$$

The Kaplan-Meier estimator is is non-parametric:

- it does not assume any underlying probability distribution for the variable T_{i}
- rather, the conditional probabilities $\left\{h_{j}\right\}_{j=1}^{D}$ are treated as parameters of the model.
- Each failure at time t_{j} contributes h_{j} to the likelihood
- the probability of failure at t_{j} given survival in the previous time interval.
- The likelihood contribution of survivors at time t_{j} is $1-h_{j}$.
- We may write the log likelihood as

$$
\ell(h)=\sum_{j=1}^{D}\left\{d_{j} \ln \left(h_{j}\right)+\left(r_{j}-d_{j}\right) \ln \left(1-h_{j}\right)\right\}
$$

the sum of contributions of binomial variables at time t_{j}.

- Differentiating $\ell(h)$ with respect to h_{j}, we find $\widehat{h}_{j}=d_{j} / r_{j}$.
- The Kaplan-Meier estimator of the survival function is

$$
\widehat{S}(t)=\prod_{t_{j}<t}\left(1-\frac{d_{j}}{r_{j}}\right)
$$

- Intuition: d_{j} / r_{j} is the sample proportion of death at time t_{j} relative to the total population still alive at time t_{j}.

Example

The breast cancer data from Sedmak et al. (1989) contain informations on patients with breast cancer, including the following variables:

- time: time until death, or end of study (in months)
- death: indicator variable for death either 0 for right-censored times or 1 for death
- im: response to immunohistochemical examination, either negative (0) or positive (1)

Descriptive statistics for breastcancer

Analysis Variable : time

N	Mean	Std Dev	Minim	num	Maximum	
45	98.33	51.84	19.00		189.00	
		th Frequ	ency	Perc	ent	
		0	21		. 67	
		1	24		. 33	

im	Frequency	Percent
$\mathbf{0}$	36	80.00
$\mathbf{1}$	9	20.00

In practice, Kaplan-Meier estimator requires significant number observations to be a reliable approximation of the true survivor curve ($n \gg 1000$).
Keep in mind censored observations contribute less information than observed failure times.

Estimation of the survival function

SAS code to fit the Kaplan-Meier estimator

```
proc lifetest data=statmod.breastcancer method=km plots=(s(cl));
time time*death(0);
run;
```

The time argument indicates both the response T_{i} (time) and the right-censoring indicator δ_{i}, with the reference in parenthesis for the right-censored observations (death=0)

Product-Limit Survival Estimates						
time		Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.000		1.0000	0	0	0	45
19.000		0.9778	0.0222	0.0220	1	44
22.000		0.9556	0.0444	0.0307	2	43
23.000		0.9333	0.0667	0.0372	3	42
25.000		0.9111	0.0889	0.0424	4	41
			\vdots			
165.000	*	-	-	-	24	2
182.000	*	.	-	-	24	1
189.000	*	-	-	.	24	0

Note: The marked survival times are censored observations.

The survival curve is not consistent: $\widehat{S}(t)$ doesn't decrease to zero because the largest observed time is right-censored.

The breastfeeding data from the National Longitudinal Survey of Youthcontains information on the time until which mothers stop breastfeeding from birth. We focus on the following explanatories:

- duration: duration of breast feeding (in weeks)
- delta: indicator for completed breastfeeding
- yes (1)
- right-censored (0)

Summary of the Number of Censored and Uncensored Values			
Total	Failed	Censored	Percent
927	892	35	3.78

$\widehat{s}(t)$ reaches zero because the largest survival time is observed, not censored.

The median survival time is the time t_{M} such that $S\left(t_{m}\right)=0.5$.

- That is, the median time t_{M} is such that 50% of people have survived until time t_{M}.
We can easily find this estimated median time by seeing where the horizontal line $\widehat{S}(t)=0.5$ intersects the survival curve.

Quartile Estimates

95\% Confidence Interval

	Point			
Percent	Estimate	Transform	[Lower	Upper)
$\mathbf{7 5}$.	LOGLOG	.	.
50	89.000	LOGLOG	66.000	.
$\mathbf{2 5}$	51.000	LOGLOG	34.000	67.000

For a continuous positive random variable, $T>0$, it can be shown that

$$
\mathrm{E}(T)=\int_{0}^{\infty} S(t) \mathrm{d} t
$$

We can estimate the expected survival time $\mathrm{E}(T)$ simply by calculating the area under the survivor curve $\widehat{S}(t)$.

- For example, the mean survival time for the breastfeeding data is 16.89 weeks with standard error 0.614 weeks.
- If the largest recorded survival time is censored, the estimated survival curve $\widehat{S}(t)$ will plateau and never reaches 0 . The area under the curve is infinite!
- In this case, we can estimate instead the restricted mean survival time: $\mathrm{E}(\min \{T, \tau\})$ for a chosen τ. It amounts to calculating the average as if the curve dropped to 0 at time τ (rmst option in SAS).

