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Welcome

This book is a web complement to MATH 80601A Bayesian modelling, a graduate course
offered at HEC Montréal.

These notes are licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License and were last compiled on lundi, février 26 2024.

The objective of the course is to provide a hands on introduction to Bayesian data analy-
sis. The course will cover the formulation, evaluation and comparison of Bayesian models
through examples and real-data applications.
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1 Bayesics

The Bayesian paradigm is an inferential framework that is used widespread in data sci-
ence. Numerical challenges that prevented it’s widespread adoption until the 90’s, when
the Markov chain Monte Carlo revolution allowed models estimation.

Bayesian inference, which builds on likelihood-based inference, offers a natural frame-
work for prediction and for uncertainty quantification. The interpretation is more natural
than that of classical (i.e., frequentist) paradigm, and it is more easy to generalized mod-
els to complex settings, notably through hierarchical constructions. The main source of
controversy is the role of the prior distribution, which allows one to incorporate subject-
matter expertise but leads to different inferences being drawn by different practitioners;
this subjectivity is not to the taste of many and has been the subject of many controver-
sies.

The Bayesian paradigm includes multiples notions that are not covered in undergraduate
introductory courses. The purpose of this chapter is to introduce these concepts and put
them in perspective; the reader is assumed to be familiar with basics of likelihood-based
inference. We begin with a discussion of the notion of probability, then define priors, pos-
terior distributions, marginal likelihood and posterior predictive distributions. We focus
on the interpretation of posterior distributions and explain how to summarize the pos-
terior, leading leading to definitions of high posterior density region, credible intervals,
posterior mode for cases where we either have a (correlated) sample from the posterior, or
else have access to the whole distribution. Several notions, including sequentiality, prior
elicitation and estimation of the marginal likelihood, are mentioned in passing. A brief
discussion of Bayesian hypothesis testing (and alternatives) is presented.

1.1 Probability and frequency

In classical (frequentist) parametric statistic, we treat observations Y as realizations of a
distribution whose parameters θ are unknown. All of the information about parameters is
encoded by the likelihood function.

The interpretation of probability in the classical statistic is in terms of long run frequency,
which is why we term this approach frequentist statistic. Think of a fair die: when we state
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1 Bayesics

that values {1, . . . , 6} are equiprobable, we mean that repeatedly tossing the die should
result, in large sample, in each outcome being realized roughly 1/6 of the time (the sym-
metry of the object also implies that each facet should be equally likely to lie face up).
This interpretation also carries over to confidence intervals: a (1 − α) confidence interval
either contains the true parameter value or it doesn’t, so the probability level (1 − α) is
only the long-run proportion of intervals created by the procedure that should contain the
true fixed value, not the probability that a single interval contains the true value. This is
counter-intuitive to most.

In practice, the true value of the parameter θ vector is unknown to the practitioner, thus
uncertain: Bayesians would argue that we should treat the latter as a random quantity
rather than a fixed constant. Since different people may have different knowledge about
these potential values, the prior knowledge is a form of subjective probability. For ex-
ample, if you play cards, one person may have recorded the previous cards that were
played, whereas other may not. They thus assign different probability of certain cards be-
ing played. In Bayesian inference, we consider θ as random variables to reflect our lack of
knowledge about potential values taken. Italian scientist Bruno de Finetti, who is famous
for the claim “Probability does not exist’ ’, stated in the preface of Finetti (1974):

Probabilistic reasoning — always to be understood as subjective — merely
stems from our being uncertain about something. It makes no difference
whether the uncertainty relates to an unforseeable future, or to an unnoticed
past, or to a past doubtfully reported or forgotten: it may even relate to some-
thing more or less knowable (by means of a computation, a logical deduction,
etc.) but for which we are not willing or able tho make the effort; and so on
[. . . ] The only relevant thing is uncertainty — the extent of our knowledge and
ignorance. The actual fact of whether or not the events considered are in some
sense determined, or known by other people, and so on, is of no consequence.

On page 3, de Finetti continues (Finetti 1974)

only subjective probabilities exist — i.e., the degree of belief in the occurrence
of an event attributed by a given person at a given instant and with a given set
of information.

1.2 Posterior distribution

We consider a parametric model with parameters θ defined on Θ ⊆ Rp. In Bayesian learn-
ing, we adjoin to the likelihood L(θ; y) ≡ p(y | θ) a prior function p(θ) that reflects the
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1.2 Posterior distribution

prior knowledge about potential values taken by the p-dimensional parameter vector, be-
fore observing the data y. The prior makes θ random and the distribution of the parameter
reflects our uncertainty about the true value of the model parameters.

In a Bayesian analysis, observations are random variables but inference is performed con-
ditional on the observed sample values. By Bayes’ theorem, our target is therefore the
posterior density p(θ | y), defined as

p(θ | y)
posterior

=

likelihood

p(y | θ)×
prior

p(θ)∫
p(y | θ)p(θ)dθ

marginal likelihood p(y)

. (1.1)

The posterior p(θ | y) is proportional, as a function of θ, to the product of the likelihood
and the prior function.

For the posterior to be proper, we need the product of the prior and the likelihood on the
right hand side to be integrable as a function of θ over the parameter domain Θ. The in-
tegral in the denominator, termed marginal likelihood or prior predictive distribution and
denoted p(y) = Eθ{p(y | θ)}. It represents the distribution of the data before data collec-
tion, the respective weights being governed by the prior probability of different parameters
values. The denominator of Equation 1.1 is a normalizing constant, making the posterior
density integrate to unity. The marginal likelihood plays a central role in Bayesian test-
ing.

If θ is low dimensional, numerical integration such as quadrature methods can be used to
compute the marginal likelihood.

To fix ideas, we consider next a simple one-parameter model where the marginal likeli-
hood can be computed explicitly.

Example 1.1 (Binomial model with beta prior). Consider a binomial likelihood with prob-
ability of success θ ∈ [0, 1] and n trials, Y ∼ Binom(n, θ). If we take a beta prior, θ ∼
Beta(α, β) and observe y successes, the posterior is

p(θ | y = y) ∝
(

n

y

)
θy(1− θ)n−y Γ(α + β)

Γ(α)Γ(β)θα−1(1− θ)β−1

θ∝ θy+α−1(1− θ)n−y+β−1

and is ∫ 1

0
θy+α−1(1− θ)n−y+β−1dθ = Γ(y + α)Γ(n− y + β)

Γ(n + α + β) ,
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1 Bayesics

a Beta function. Since we need only to keep track of the terms that are function of the
parameter θ, we could recognize directly that the posterior distribution is Beta(y + α, n −
y + β) and deduce the normalizing constant from there.

If Y ∼ Binom(n, θ), the expected number of success is nθ and the expected number of
failures n(1 − θ) and so the likelihood contribution, relative to the prior, will dominate as
the sample size n grows.

Another way to see this is to track moments (expectation, variance, etc.) The Beta distribu-
tion, whose density is f(x; α, β) ∝ xα−1(1− x)β−1, has expectation α/(α + β) and variance
αβ/{(α + β)2(α + β + 1)}. The posterior mean is

E(θ | y) = w
y

n
+ (1− w) α

α + β
, w = n

n + α + β
,

a weighted average of the maximum likelihood estimator and the prior mean. We can
think of the parameter α (respectively β) as representing the fixed prior number of suc-
cess (resp. failures). The variance term is O(n−1) and, as the sample size increases, the
likelihood weight w dominates.

Figure 1.1 shows three different posterior distributions with different beta priors: the first
prior, which favors values closer to 1/2, leads to a more peaked posterior density, contrary
to the second which is symmetric, but concentrated toward more extreme values near end-
points of the support. The rightmost panel is truncated: as such, the posterior is zero for
any value of θ beyond 1/2 and so the posterior mode may be close to the endpoint of the
prior. The influence of such a prior will not necessarily vanish as sample size and should
be avoided, unless there are compelling reasons for restricting the domain.

Remark (Proportionality). Any term appearing in the likelihood times prior function that
does not depend on parameters can be omitted since they will be absorbed by the nor-
malizing constant. This makes it useful to compute normalizing constants or likelihood
ratios.

Remark. An alternative parametrization for the beta distribution sets α = µκ, β = (1−µ)κ
for µ ∈ (0, 1) and κ > 0, so that the model is parametrized directly in terms of mean µ, with
κ capturing the dispersion.

Remark. A density integrates to 1 over the range of possible outcomes, but there is no guar-
antee that the likelihood function, as a function of θ, integrates to one over the parameter
domain Θ.

For example, the binomial likelihood with n trials and y successes satisfies∫ 1

0

(
n

y

)
θy(1− θ)n−ydθ = 1

n + 1 .
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Figure 1.1: Scaled binomial likelihood for six successes out of 14 trials, with Beta(3/2, 3/2)
prior (left), Beta(1/4, 1/4) (middle) and truncated uniform on [0, 1/2] (right),
with the corresponding posterior distributions.

Moreover, the binomial distribution is discrete with support 0, . . . , n, whereas the likeli-
hood is continuous as a function of the probability of success, as evidenced by Figure 1.2

Proposition 1.1 (Sequentiality and Bayesian updating). The likelihood is invariant to the
order of the observations if they are independent Thus, if we consider two blocks of observa-
tions y1 and y2

p(θ | y1, y2) = p(θ | y1)p(θ | y2),

so it makes no difference if we treat data all at once or in blocks. More generally, for data
exhibiting spatial or serial dependence, it makes sense to consider rather the conditional
(sequential) decomposition

f(y; θ) = f(y1; θ)f(y2; θ, y1) · · · f(yn; θ, y1, . . . , yn−1)

where f(yk; y1, . . . , yk−1) denotes the conditional density function given observations
y1, . . . , yk−1.
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1 Bayesics
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Figure 1.2: Binomial mass function (left) and scaled likelihood function (right).

By Bayes’ rule, we can consider updating the posterior by adding terms to the likelihood,
noting that

p(θ | y1, y2) ∝ p(y2 | y1, θ)p(θ | y1)

which amounts to treating the posterior p(θ | y1) as a prior. If data are exchangeable, the
order in which observations are collected and the order of the belief updating is irrelevant to
the full posterior. Figure 1.3 shows how the posterior becomes gradually closer to the scaled
likelihood as we increase the sample size, and the posterior mode moves towards the true
value of the parameter (here 0.3).

Example 1.2. While we can calculate analytically the value of the normalizing constant for
the beta-binomial model, we could also for arbitrary priors use numerical integration or
Monte Carlo methods in the event the parameter vector θ is low-dimensional.

While estimation of the normalizing constant is possible in simple models, the following
highlights some challenges that are worth keeping in mind. In a model for discrete data
(that is, assigning probability mass to a countable set of outcomes), the terms in the like-
lihood are probabilities and thus the likelihood becomes smaller as we gather more ob-
servations (since we multiply terms between zero or one). The marginal likelihood term
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Figure 1.3: Beta posterior and binomial likelihood with a uniform prior for increasing
number of observations (from left to right) out of a total of 100 trials.

becomes smaller and smaller, so it’s reciprocal is big and this can lead to arithmetic un-
derflow.

y <- 6L # number of successes
n <- 14L # number of trials
alpha <- beta <- 1.5 # prior parameters
unnormalized_posterior <- function(theta){

thetaˆ(y+alpha-1) * (1-theta)ˆ(n-y + beta - 1)
}
integrate(f = unnormalized_posterior,

lower = 0,
upper = 1)

1.066906e-05 with absolute error < 1e-12

# Compare with known constant
beta(y + alpha, n - y + beta)

[1] 1.066906e-05
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1 Bayesics

# Monte Carlo integration
mean(unnormalized_posterior(runif(1e5)))

[1] 1.064067e-05

When θ is high-dimensional, the marginal likelihood is intractable. This is one of the main
challenges of Bayesian statistics and the popularity and applicability has grown drastically
with the development and popularity of numerical algorithms, following the publication
of Geman and Geman (1984) and Gelfand and Smith (1990). Markov chain Monte Carlo
methods circumvent the calculation of the denominator by drawing approximate samples
from the posterior.

1.3 Posterior predictive distribution

Prediction in the Bayesian paradigm is obtained by considering the posterior predictive
distribution,

p(ynew | y) =
∫

Θ
p(ynew | θ)p(θ | y)dθ

Given draws from the posterior distribution, say θb (b = 1, . . . , B), we sample from each a
new realization from the distribution appearing in the likelihood p(ynew | θb). This is differ-
ent from the frequentist setting, which fixes the value of the parameter to some estimate
θ̂; by contrast, the posterior predictive, here a beta-binomial distribution BetaBin(n, α +
y, n − y + β), carries over the uncertainty so will typically be wider and overdispersed rel-
ative to the corresponding binomial model. This can be easily seen from the left-panel of
Figure 1.4, which contrasts the binomial mass function evaluated at the maximum likeli-
hood estimator θ̂ = 6/14 with the posterior predictive.

npost <- 1e4L
# Sample draws from the posterior distribution
post_samp <- rbeta(n = npost, y + alpha, n - y + beta)
# For each draw, sample new observation
post_pred <- rbinom(n = npost, size = n, prob = post_samp)
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1.3 Posterior predictive distribution
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Figure 1.4: Beta-binomial posterior predictive distribution with corresponding binomial
mass function evaluated at the maximum likelihood estimator.

Example 1.3 (Posterior predictive distribution of univariate Gaussian with known
mean). Consider an n sample of independent and identically distributed Gaussian,
Yi ∼ Norm(0, τ−1) (i = 1, . . . , n), where we assign a gamma prior on the precision
τ ∼ Ga(α, β). The posterior is

p(τ | y) τ∝
n∏

i=1
τn/2 exp

(
−τ

∑n
i=1 y2

i

2

)
× τα−1 exp(−βτ)

and rearranging the terms to collect powers of τ , etc. we find that the posterior for τ must
also be gamma, with shape parameter α∗ = α + n/2 and rate β∗ = β +

∑n
i=1 y2

i /2.
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1 Bayesics

The posterior predictive is

p(ynew | y) =
∫ ∞

0

τ1/2

(2π)1/2 exp(−τy2
new/2) β∗α∗

Γ(α∗)τα∗−1 exp(−β∗τ)dτ

= (2π)−1/2 β∗α∗

Γ(α∗)

∫ ∞

0
τα∗−1/2 exp

{
−τ(y2

new/2 + β∗)
}

dτ

= (2π)−1/2 β∗α∗

Γ(α∗)
Γ(α∗ + 1/2)

(y2
new/2 + β∗)α∗+1/2

=
Γ
(

2α∗+1
2

)
√

2πΓ
(

2α∗

2

)
β∗1/2

(
1 + y2

new

2β∗

)−α∗−1/2

=
Γ
(

2α∗+1
2

)
√

π
√

2α∗Γ
(

2α∗

2

)
(β∗/α∗)1/2

(
1 + 1

2α∗
y2

new

(β∗/α∗)

)−α∗−1/2

which entails that Ynew is a scaled Student-t distribution with scale (β∗/α∗)1/2 and 2α + n
degrees of freedom. This example also exemplifies the additional variability relative to the
distribution generating the data: indeed, the Student-t distribution is more heavy-tailed
than the Gaussian, but since the degrees of freedom increase linearly with n, the distri-
bution converges to a Gaussian as n → ∞, reflecting the added information as we collect
more and more data points and the variance gets better estimated through

∑n
i=1 y2

i /n.

1.4 Summarizing posterior distributions

The output of the Bayesian learning problem will be either of:

1. a fully characterized distribution
2. a numerical approximation to the posterior distribution (pointwise)
3. an exact or approximate sample drawn from the posterior distribution

In the first case, we will be able to directly evaluate quantities of interest if there are closed-
form expressions for the latter, or else we could draw samples from the distribution and
evaluate them via Monte-Carlo. In case of numerical approximations, we will need to re-
sort to numerical integration or otherwise to get our answers.

Often, we will also be interested in the marginal posterior distribution of each component
θj in turn (j = 1, . . . , J). To get these, we carry out additional integration steps,

p(θj | y) =
∫

p(θ | y)dθ−j .
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1.4 Summarizing posterior distributions

With a posterior sample, this is trivial: it suffices to keep the column corresponding to θj

and discard the others.

Most of the field of Bayesian statistics revolves around the creation of algorithms that ei-
ther circumvent the calculation of the normalizing constant (notably using Monte Carlo
and Markov chain Monte Carlo methods) or else provide accurate numerical approxima-
tion of the posterior pointwise, including for marginalizing out all but one parameters
(integrated nested Laplace approximations, variational inference, etc.) The target of in-
ference is the whole posterior distribution, a potentially high-dimensional object which
may be difficult to summarize or visualize. We can thus report only characteristics of the
the latter.

The choice of point summary to keep has it’s root in decision theory.

Definition 1.1 (Loss function). A loss function c(θ, υ) is a mapping from Θ → Rk that as-
signs a weight to each value of θ, corresponding to the regret or loss arising from choosing
this value. The corresponding point estimator υ̂ is the minimizer of the expected loss,

υ̂ = argmin
υ

EΘ|Y {c(θ, v)}

= argmin
υ

∫
Θ

c(θ, υ)p(θ | y)dθ

For example, in a univariate setting, the quadratic loss c(θ, υ) = (θ − υ)2 returns the pos-
terior mean, the absolute loss c(θ, υ) = |θ − υ| returns the posterior median and the 0-1
loss c(θ, υ) = I(υ ̸= θ) returns the posterior mode. All of these point estimators are central
tendency measures, but some may be more adequate depending on the setting as they
can correspond to potentially different values, as shown in the left-panel of Figure 1.5.
The choice is application specific: for multimodal distributions, the mode is likely a better
choice.

If we know how to evaluate the distribution numerically, we can optimize to find the mode
or else return the value for the pointwise evaluation on a grid at which the density achieves
it’s maximum. The mean and median would have to be evaluated by numerical integration
if there is no closed-form expression for the latter.

If we have rather a sample from the posterior with associated posterior density values,
then we can obtain the mode as the parameter combination with the highest posterior, the
median from the value at rank ⌊n/2⌋ and the mean through the sample mean of posterior
draws.
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Figure 1.5: Point estimators from a right-skewed distribution (left) and from a multimodal
distribution (right).

The loss function is often a functional (meaning a one-dimensional summary) from the
posterior. The following example shows how it reduces a three-dimensional problem into
a single risk measure.

Example 1.4 (Danish insurance losses). In extreme value, we are often interested in as-
sessing the risk of events that are rare enough that they lie beyond the range of observed
data. To provide a scientific extrapolation, it often is justified to fit a generalized Pareto
distribution to exceedances of Z = Y − u, for some user-specified threshold u which is
often taken as a large quantile of the distribution of Y . The generalized Pareto distribution
function is

F (z; τ, ξ) = 1−
{

(1 + ξ/τz)−1/ξ
+ , ξ ̸= 0

exp(−z/τ), ξ = 0.

The shape ξ governs how heavy-tailed the distribution is, while τ is a scale parameter.

Insurance companies provide coverage in exchange for premiums, but need to safeguard
themselves against very high claims by buying reinsurance products. These risks are often
communicated through the value-at-risk (VaR), a high quantile exceeded with probability

14



1.4 Summarizing posterior distributions

p. We model Danish fire insurance claim amounts for inflation-adjusted data collected
from January 1980 until December 1990 that are in excess of a million Danish kroner, found
in the evir package and analyzed in Example 7.23 of McNeil, Frey, and Embrechts (2005).
These claims are denoted Y and there are 2167 observations.

We fit a generalized Pareto distribution to exceedances above 10 millions krones, keep-
ing 109 observations or roughly the largest 5% of the original sample. Preliminary anal-
ysis shows that we can treat data as roughly independent and identically distributed and
goodness-of-fit diagnostics (not shown) for the generalized Pareto suggest that the fit is
adequate for all but the three largest observations, which are (somewhat severely) under-
estimated by the model.

50

100

150

200

250

1980 1985 1990

Danish fire insurance claims (in million krone)

0.3

0.6

0.9

5 7 9 11
τ

ξ

Figure 1.6: Time series of Danish fire claims exceeding a million krone (left) and posterior
samples from the scale τ and shape ξ of the generalized Pareto model fitted to
exceedances above 10 million krone (right).

The generalized Pareto model only describes the nu exceedances above u = 10, so we need
to incorporate in the likelihood a binomial contribution for the probability ζu of exceeding
the threshold u. Provided that the priors for (τ, ξ) are independent of those for ζu, the
posterior also factorizes as a product, so ζu and (τ, ξ) are a posteriori independent.

Suppose for now that we set a Beta(0.5, 0.5) prior for ζu and a non-informative prior for
the generalized Pareto parameters. The post_samp matrix contains exact samples from
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1 Bayesics

the posterior distribution of (τ, ξ, ζu), obtained using a Monte Carlo algorithm. Our aim
is to evaluate the posterior distribution for the value-at-risk, the α quantile of Y for high
values of α and see what point estimator one would obtain depending on our choice of
loss function. For any α > 1− ζu, the qα is

1− α = Pr(Y > qα | Y > u) Pr(Y > u)

=
(

1 + ξ
qα − u

τ

)−1/ξ

+
ζu

and solving for qα gives

qα = u + τ

ξ

{(
ζu

1− α

)ξ

− 1
}

.

To obtain the posterior distribution of the α quantile, qα, it suffices to plug in each poste-
rior sample and evaluate the function: the uncertainty is carried over from the simulated
values of the parameters to those of the quantile qα. The left panel of Figure 1.7 shows the
posterior density estimate of the VaR(0.99) along with the maximum a posteriori (mode)
of the latter.

Suppose that we prefer to under-estimate the value-at-risk rather than overestimate: this
could be captured by the custom loss function

c(q, q0) =
{

0.5(0.99q − q0), q > q0

0.75(q0 − 1.01q), q < q0.

For a given value of the value-at-risk q0 evaluated on a grid, we thus compute

r(q0) =
∫

Θ
c(q(θ), q0)p(θ | y)dθ

and we seek to minimize the risk, q̂ = argminq0∈R+r(q0). The value returned that minimizes
the loss, shown in Figure 1.7, is to the left of the posterior mean for qα.

# Compute value at risk from generalized Pareto distribution quantile fn
VaR_post <- with(post_samp, # data frame of posterior draws

revdbayes::qgp( # with columns 'probexc', 'scale', 'shape'
p = 0.01/probexc,
loc = 10,
scale = scale,
shape = shape,
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1.4 Summarizing posterior distributions

lower.tail = FALSE))
# Loss function
loss <- function(qhat, q){

mean(ifelse(q > qhat,
0.5*(0.99*q-qhat),
0.75*(qhat-1.01*q)))

}
# Create a grid of values over which to estimate the loss for VaR
nvals <- 101L
VaR_grid <- seq(

from = quantile(VaR_post, 0.01),
to = quantile(VaR_post, 0.99),
length.out = nvals)

# Create a container to store results
risk <- numeric(length = nvals)
for(i in seq_len(nvals)){

# Compute integral (Monte Carlo average over draws)
risk[i] <- loss(q = VaR_post, qhat = VaR_grid[i])

}

To communicate uncertainty, we may resort to credible regions and intervals.

Definition 1.2. A (1−α) credible region (or credible interval in the univariate setting) is a
set Sα such that, with probability level α,

Pr(θ ∈ Sα | Y = y) = 1− α

These intervals are not unique, as are confidence sets. In the univariate setting, the cen-
tral or equitailed interval are the most popular, and easily obtained by considering the
α/2, 1− α/2 quantiles. These are easily obtained from samples by simply taking empirical
quantiles. An alternative, highest posterior density credible sets, which may be a set of dis-
joint intervals obtained by considering the parts of the posterior with the highest density,
may be more informative. The top panel Figure 1.8 shows the distinction for a bimodal
mixture distribution, and a even more striking difference for 50% credible intervals for a
symmetric beta distribution whose mass lie near the endpoints of the distribution, leading
to no overlap between the two intervals.

17



1 Bayesics

0.00

0.05

0.10

20 25 30 35 40
value−at−risk 0.99 (in millions krone)

posterior density

0.0

2.5

5.0

7.5

22 26 30 34
value−at−risk 0.99 (in millions krone)

lo
ss

1

custom loss function (full)
and squared error loss (dashed)
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Danish fire insurance data. The vertical lines denote point estimates of the
quantiles that minimize the loss functions.
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2 Priors

The posterior distribution combines two ingredients: the likelihood and the prior. If the
former is a standard ingredient of any likelihood-based inference, prior specification re-
quires some care. The purpose of this chapter is to consider different standard way of
constructing prior functions, and to specify the parameters of the latter: we term these
hyperparameters.

The posterior is a compromise prior and likelihood: the more informative the prior, the
more the posterior resembles it, but in large samples, the effect of the prior is often negli-
gible if there is enough information in the likelihood about all parameters. We can assess
the robustness of the prior specification through a sensitivity analysis by comparing the
outcomes of the posterior for different priors or different values of the hyperparameters.

We can use moment matching to get sensible values, or tune via trial-and-error using the
prior predictive draws to assess the implausibility of the prior outcomes. One challenge
is that even if we have some prior information (e.g., we can obtain sensible prior values
for the mean, quantiles or variance of the parameter of interest), these summary statis-
ticss will not typically be enough to fully characterize the prior: many different functions
or distributions could encode the same information. This means that different analysts
get different inferences. Generally, we will choose the prior for convenience. Priors are
controversial because they could be tuned aposteriori to give any answer an analyst might
want.

2.1 Prior simulation

Expert elicitation is difficult and it is hard to grasp what the impacts of the hyperparam-
eters are. One way to see if the priors are reasonable is to sample values from them and
generate new observations, resulting in prior predictive draws.

The prior predictive is
∫

Θ p(y | θ)p(θ)dθ: we can simulate outcomes from it by first drawing
parameter values from the prior, then sampling new observations from the distribution in
the likelihood and keeping only the latter. If there are sensible bounds for the range of the
response, we could discard values that do not abide with these.
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Working with standardized inputs xi 7→ (xi − x)/sd(x) is useful. For example, in a sim-
ple linear regression (with a sole numerical explanatory), the slope is the correlation be-
tween standardized explanatory X and standardized response Y and the intercept should
be mean zero.

Example 2.1. Consider the daily number of Bixi bike sharing users for 2017–2019 at the
Edouard Montpetit station next to HEC: we can consider a simple linear regression with
log counts as a function of temperature,1

log(nusers) ∼ Norm+{β0 + β1(temp− 20), σ2}.

The β1 slope measures units in degree Celsius per log number of person.

The hyperparameters depend of course on the units of the analysis, unless one standard-
izes response variable and explanatories: it is easier to standardize the temperature so that
we consider deviations from, say 20◦C, which is not far from the observed mean in the
sample. After some tuning, the independent priors β0 ∼ Norm(y, 0.52), β1 ∼ Norm(0, 0.052)
and σ ∼ Exp(3) seem to yield plausible outcomes and relationships.2

We can draw regression lines from the prior, as in the left panel of Figure 2.1: while some
of the negative relationships appear unlikely after seeing the data, the curves all seem to
pass somewhere in the cloud of point. By contrast, a silly prior is one that would result in
all observations being above or below the regression line, or yield values that are much too
large near the endpoints of the explanatory variable. Indeed, given the number of bikes
for rental is limited (a docking station has only 20 bikes), it is also sensible to ensure that
simulations do not return overly large numbers. The maximum number of daily users in
the sample is 68, so priors that return simulations with more than 200 (rougly 5.3 on the
log scale) are not that plausible. The prior predictive draws can help establish this and the
right panel of Figure 2.1 shows that, expect for the lack of correlation between temperature
and number of users, the simulated values from the prior predictive are plausible even if
overdispersed.

2.2 Conjugate priors

In very simple models, there may exists prior densities that result in a posterior distri-
bution of the same family. We can thus directly extract characteristics of the posterior.
Conjugate priors are chosen for computational convenience and because interpretation

1If counts are Poisson, then the log transform is variance stabilizing.
2One can object to the prior parameters depending on the data, but an alternative would be to model cen-

tered data y − y, in which case the prior for the intercept parameter β0 would be zero.
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Figure 2.1: Prior draws of the linear regressions with observed data superimposed (left),
and draws of observations from the prior predictive distribution (in gray)
against observed data (right).

is convenient, as the parameters of the posterior will often be some weighted average of
prior and likelihood component.

Definition 2.1. A prior density p(θ) is conjugate for likelihood L(θ; y) if the product
L(θ; y)p(θ), after renormalization, is of the same parametric family as the prior.

Exponential families (including the binomial, Poisson, exponential, Gaussian distribu-
tions) admit conjugate priors3

3A distribution belongs to an exponential family with parameter vector θ ∈ RD if it can be written as

f(y; θ) = exp

{
K∑

k=1

Qk(θ)tk(y) + D(θ)

}
and in particular, the support does not depend on unknown parameters. If we have an independent and
identically distributed sample of observations y1, . . . , yn, the log likelihood is thus of the form

ℓ(θ) =
K∑

k=1

ϕk(θ)
n∑

i=1

tk(yi) + nD(θ),
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Example 2.2 (Conjugate prior for the binomial model). The binomial log density with y
successes out of n trials is proportional to

y log(p) + (n− y) log(1− p) = y log
(

p

1− p

)
+ n log(1− p)

with canonical parameter logit(p).4 The binomial distribution is thus an exponential fam-
ily.

Since the density of the binomial is of the form py(1−p)n−y, the beta distribution Beta(α, β)
with density

f(x) ∝ xα−1(1− x)β−1

is the conjugate prior.

The beta distribution is also the conjugate prior for the negative binomial, geometric and
Bernoulli distributions, since their likelihoods are all proportional to that of the beta. The
fact that different sampling schemes that result in proportional likelihood functions give
the same inference is called likelihood principle.

Example 2.3 (Conjugate prior for the Poisson model). The Poisson distribution with mean
µ has log density proportional to f(y; µ) ∝ y log(µ) − µ, so is an exponential family with
natural parameter log(µ). The gamma density,

f(x) ∝ βα/Γ(α)xα−1 exp(−βx)

with shape α and rate β is the conjugate prior for the Poisson. For an n-sample of
independent observations Pois(µ) observations with µ ∼ Gamma(α, β), the posterior is
Gamma(

∑n
i=1 yi + α, β + n).

Knowing the analytic expression for the posterior can be useful for calculations of the
marginal likelihood, as Example 2.4 demonstrates.

where the collection
∑n

i=1 tk(yi) (k = 1, . . . , K) are sufficient statistics and ϕk(θ) are the canonical param-
eters. The number of sufficient statistics are the same regardless of the sample size. Exponential families
play a prominent role in generalized linear models, in which the natural parameters are modeled as linear
function of explanatory variables. A log prior density with parameters η, ν1, . . . , νK that is proportional to

log p(θ) ∝ ηD(θ) +
K∑

k=1

Qk(θ)νk

is conjugate.
4The canonical link function for Bernoulli gives rise to logistic regression model.
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Example 2.4 (Negative binomial as a Poisson mixture).

One restriction of the Poisson model is that the restriction on its moments is often unreal-
istic. The most frequent problem encountered is that of overdispersion, meaning that the
variability in the counts is larger than that implied by a Poisson distribution.

One common framework for handling overdispersion is to have Y | Λ = λ ∼ Pois(λ), where
the mean of the Poisson distribution is itself a positive random variable with mean µ, if Λ
follows a conjugate gamma distribution with shape kµ and rate k > 0, Λ ∼ Gamma(kµ, k),
the posterior Λ | Y = y ∼ Gamma(kµ + y, k + 1).

Since the joint density of Y and Λ can be written

p(y, λ) = p(y | λ)p(λ) = p(λ | y)p(y)

we can isolate the marginal density

p(y) = p(y | λ)p(λ)
p(λ | y)

=
λy exp(−λ)

Γ(y+1)
kkµλkµ−1 exp(−kλ)

Γ(kµ)
(k+1)kµ+yλkµ+y−1 exp{−(k+1)λ}

Γ(kµ+y)

= Γ(kµ + y)
Γ(kµ)Γ(y + 1)kkµ(k + 1)−kµ−y

= Γ(kµ + y)
Γ(kµ)Γ(y + 1)

(
1− 1

k + 1

)kµ ( 1
k + 1

)y

and this is the density of a negative binomial distribution with probability of success 1/(k+
1). We can thus view the negative binomial as a Poisson mean mixture.

By the laws of iterated expectation and iterative variance,

E(Y ) = EΛ{E(Y | Λ}
= E(Λ) = µ

Va(Y ) = EΛ{Va(Y | Λ)}+ VaΛ{E(Y | Λ)}
= E(Λ) + Va(Λ)
= µ + µ/k.

The marginal distribution of Y , unconditionally, has a variance which exceeds its mean,
as

E(Y ) = µ, Va(Y ) = µ(1 + 1/k).

In a negative binomial regression model, the term k is a dispersion parameter, which is
fixed for all observations, whereas µ = exp(βX) is a function of covariates X. As k → ∞,
the distribution of Λ degenerates to a constant at µ and we recover the Poisson model.
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Example 2.5 (Posterior rates for A/B tests using conjugate Poisson model). Upworthy.com,
a US media publisher, revolutionized headlines online advertisement by running system-
atic A/B tests to compare the different wording of headlines, placement and image and
what catches attention the most. The Upworthy Research Archive (Matias et al. 2021)
contains results for 22743 experiments, with a click through rate of 1.58% on average and
a standard deviation of 1.23%. The clickability_test_id gives the unique identifier of
the experiment, clicks the number of conversion out of impressions. See Section 8.5 of
Alexander (2023) for more details about A/B testing and background information.

Consider an A/B test from November 23st, 2014, that compared four different headlines
for a story on Sesame Street workshop with interviews of children whose parents were in
jail and visiting them in prisons. The headlines tested were:

1. Some Don’t Like It When He Sees His Mom. But To Him? Pure Joy. Why
Keep Her From Him?

2. They’re Not In Danger. They’re Right. See True Compassion From The
Children Of The Incarcerated.

3. Kids Have No Place In Jail . . . But In This Case, They Totally Deserve It.
4. Going To Jail Should Be The Worst Part Of Their Life. It’s So Not. Not At All.

At first glance, the first and third headlines seem likely to lead to a curiosity gap. The
wording of the second is more explicit (and searchable), whereas the first is worded as
a question.

We model the conversion rate λi for each headline separately using a Poisson distribution
and compare the posterior distributions for all four choices. Using a conjugate prior and
selecting the parameters by moment matching yields approximately α = 1.64 and β = 0.01
for the hyperparameters.

Table 2.1: Number of views, clicks for different headlines for the Upworthy data.

headline impressions clicks

H1 3060 49
H2 2982 20
H3 3112 31
H4 3083 9

We can visualize the posterior distributions. In this context, the large sample size lead to
the dominance of the likelihood contribution p(Yi | λi) ∼ Pois(niλi) relative to the prior.
We can see there is virtually no overlap between different rates for headers H1 (preferred)
relative to H4 (least favorable). The probability that the conversion rate for Headline 3 is

26

https://tellingstorieswithdata.com/08-hunt.html#ab-testing


2.2 Conjugate priors

0

100

200

300

400

0.00 0.01 0.02 0.03
conversion rate

headline

H1

H2

H3

H4

Posterior density

Figure 2.2: Gamma posterior for conversion rate of the different Upworthy Sesame Street
headline.

higher than Headline 1 can be approximated by simulating samples from both posteriors
and computing the proportion of times one is larger: we get 1.7% for H3 relative to H1,
indicating a clear preference for the first headline H1.

Example 2.6 (Should you phrase your headline as a question?). We can also consider ag-
gregate records for Upworthy, as Alexander (2023) did. The upworthy_question database
contains a balanced sample of all headlines where at least one of the choices featured a
question, with at least one alternative statement. Whether a headline contains a question
or not is determined by querying for the question mark. We consider aggregated counts
for all such headlines, with the question factor encoding whether there was a question,
yes or no. For simplicity, we treat the number of views as fixed, but keep in mind that A/B
tests are often sequential experiments with a stopping rule.5

We model first the rates using a Poisson regression; the corresponding frequentist analysis
would include an offset to account for differences in views. If λj (j = 1, 2) are the average
rate for each factor level (yes and no), then E(Yij/nij) = λj . In the frequentist setting,

5The stopping rule means that data stops being collected once there is enough evidence to determine if an
option is more suitable, or if a predetermined number of views has been reached.
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we can fit a simple Poisson generalized linear regression model with an offset term and a
binary variable.

data(upworthy_question, package = "hecbayes")
poismod <- glm(

clicks ~ offset(log(impressions)) + question,
family = poisson(link = "log"),
data = upworthy_question)

coef(poismod)

(Intercept) questionno
-4.51264669 0.07069677

The coefficients represent the difference in log rate (multiplicative effect) relative to the
baseline rate, with an increase of 6.3 percent when the headline does not contain a ques-
tion. A likelihood ratio test can be performed by comparing the deviance of the null model
(intercept-only), indicating strong evidence that including question leads to significatively
different rates. This is rather unsurprising given the enormous sample sizes.

Consider instead a Bayesian analysis with conjugate prior: we model separately the rates
of each group (question or not). Suppose we think apriori that the click-rate is on average
1%, with a standard deviation of 2%, with no difference between questions or not. For a
Gamma(α, β) prior, this would translate, using moment matching, into a rate of β = 0.04 =
Var0(λj)/E0(λj) and a shape of α = 2.5 (j = 1, 2). If λj is the average rate for each factor
level (yes and no), then E(Yij/nij) = λj so the log likelihood is proportional, as a function
of λ1 and λ2, to

ℓ(λ; y, n) λ∝
n∑

i=1

2∑
j=1

yij log λj − λjnij

and we can recognize that the posterior for λi is gamma with shape α +
∑n

i=1 yij and rate
β +

∑n
i=1 nij . For inference, we thus only need to select hyperparameters and calculate

the total number of clicks and impressions per group. We can then consider the posterior
difference λ1 − λ2 or, to mimic the Poisson multiplicative model, of the ratio λ1/λ2. The
former suggests very small differences, but one must keep in mind that rates are also small.
The ratio, shown in the right-hand panel of Figure 2.3, gives a more easily interpretable
portrait that is in line with the frequentist analysis.

To get an approximation to the posterior mean of the ratio λ1/λ2, it suffices to draw in-
dependent observations from their respective posterior, compute the ratio and take the
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Figure 2.3: Histograms of posterior summaries for differences (left) and rates (right) based
on 1000 simulations from the independent gamma posteriors.

sample mean of those draws. We can see that the sampling distribution of the ratio is
nearly symmetrical, so we can expect Wald intervals to perform well should one be inter-
ested in building confidence intervals. This is however hardly surprising given the sample
size at play.

Example 2.7 (Conjugate prior for Gaussian mean with known variance). Consider an n
simple random sample of independent and identically distributed Gaussian variables with
mean µ and standard deviation σ, denoted Yi ∼ Norm(µ, σ2). We pick a Gaussian prior for
the location parameter, µ ∼ Norm(ν, τ2) where we assume µ, τ are fixed hyperparameter
values. For now, we consider only inference for p(µ | σ): discarding any term that is not a
function of µ, the conditional posterior is

p(µ | σ) ∝ exp
{
− 1

2σ2

n∑
i=1

(yi − µ)2
}

exp
{
− 1

2τ2 (µ− ν)2
}

∝ exp
{(∑n

i=1 yi

σ2 + ν

τ2

)
µ−

(
n

2σ2 + 1
2τ2

)
µ2
}

.

The log of the posterior density conditional on σ is quadratic in µ, it must be a Gaus-
sian distribution truncated over the positive half line. This can be seen by completing
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the square in µ, or by comparing this expression to the density of Norm(µ, σ2),

f(x; µ, σ) µ∝ exp
(
− 1

2σ2 µ2 + x

σ2 µ

)
we can deduce by matching mean and variance that the conditional posterior p(µ | σ) is
Gaussian with reciprocal variance (precision) n/σ2 + 1/τ2 and mean (nyτ2 + νσ2)/(nτ2 +
σ2). The precision is an average of that of the prior and data, but assigns more weight to
the latter, which increases linearly with the sample size n. Likewise, the posterior mean
is a weighted average of prior and sample mean, with weights proportional to the relative
precision.

The exponential family is quite large; Fink (1997) A Compendium of Conjugate Priors gives
multiple examples of conjugate priors and work out parameter values.

In general, unless the sample size is small and we want to add expert opinion, we may
wish to pick an uninformative prior, i.e., one that does not impact much the outcome. For
conjugate models, one can often show that the relative weight of prior parameters (relative
to the random sample likelihood contribution) becomes negligible by investigating their
relative weights.

2.3 Uninformative priors

Definition 2.2 (Proper prior). We call a prior function proper if it’s integral is finite over the
parameter space; such prior function automatically leads to a valid posterior.

The best example of prior priors arise from probability density function. We can still em-
ploy this rule for improper priors: for example, taking α, β → 0 in the beta prior leads to
a prior proportional to x−1(1 − x)−1, the integral of which diverges on the unit interval
[0, 1]. However, as long as the number of success and the number of failures is larger than
1, meaning k ≥ 1, n− k ≥ 1, the posterior distribution would be proper, i.e., integrable. To
find the posterior, normalizing constants are also superfluous.

Many uninformative priors are flat, or proportional to a uniform on some subset of the
real line and therefore improper. It may be superficially tempting to set a uniform prior on
a large range to ensure posterior property, but the major problem is that a flat prior may
be informative in a different parametrization, as the following example suggests.

Gelman et al. (2013) uses the following taxonomy for various levels of prior information:
uninformative priors are generally flat or uniform priors with p(β) ∝ 1, vague priors are
typically nearly flat even if proper, e.g., β ∼ Norm(0, 100), weakly informative priors provide
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little constraints β ∼ Norm(0, 10), and informative prior are typically application-specific,
but constrain the ranges. Uninformative and vague priors are generally not recommended
unless they are known to give valid posterior inference and the amount of information
from the likelihood is high.

Example 2.8 (Transformation of flat prior for scales). Consider the parameter log(τ) ∈ R
and the prior p(log τ) ∝ 1. If we reparametrize the model in terms of τ , the new prior
(including the Jacobian of the transformation) is τ−1

Some priors are standard and widely used. In location scale families with location ν and
scale τ , the density is such that

f(x; ν, τ) = 1
τ

f

(
x− ν

τ

)
, ν ∈ R, τ > 0.

We thus wish to have a prior so that p(τ) = c−1p(τ/c) for any scaling c > 0, whence it
follows that p(τ) ∝ τ−1, which is uniform on the log scale.

The priors p(ν) ∝ 1 and p(τ) ∝ τ−1 are both improper but lead to location and scale
invariance, hence that the result is the same regardless of the units of measurement.

One criticism of the Bayesian approach is the arbitrariness of prior functions. However,
the role of the prior is often negligible in large samples (consider for example the posterior
of exponential families with conjugate priors). Moreover, the likelihood is also chosen for
convenience, and arguably has a bigger influence on the conclusion. Data fitted using a
linear regression model seldom follow Gaussian distributions conditionally, in the same
way that the linearity is a convenience (and first order approximation).

Definition 2.3 (Jeffrey’s prior). In single parameter models, taking a prior function for
θ proportional to the square root of the determinant of the information matrix, p(θ) ∝
|ı(θ)|1/2 yields a prior that is invariant to reparametrization, so that inferences conducted
in different parametrizations are equivalent.6

To see this, consider a bijective transformation θ 7→ ϑ. Under the reparametrized model
and suitable regularity conditions7, the chain rule implies that

i(ϑ) = −E
(

∂2ℓ(ϑ)
∂2ϑ

)

= −E
(

∂2ℓ(θ)
∂θ2

)(dθ

dϑ

)2
+ E

(
∂ℓ(θ)

∂θ

) d2θ

dϑ2

6The Fisher information is linear in the sample size for independent and identically distributed data so we
can derive the result for n = 1 without loss of generality.

7Using Bartlett’s identity; Fisher consistency can be established using the dominated convergence theorem.
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Since the score has mean zero, E {∂ℓ(θ)/∂θ} = 0 and the rightmost term vanishes. We can
thus relate the Fisher information in both parametrizations, with

ı1/2(ϑ) = ı1/2(θ)
∣∣∣∣dθ

dϑ

∣∣∣∣ ,
implying invariance.

In multiparameter models, the system isn’t invariant to reparametrization if we consider
the determinant of the Fisher information.

Example 2.9 (Jeffrey’s prior for the binomial distribution). Consider the binomial distribu-
tion Bin(1, θ) with density f(y; θ) ∝ θy(1 − θ)1−yIθ∈[0,1]. The negative of the second deriva-
tive of the log likelihood with respect to p is

ȷ(θ) = −∂2ℓ(θ; y)/∂θ2 = y/θ2 + (1− y)/(1− θ)2

and since E(Y ) = θ, the Fisher information is

ı(ϑ) = E{ȷ(θ)} = 1/θ + 1/(1− θ) = 1/{θ(1− θ)}

Jeffrey’s prior is thus p(θ) ∝ θ−1/2(1− θ)−1/2, a conjugate Beta prior Beta(0.5, 0.5).

2.4 Jeffrey’s prior for the normal distribution

Check that for the Gaussian distribution Norm(µ, σ2), the Jeffrey’s prior obtained by treat-
ing each parameter as fixed in turn, are p(µ) ∝ 1 and p(σ) ∝ 1/σ, which also correspond to
the default uninformative priors for location-scale families.

Example 2.10 (Jeffrey’s prior for the Poisson distribution). The Poisson distribution with
ℓ(λ) ∝ −λ + y log λ, with second derivative −∂2ℓ(λ)/∂λ2 = y/λ2. Since the mean of the
Poisson distribution is λ, the Fisher information is ı(λ) = λ−1 and Jeffrey’s prior is λ−1/2.

2.5 Informative priors

One strength of the Bayesian approach is the capability of incorporating expert and
domain-based knowledge through priors. Often, these will take the form of moment
constraints, so one common way to derive a prior is to perform moment matching to
related ellicited quantities with moments of the prior distribution. It may be easier to set
priors on a different scale than those of the observations, as Example 2.11 demonstrates.
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Example 2.11 (Gamma quantile difference priors for extreme value distributions). The
generalized extreme value distribution arises as the limiting distribution for the maximum
of m independent observations from some common distribution F . The GEV(µ, σ, ξ) dis-
tribution is a location-scale with distribution function

F (x) = exp
[
−{1 + ξ(x− µ)/σ}−1/ξ

+

]
where x+ = max{0, x}.

Inverting the distribution function yields the quantile function

Q(p)µ + σ
(− log p)−ξ − 1

ξ

In environmental data, we often model annual maximum. Engineering designs are often
specified in terms of the k-year return levels, defined as the quantile of the annual maxi-
mum exceeded with probability 1/k in any given year. Using a GEV for annual maximum,
Coles and Tawn (1996) proposed modelling annual daily rainfall and specifying a prior on
the quantile scale q1 < q2 < q3 for tail probabilities p1 > p2 > p3. To deal with the or-
dering constraints, gamma priors are imposed on the differences q1 − o ∼ Gamma(α1, β1),
q2 − q1 ∼ Gamma(α2, β2) and q3 − q2 ∼ Gamma(α3, β3), where o is the lower bound of the
support. The prior is thus of the form

p(q) ∝ qα1−1
1 exp(−β1q1)

3∏
i=2

(qi − qi−1)αi−1 exp{βi(qi − qi−1)}.

where 0 ≤ q1 ≤ q2 ≤ q3. The fact that these quantities refer to moments or risk estimates
which practitioners often must compute as part of regulatory requirements makes it easier
to specify sensible values for hyperparameters.

As illustrating example, consider maximum daily cumulated rainfall in Abisko, Sweden.
The time series spans from 1913 until December 2014; we compute the 102 yearly maxi-
mum, which range from 11mm to 62mm, and fit a generalized extreme value distribution
to these.

For the priors, suppose an expert elicits quantiles of the 10, 50 and 100 years return lev-
els; say 30mm, 45mm and 70mm, respectively, for the median and likewise 40mm, 70mm
and 120mm for the 90% percentile of the return levels. We can compute the differences
and calculate the parameters of the gamma distribution through moment-matching: this
gives roughly a shape of α1 = 18.27 and β1 = 0.6, etc. Figure 2.4 shows the transfer from
the prior predictive to the posterior distribution. The prior is much more dispersed and
concentrated on the tail, which translates in a less peaked posterior than using a weakly
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Figure 2.4: Kernel density estimates of draws from the posterior distribution of 100 year
return levels with a Coles–Tawn quantile prior (full line) and from the corre-
sponding prior predictive (dashed). The dotted line gives the posterior distri-
bution for a maximum domain information prior on the shape with improper
priors on location and scale.

informative prior (dotted line): the mode of the latter is slightly to the left and with lower
density in the tail.

What would you do if we you had prior information from different sources? One way to
combine these is through a mixture: given M different prior distributions pm(θ), we can
assign each a positive weight wm to form a mixture of experts prior through the linear
combination

p(θ) ∝
M∑

m=1
wmpm(θ)

2.5.1 Penalized complexity priors

Oftentimes, there will be a natural family of prior density to impose on some model com-
ponent, p(θ | ζ), with hyperparameter ζ. The flexibility of the underlying construction
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leads itself to overfitting. Penalized complexity priors (Simpson et al. 2017) aim to palliate
this by penalizing models far away from a simple baseline model, which correspond to a
fixed value ζ0. The prior will favour the simpler parsimonious model the more prior mass
one places on ζ0, which is in line with Occam’s razor principle.

To construct a penalized-complexity prior, we compute the Kullback–Leibler divergence
between the model pζ ≡ p(θ | ζ) relative to the baseline with ζ0, p0 ≡ p(θ | ζ0); the
Kullback–Leibler divergence is

KL(pζ∥ p0) =
∫

pζ log
(

pζ

p0

)
dθ.

The distance between the prior densities is then set to d(ζ) = {2KL(pζ || p0)}1/2. which
is zero at the model with ζ0. The PC prior then constructs an exponential prior on the
distance scale, which after back-transformation gives p(ζ | λ) = λ exp(−λd(ζ)) |∂d(ζ)/∂ζ|.
To choose λ, the authors recommend elicitation of a pair (U, α) such that Pr(λ > U) = α.

Example 2.12 (Penalized complexity prior for random effects models). Simpson et
al. (2017) give the example of a Gaussian prior for random effects α, of the form
α | ζ ∼ NormJ(0J , ζ2IJ) where ζ0 = 0 corresponds to the absence of random subject-
variability. The penalized complexity prior for the scale ζ is then an exponential with rate
λ,8 with density p(ζ | λ) = λ exp(−λζ). Using the recommendation for setting λ, we get
that λ = − ln(α/U) and this can be directly interpreted in terms of standard deviation of
ζ; simulation from the prior predictive may also be used for calibration.

Example 2.13 (Penalized complexity prior for autoregressive model of order 1). Sørbye
and Rue (2017) derive penalized complexity prior for the Gaussian stationary AR(1) model
with autoregressive parameter ϕ ∈ (−1, 1), where Yt | Yt−1, ϕ, σ2 ∼ Norm(ϕYt−1, σ2). There
are two based models that could be of interest: one with ϕ = 0, corresponding to a memo-
ryless model with no autocorrelation, and a static mean ϕ = 1 for no change in time; note
that the latter is not stationary. For the former, the penalized complexity prior is

p(ϕ | λ) = λ

2 exp
[
−λ

{
− ln(1− ϕ2)

}1/2
] |ϕ|

(1− ϕ2) {− ln(1− ϕ2)}1/2 .

One can set λ by considering plausible values by relating the parameter to the variance of
the one-step ahead forecast error.

8Possibly truncated above if the support of ζ has a finite upper bound.
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Gaussian components are widespread: not only for linear regression models, but more
generally for the specification of random effects that capture group-specific effects, resid-
uals spatial or temporal variability. In the Bayesian paradigm, there is no difference be-
tween fixed effects β and the random effect parameters: both are random quantities that
get assigned priors, but we will treat these priors differently.

The reason why we would like to use a penalized complexity prior for a random effect, say
αj ∼ Norm(0, ζ2), is because we don’t know a prior if there is variability between groups.
The inverse gamma prior for ζ, ζ ∼ InvGamma(ϵ, ϵ) does not have a mode at zero unless it
is improper with ϵ → 0. Generally, we want our prior for the variance to have significant
probability density at the null ζ = 0. The penalized complexity prior is not the only sen-
sible choice. Posterior inference is unfortunately sensitive to the value of ϵ in hierarchical
models when the random effect variance is close to zero, and more so when there are few
levels for the groups since the relative weight of the prior relative to that of the likelihood
contribution is then large.

Example 2.14 (Student-t prior for variance components). Gelman (2006) recommends a
Student-t distribution truncated below at 0, with low degrees of freedom. The rationale
for this choice comes from the simple two level model with nj independent in each group
j = 1, . . . , J : for observation i in group j,

Yij ∼ Norm(µ + αj , σ2),
αj ∼ Norm(0, τ2

α),

The conditionally conjugate prior p(τ | α, µ, σ) is inverse gamma. Standard inference
with this parametrization is however complicated, because there is strong dependence
between parameters.

To reduce this dependence, one can add a parameter, taking αj = ξηj and τα = |ξ|τη; the
model is now overparametrized. Suppose ηj ∼ Norm(0, τ2

η ) and consider the likelihood
conditional on µ, ηj : we have that (yij − µ)/ηj ∼ Norm(ξ, σ2/ηj) so conditionally conjugate
priors for ξ and τη are respectively Gaussian and inverse gamma. This translates into a
prior distribution for τα which is that of the absolute value of a noncentral Student-t with
location, scale and degrees of freedom ν. If we set the location to zero, the prior puts
high mass at the origin, but is heavy tailed with polynomial decay. We recommend to set
degrees of freedom so that the variance is heavy-tailed, e.g., ν = 3. While this prior is not
conjugate, it compares favorably to the IGa(ϵ, ϵ).

Example 2.15 (Poisson random effect models). We consider data from an experimental
study conducted at Tech3Lab on road safety. In Brodeur et al. (2021), 31 participants were
asked to drive in a virtual environment; the number of road violation was measured for
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different type of distractions (phone notification, phone on speaker, texting and smart-
watch). The data are balanced, with each participant exposed to each task exactly once.

We model the data using a Poisson mixed model to measure the number of violations,
nviolation, with a fixed effect for task, which captures the type of distraction, and a ran-
dom effect for participant id. The hierarchical model fitted for individual i (i = 1, . . . , 34)
and distraction type j (j = 1, . . . , 4) is

Yij ∼ Pois{µ = exp(βj + αi)},
βj ∼ Norm(0, 100),
αi ∼ Norm(0, κ2),
κ ∼ St+(3).

so observations are conditionally independent given hyperparameters α and β.

In frequentist statistics, there is a distinction made in mixed-effect models between pa-
rameters that are treated as constants, termed fixed effects and corresponding in this ex-
ample to β, and random effects, equivalent to α. There is no such distinction in the
Bayesian paradigm, except perhaps for the choice of prior.

We can look at some of posterior distribution of the 31 random effects (here the first five in-
dividuals) and the fixed effect parameters β, plus the variance of the random effect κ: there
is strong evidence that the latter is non-zero, suggesting strong heterogeneity between in-
dividuals. The distraction which results in the largest number of violation is texting, while
the other conditions all seem equally distracting on average (note that there is no control
group with no distraction to compare with, so it is hard to draw conclusions).

2.6 Sensitivity analysis

Do priors matter? The answer to that question depends strongly on the model, and how
much information the data provides about hyperparameters. While this question is easily
answered in conjugate models (the relative weight of hyperparameters relative to data can
be derived from the posterior parameters), it is not so simple in hierarchical models, where
the interplay between prior distributions is often more intricate. To see the impact, one
often has to rely on doing several analyses with different values fr the prior and see the
sensitivity of the conclusions to these changes, for example by considering a vague prior or
modifying the parameters values (say halving or doubling). If the changes are immaterial,
then this provides reassurance that our analyses are robust.
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Figure 2.5: Posterior density plots with 50% credible intervals and median value for the
random effects of the first five individuals (left) and the fixed effects and ran-
dom effect variance (right).

Example 2.16. To check the sensitivity of the conclusion, we revisit the modelling of the
smartwatch experiment data using a Poisson regression and compare four priors: a uni-
form prior truncated to [0, 10], an inverse gamma InvGamma(0.01, 0.01) prior, a penalized
complexity prior such that the 0.95 percentile of the scale is 5, corresponding to Exp(0.6).
Since each distraction type appears 31 times, there is plenty of information to reliably es-
timate the dispersion κ of the random effects α: the different density plots in Figure 2.6 are
virtually indistinguishable from one another. This is perhaps unsurprising given the large
number of replicates, and the significant variability between groups.
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Figure 2.6: Posterior density of the scale of the random effects with uniform, inverse
gamma, penalized complexity and folded Student-t with three degrees of free-
dom. The circle denotes the median and the bars the 50% and 95% percentile
credible intervals.
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3 Simulation-based inference

There are two major approaches to handling the problem of the unknown normalizing
constant: deterministic and stochastic approximations. The former includes Laplace and
nested Laplace approximations, variational methods and expectation propagation. This
chapter covers the latter, stochastic approximations, and focuses on implementation of
basic Markov chain Monte Carlo algorithms. The simulation algorithms circumvent the
need to calculate the normalizing constant of the posterior entirely. We present several
examples of implementations, several tricks for tuning and diagnostics of convergence.

3.1 Monte Carlo methods

Consider a target distribution with finite expected value: think of the posterior of some
model of interest, or some functional thereof. The law of large numbers guarantees that,
if we can draw observations from our target distribution, then the sample average will
converge to the expected value of that distribution, as the sample size becomes larger and
larger, provided the expectation is finite.

We can thus compute the probability of any event or the expected value of any (integrable)
function by computing sample averages; the cost to pay for this generality is random-
ness.

Specifically, suppose we are interested in the average E{g(X)} of Xi ∼ F for some function
g.

Example 3.1. Consider X ∼ Gamma(α, β), a gamma distribution with shape α and rate
β. We can compute the probability that X < 1 easily by Monte Carlo since Pr(X < 1) =
E{I(X < 1)} and this means we only need to compute the proportion of draws less than
one. We can likewise compute the mean g(x) = x or variance.

Suppose we have drawn a Monte Carlo sample of size B. If the function g(·) is square
integrable,1 with variance σ2

g , then a central limit theorem applies. In large samples and
for independent observations, our Monte Carlo average µ̂g = B−1∑B

b=1 g(Xi) has variance

1Meaning E{g2(X)} < ∞, so the variance of g(X) exists.
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σ2
g/B. We can approximate the unknown variance σ2

g by it’s empirical counterpart.2. Note
that, while the variance decreases linearly with B, the choice of g impacts the speed of
convergence: we can compute

σ2
g = Pr(X ≤ 1){1− Pr(X ≤ 1)} = 0.0434

(left) and σ2
g = α/β2 = 1/8 (middle plot).

Figure 3.1 shows the empirical trace plot of the Monte Carlo average (note the
√

B x-axis
scale!) as a function of the Monte Carlo sample size B along with 95% Wald-based confi-
dence intervals (gray shaded region), µ̂g± 1.96×σg/

√
B. We can see that the ‘likely region’

for the average shrinks with B.

What happens if our function is not integrable? The right-hand plot of Figure 3.1 shows
empirical averages of g(x) = x−1, which is not integrable if α < 1. We can compute the
empirical average, but the result won’t converge to any meaningful quantity regardless of
the sample size. The large jumps are testimonial of this.
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Figure 3.1: Running mean trace plots for g(x) = I(x < 1) (left), g(x) = x (middle) and
g(x) = 1/x (right) for a Gamma distribution with shape 0.5 and rate 2, as a
function of the Monte Carlo sample size.

We have already used Monte Carlo methods to compute posterior quantities of interest
in conjugate models. Outside of models with conjugate priors, the lack of closed-form

2By contrasts, if data are identically distributed but not independent, care is needed
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expression for the posterior precludes inference. Indeed, calculating the posterior proba-
bility of an event, or posterior moments, requires integration of the normalized posterior
density and thus knowledge of the marginal likelihood. It is seldom possible to sample in-
dependent and identically distributed (iid) samples from the target, especially if the model
is high dimensional: rejection sampling and the ratio of uniform method are examples of
Monte Carlo methods which can be used to generate iid draws.

Proposition 3.1 (Rejection sampling). Rejection sampling (also termed accept-reject algo-
rithm) samples from a random vector with density p(·) by drawing candidates from a pro-
posal with density q(·) with nested support, supp(p) ⊆ supp(q). The density q(·) must be such
that p(θ) ≤ Cq(θ) for C ≥ 1 for all values of θ in the support of p(·). A proof can be found in
Devroye (1986, Theorem 3.1)

1. Generate θ⋆ from the proposal with density q and U ∼ U(0, 1)
2. Compute the ratio R← p(θ⋆)/q(θ⋆).
3. If R ≥ CU , return θ, else go back to step 1.

0.0
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0.6

0 1 2 3 4 5
x

scaled proposal and target densities

Figure 3.2: Target density (full) and scaled proposal density (dashed): the vertical segment
at x = 1 shows the percentage of acceptance for a uniform slice under the
scaled proposal, giving an acceptance ratio of 0.58.

Rejection sampling requires the proposal q to have a support at least as large as that of
p and resemble closely the density. It should be chosen so that the upper bound C is as
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3 Simulation-based inference

sharp as possible and close to 1. The dominating density q must have heavier tails than the
density of interest. The expected number of simulations needed to accept one proposal is
C. Finally, for the method to be useful, we need to be able to simulate easily and cheaply
from the proposal. The optimal value of C is C = supθ p(θ)/q(θ). This quantity may be
obtained by numerical optimization, by finding the mode of the ratio of the log densities
if the maximum is not known analytically.

Example 3.2 (Truncated Gaussian distribution). Consider the problem of sampling from
a Gaussian distribution Y ∼ Norm(µ, σ2) truncated in the interval [a, b], which has density

f(x; µ, σ, a, b) = 1
σ

ϕ
(

x−µ
σ

)
Φ{(b− µ)/σ} − Φ{(a− µ)/σ}

.

where ϕ(·), Φ(·) are respectively the density and distribution function of the standard
Gaussian distribution.

Since the Gaussian is a location-scale family, we can reduce the problem to sampling X
from a standard Gaussian truncated on α = (a−µ)/σ and β = (b−µ)/σ and back transform
the result as Y = µ + σX.

A crude accept-reject sampling algorithm would consider sampling from the same un-
truncated distribution with density g(X) = σ−1ϕ{(x − µ)/σ}, and the acceptance ratio is
C−1 = {Φ(β) − Φ(α)}. We thus simply simulate points from the Gaussian and accept any
that falls within the bounds.

# Standard Gaussian truncated on [0,1]
candidate <- rnorm(1e5)
trunc_samp <- candidate[candidate >= 0 & candidate <= 1]
# Acceptance rate
length(trunc_samp)/1e5
#> [1] 0.342
# Theoretical acceptance rate
pnorm(1)-pnorm(0)
#> [1] 0.341

We can of course do better: if we consider a random variable with distribution function F,
but truncated over the interval [a, b], then the resulting distribution function is

F (x)− F (a)
F (b)− F (a) , a ≤ x ≤ b,
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and we can invert this expression to get the quantile function of the truncated variable in
terms of the distribution function F and the quantile function F −1 of the original untrun-
cated variable.

For the Gaussian, this gives

X ∼ Φ−1 [Φ(α) + {Φ(β)− Φ(α)}U ]

for U ∼ U(0, 1). Although the quantile and distribution functions of the Gaussian, pnorm
and qnorm in R, are very accurate, this method will fail for rare event simulation because it
will return Φ(x) = 0 for x ≤ −39 and Φ(x) = 1 for x ≥ 8.3, implying that a ≤ 8.3 for this
approach to work (Botev and L’Écuyer 2017).

Consider the problem of simulating events in the right tail for a standard Gaussian where
a > 0; Marsaglia’s method (Devroye 1986, 381), can be used for that purpose. Write the
density of the Gaussian as f(x) = exp(−x2/2)/c1, where c1 =

∫∞
a exp(−z2/2)dz, and note

that

c1f(x) ≤ x

a
exp

(
−x2

2

)
= a−1 exp

(
−a2

2

)
g(x), x ≥ a;

where g(x) is the density of a Rayleigh variable shifted by a, which has distribution function
G(x) = 1−exp{(a2−x2)/2} for x ≥ a. We can simulate such a random variate X through the
inversion method. The constant C = exp(−a2/2)(c1a)−1 approaches 1 quickly as a→∞.

The accept-reject thus proceeds with

1. Generate a shifted Rayleigh above a, X ← {a2 − 2 log(U)}1/2 for U ∼ U(0, 1)
2. Accept X if XV ≤ a, where V ∼ U(0, 1).

Should we wish to obtain samples on [a, b], we could instead propose from a Rayleigh trun-
cated above at b (Botev and L’Écuyer 2017).

a <- 8.3
niter <- 1000L
X <- sqrt(aˆ2 + 2*rexp(niter))
samp <- X[runif(niter)*X <= a]

For a given candidate density g which has a heavier tail than the target, we can resort to
numerical methods to compute the mode of the ratio f/g and obtain the bound C; see
Albert (2009), Section 5.8 for an insightful example.
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Proposition 3.2 (Ratio of uniform method). The ratio-of-uniform method (Kinderman and
Monahan 1977; Wakefield, Gelfand, and Smith 1991) is a variant of accept-reject used to
draw samples from a unnormalized density f(θ) for θ ∈ Θ ⊆ Rd. For some r ≥ 0, consider
the set

Cr =
{

(u0, . . . , ud) : 0 < u0 ≤ [f(u1/ur
0, . . . , ud/ur

0)]
1

rd+1
}

.

If we can generate u0, . . . , ud uniformly over CR, then the draws (u1/ur
0, . . . , ud/ur

0) are from
the normalized density f . Rejection sampling is used to obtain uniform draws over Cr under
some conditions on the density and marginal moments. See the rust package vignette for
technical details and examples. Like with other accept-reject algorithms, the acceptance
rate of the proposal goes down with the dimension of the problem.

Example 3.3. The ratio-of-uniform algorithm was used in Example 1.4 to generate draws
from the posterior. We illustrate below the rust package with a user-specified prior and
posterior. We fit a generalized Pareto distribution Y ∼ GP(σ, ξ) to exceedances above 10
millions krones to the danish fire insurance data, using a truncated maximal data infor-
mation prior p(σ, ξ) ∝ σ−1 exp(−ξ + 1)I(ξ > −1).

data(danish, package = "evir")
# Extract threshold exceedances
exc <- danish[danish > 10] - 10
# Create a function for the log prior
logmdiprior <- function(par, ...){

if(isTRUE(any(par[1] <= 0, par[2] < -1))){
return(-Inf)

}
-log(par[1]) - par[2]

}
# Same for log likelihood, assuming independent data
loglik_gp <- function(par, data = exc, ...){

if(isTRUE(any(par[1] <= 0, par[2] < -1))){
return(-Inf)

}
sum(mev::dgp(x = data, scale = par[1], shape = par[2], log = TRUE))

}
logpost <- function(par, ...){

logmdiprior(par) + loglik_gp(par)
}
# Sampler using ratio-of-uniform method
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3.1 Monte Carlo methods

ru_output <- rust::ru(
logf = logpost, # log posterior function
n = 10000, # number of posterior draws
d = 2, # dimension of the parameter vector
init = mev::fit.gpd(danish, thresh = 10)$par,
lower = c(0, -1))

## Acceptance rate
# ru_output$pa
## Posterior samples
postsamp <- ru_output$sim_vals

Even without modification, the acceptance rate is 52%, which is quite efficient in the con-
text. The generalized Pareto approximation suggests a very heavy tail: values of ξ ≥ 1
correspond to distributions with infinite first moment, and those with ξ ≥ 1/2 to infinite
variance.
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Figure 3.3: Scatterplot of posterior samples from the generalized Pareto model applied to
Danish fire insurance losses above 10 millions krones, with maximal data infor-
mation prior (left) and posterior predictive density on log scale (right).
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3.2 Markov chain Monte Carlo

Plain ordinary Monte Carlo is great, but few algorithms are generic enough to be useful
in complex high-dimensional problems. Instead, we will construct a Markov chain with a
given invariant distribution corresponding to the posterior. Markov chain Monte Carlo
methods generate correlated draws that will target the posterior under suitable condi-
tions.3

Before going forward with algorithms for sampling, we introduce some terminology that
should be familiar to people with a background in time series analysis.

Definition 3.1 (Stationarity and Markov property). A stochastic (i.e., random) process is
(weakly) stationary if the distribution of {X1, . . . , Xt} is the same as that of {Xn+1, . . . Xt+n}
for any value of n and given t.

It is Markov if it satisfies the Markov property: given the current state of the chain, the
future only depends on the current state and not on the past.

Example 3.4. Consider a first-order autoregressive process, or AR(1), of the form

Yt = µ + ϕ(Yt−1 − µ) + εt,

where ϕ is the lag-one correlation, µ the global mean and εt is an iid innovation with mean
zero and variance σ2. If |ϕ| < 1, the process is stationary, and the variance does not in-
crease with t. If innovations are Gaussian, we have

Yt | Yt−1 = yt−1 ∼ Norm{µ(1− ϕ) + ϕyt−1, σ2}.

The AR(1) stationarity process Yt, marginally, has mean µ and unconditional variance
σ2/(1 − ϕ2). The AR(1) process is first-order Markov since the conditional distribution
p(Yt | Yt−1, . . . , Yt−p) equals p(Yt | Yt−1).

Autoregressive processes are not the only ones we can consider, although their simplicity
lends itself to analytic calculations. More generally, for a correlated sequence, the variance
of the stationary distribution is

Va(Yt) + 2
∞∑

k=1
Co(Yt, Yt−k)

3While we won’t focus on the fine prints of the contract, there are conditions for validity and these matter!
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Proposition 3.3 (Effective sample size). Intuitively, a sample of correlated observations car-
ries less information than an independent sample of draws. If we want to compute sample
averages Y T = (Y1 + · · ·+ YT )/T , the variance will be

Va
(
Y T

)
= 1

T

T∑
t=1

Va(Yt) + 2
T

T −1∑
t=1

T∑
s=t+1

Co(Yt, Ys).

In the independent case, the covariance is zero so we get the sum of variances. If the process is
stationary, the covariances at lag k are the same regardless of the time index and the variance
is some constant, say σ2; this allows us to simplify calculations,

Va(Y T ) = σ2
{

1 + 2
T

T −1∑
t=1

(T − t)Cor(YT −k, YT )
}

.

Denote the lag-k autocorrelation Cor(Yt, Yt+k) by γk. Under technical conditions4, a central
limit theorem applies and we get an asymptotic variance for the mean of

lim
T →∞

TVa
(
Y T

)
= σ2

{
1 + 2

∞∑
t=1

γt

}
.

This statement holds only if we start with draws from the stationary distribution, otherwise
bets are off.

We need the effective sample size of our Monte Carlo averages based on a Markov chain
of length B to be sufficient for the estimates to be meaningful. The effective sample size
is, loosely speaking, the equivalent number of observations if the marginal posterior draws
where independent and more formally

ESS = B

{1 + 2
∑∞

t=1 γt}
(3.1)

where γt is the lag t correlation. The relative effective sample size is simply the fraction of the
effective sample size over the Monte Carlo number of replications: small values of ESS/B
indicate pathological or inefficient samplers. If the ratio is larger than one, it indicates the
sample is superefficient (as it generates negatively correlated draws).

In practice, we replace the unknown autocorrelations by sample estimates and truncate the
series in Equation 3.1 at the point where they become negligible — typically when the con-
secutive sum of two consecutive becomes negative; see Section 1.4 of the Stan manual or
Section 1.10.2 of Geyer (2011) for details.

4Geometric ergodicity and existence of moments, among other things.
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Example 3.5. The lag-k correlation of the stationary autoregressive process of order 1 is ϕk,
so summing the series gives an asymptotic variance of σ2(1 + ϕ)/(1− ϕ). We can constrast
that to the variance of the stationary distribution for an independent sample, which is
σ2/(1 − ϕ2). The price to pay for having correlated samples is inefficiency: the higher the
autocorrelation, the larger the variability of our mean estimators.
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Figure 3.4: Scaled asymptotic variance of the sample mean for a stationary autoregressive
first-order process with unit variance (full line) and a corresponding sample of
independent observations with the same marginal variance (dashed line). The
right panel gives the ratio of variances for positive correlation coefficients.

We can see from Figure 3.4 that, when the autocorrelation is positive (as will be the cause
in all applications of interest), we will suffer from variance inflation. To get the same un-
certainty estimates for the mean with an AR(1) process with ϕ ≈ 0.75 than with an iid
sample, we would need nine times as many observations: this is the prize to pay.

3.2.1 Estimating uncertainty of point estimators with Markov chains

With a simple random sample containing independent and identically distributed obser-
vations, the standard error of the sample mean is σ/

√
n and we can use the empirical stan-

dard deviation σ̂ to estimate the first term. For Markov chains, the correlation prevents us
from using this approach. The output of thecoda package are based on fitting a high order
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3.2 Markov chain Monte Carlo

autoregressive process to the Markov chain and using the formula of the unconditional
variance of the AR(p) to obtain the central limit theorem variance. An alternative method
recommended by Geyer (2011) and implemented in his R package mcmc, is to segment the
time series into batch, compute the means of each non-overlapping segment and use this
standard deviation with suitable rescaling to get the central limit variance for the posterior
mean. Figure 3.5 illustrate the method of batch means.

1. Break the chain of length B (after burn in) in K blocks of size≈ K/B.
2. Compute the sample mean of each segment. These values form a Markov chain and

should be approximately uncorrelated.
3. Compute the standard deviation of the segments mean. Rescale by K−1/2 to get stan-

dard error of the global mean.

Why does the approach work? If the chain samples from the stationary distribution, all
samples have the same mean. If we partition the sample into long enough, the sample
mean of each blocks should be roughly independent (otherwise we could remove an over-
lapping portion). We can then compute the empirical standard deviation of the estimators.
We can then compute the overall mean and use a scaling argument to relate the variability
of the global estimator with the variability of the means of the smaller blocks.

−5

0

5

0 500 1000 1500 2000
iteration number

Figure 3.5: Calculation of the standard error of the posterior mean using the batch method.

When can we use output from a Markov chain in place of independent Monte Carlo draws?
The assumptions laid out in the ergodic theorem are that the chain is irreducible and
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acyclic, ensuring that the chain has a unique stationary distribution. The ergodic theo-
rem is a result about convergence of averages.

To make sense of these concepts, we consider a discrete Markov chain over the integers
1, 2, 3. A discrete-time stochastic process is a random sequences whose elements are part
of some set, the state space, here the integers. We can encode the probability of moving
from one state to the next via a transition matrix, whose rows contain the probabilities of
moving from one state to the next and thus sum to one. We can run a Markov chain by
sampling an initial state X0 at random from {1, . . . , 5} and then consider the transitions
from the conditional distribution, sampling p(Xt | Xt−1). Because of the Markov property,
the history of the chain does not matter: we only need to read the value i = Xt−1 of the
state and pick the ith row of P3 to know the probability of the different moves from the
current state.

Irreducible means that the chain can move from anywhere to anywhere, so it doesn’t get
stuck in part of the space forever. A transition matrix such as P1 below describes a re-
ducible Markov chain, because once you get into state 2 or 3, you won’t escape. With re-
ducible chains, the stationary distribution need not be unique, and so the target would
depend on the starting values.

Cyclical chains loop around and visit periodically a state: P2 is an instance of transition
matrix describing a chain that cycles from 1 to 3, 3 to 2 and 2 to 1 every three iteration. An
acyclic chain is needed for convergence of marginals.

P1 =

0.5 0.3 0.2
0 0.4 0.6
0 0.5 0.5

 , P2 =

0 0 1
1 0 0
0 1 0

 .

If a chain is irreducible and aperiodic, it has a unique stationary distribution and the lim-
iting distribution of the Markov chain will converge there. For example, we consider a
transition P3 on 1, . . . , 5 defined as

P3 =


2
3

1
3 0 0 0

1
6

2
3

1
6 0 0

0 1
6

2
3

1
6 0

0 0 1
6

2
3

1
6

0 0 0 1
3

2
3


The stationary distribution is the value of the row vector p, such that p = pP for transition
matrix P: we get p1 = (0, 5/11, 6/11) for P1, (1/3, 1/3, 1/3) for P2 and (1, 2, 2, 2, 1)/8 for P3.

Figure 3.6 shows the path of the walk and the empirical proportion of the time spent in
each state, as time progress. Since the Markov chain has a unique stationary distribution,
we expect these to converge to it.

52



3.3 Markov chain Monte Carlo algorithms

1

2

3

4

5

0 250 500 750 1000
iteration

state

0.10

0.15

0.20

0.25

0.30

0 K 25 K 50 K 75 K 100 K
iteration

state 1 2 3 4 5

probability of state

Figure 3.6: Discrete Markov chain on integers from 1 to 5, with transition matrix P3, with
traceplot of 1000 first iterations (left) and running mean plots of sample pro-
portion of each state visited per 100 iterations (right).

3.3 Markov chain Monte Carlo algorithms

The Markov chain Monte Carlo revolution in the 1990s made Bayesian inference main-
stream by allowing inference for models when only approximations were permitted, and
coincided with a time at which computers became more widely available. The idea is to
draw correlated samples from a posterior via Markov chains, constructed to have the pos-
terior as invariant stationary distribution.

3.3.1 Metropolis–Hastings algorithm

Named after Metropolis et al. (1953), Hastings (1970), its relevance took a long time to gain
traction in the statistical community. The idea of the Metropolis–Hastings algorithm is to
construct a Markov chain targeting a distribution p(·).

Proposition 3.4 (Metropolis–Hastings algorithm). We consider from a density function
p(θ), known up to a normalizing factor not depending on θ. We use a (conditional) pro-
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posal density q(θ | θ∗) which has non-zero probability over the support of p(·), as transition
kernel to generate proposals.

The Metropolis–Hastings build a Markov chain starting from an initial value θ0:

1. draw a proposal value θ⋆
t ∼ q(θ | θt−1).

2. Compute the acceptance ratio

R = p(θ⋆
t )

p(θt−1)
q(θt−1 | θ⋆

t )
q(θ⋆

t | θt−1) (3.2)

3. With probability min{R, 1}, accept the proposal and set θt ← θ⋆
t , otherwise set the

value to the previous state, θt ← θt−1.

The Metropolis–Hastings algorithm generates samples from the posterior p(θ | y) if the
Markov chain it defines is reversible: we say it satisfies the detailed balance condition when
the density of θt+1 | θt, say f(θt+1 | θt). Detailed balance means

f(θt+1 | θt)p(θt | y) = f(θt | θt+1)p(θt+1 | y)

This guarantees that, if θt is drawn from the posterior, then the left hand side is the joint
density of (θt, θt+1) and the marginal distribution obtained by integrating over θt,∫

f(θt+1 | θt)p(θt | y)dθt

=
∫

f(θt | θt+1)p(θt+1 | y)dθt

= p(θt+1 | y)

and any draw from the posterior will generate a new realization from the posterior. We
also ensure that, provided the starting value as non-zero probability under the posterior,
the chain will converge to the stationarity distribution (albeit perhaps slowly).

Remark (Interpretation of the algorithm). If R > 1, the proposal has higher density and
we always accept the move. If the ratio is less than one, the proposal is in a lower prob-
ability region, we accept the move with probability R and set θt = θ⋆

t ; if we reject, the
Markov chain stays at the current value, which induces autocorrelation. Since the accep-
tance probability depends only on the density through ratios, we can work with unnormal-
ized density functions and this is what allows us, if our proposal density is the (marginal)
posterior of the parameter, to obtain approximate posterior samples without having to
compute the marginal likelihood.

Remark (Blank run). To check that the algorithm is well-defined, we can remove the log
likelihood component and run the algorithm: if it is correct, the resulting draws should be
drawn from the prior provided the latter is proper (Green 2001, 55).

54



3.3 Markov chain Monte Carlo algorithms

Remark (Symmetric proposals). Suppose we generate a candidate sample θ⋆
t from a sym-

metric distribution q(· | ·) centered at θt−1, such as the random walk θ⋆
t = θt−1 + Z where

Z has a symmetric distribution. Then, the proposal density ratio cancels so need not be
computed in the Metropolis ratio of Equation 3.2.

Remark (Calculations). In practice, we compute the log of the acceptance ratio, ln R, to
avoid numerical overflow. If our target is log posterior density, we have

ln
{

p(θ⋆
t )

p(θt−1)

}
= ℓ(θ⋆

t ) + ln p(θ⋆
t )− ℓ(θt−1)− ln p(θt−1)

and we proceed likewise for the log of the ratio of transition kernels. We then compare
the value of ln R (if less than zero) to log(U), where U ∼ U(0, 1). We accept the move if
ln(R) > log(U) and keep the previous value otherwise.

Example 3.6. Consider again the Upworthy data from Example 2.6. We model the Poisson
rates λi (i = 1, 2), this time with the usual Poisson regression parametrization in terms of
log rate for the baseline yes, log(λ2) = β, and log odds rates κ = log(λ1) − log(λ2). Our
model is

Yi ∼ Po(niλi), (i = 1, 2)
λ1 = exp(β + κ)
λ2 = exp(β)
β ∼ Norm(log 0.01, 1.5)
κ ∼ Norm(0, 1)

There are two parameters in the model, which can be updated in turn or jointly.

data(upworthy_question, package = "hecbayes")
# Compute sufficient statistics
data <- upworthy_question |>

dplyr::group_by(question) |>
dplyr::summarize(ntot = sum(impressions),

y = sum(clicks))
# Code log posterior as sum of log likelihood and log prior
loglik <- function(par, counts = data$y, offset = data$ntot, ...){

lambda <- exp(c(par[1] + log(offset[1]), par[1] + par[2] + log(offset[2])))
sum(dpois(x = counts, lambda = lambda, log = TRUE))

}
logprior <- function(par, ...){
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dnorm(x = par[1], mean = log(0.01), sd = 1.5, log = TRUE) +
dnorm(x = par[2], log = TRUE)

}
logpost <- function(par, ...){

loglik(par, ...) + logprior(par, ...)
}
# Compute maximum a posteriori (MAP)
map <- optim(

par = c(-4, 0.07),
fn = logpost,
control = list(fnscale = -1),
offset = data$ntot,
counts = data$y,
hessian = TRUE)

# Use MAP as starting value
cur <- map$par
# Compute logpost_cur - we can keep track of this to reduce calculations
logpost_cur <- logpost(cur)
# Proposal covariance
cov_map <- -2*solve(map$hessian)
chol <- chol(cov_map)

set.seed(80601)
niter <- 1e4L
chain <- matrix(0, nrow = niter, ncol = 2L)
colnames(chain) <- c("beta","kappa")
naccept <- 0L
for(i in seq_len(niter)){

# Multivariate normal proposal - symmetric random walk
prop <- chol %*% rnorm(n = 2) + cur
logpost_prop <- logpost(prop)
# Compute acceptance ratio (no q because the ratio is 1)
logR <- logpost_prop - logpost_cur
if(logR > -rexp(1)){

cur <- prop
logpost_cur <- logpost_prop
naccept <- naccept + 1L

}
chain[i,] <- cur
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}
# Posterior summaries
summary(coda::as.mcmc(chain))
#>
#> Iterations = 1:10000
#> Thinning interval = 1
#> Number of chains = 1
#> Sample size per chain = 10000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> beta -4.5127 0.00170 0.0000170 0.0000618
#> kappa 0.0708 0.00203 0.0000203 0.0000974
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> beta -4.5159 -4.5138 -4.5127 -4.5115 -4.5093
#> kappa 0.0667 0.0693 0.0708 0.0721 0.0746
# Computing standard errors using batch means
sqrt(diag(mcmc::olbm(chain, batch.length = niter/40)))
#> [1] 0.0000572 0.0000822

The acceptance rate of the algorithm is 35.1% and the posterior means are β = −4.51 and
κ = 0.07.

Figure 3.8 shows the posterior samples, which are very nearly bivariate Gaussian. The
parametrization in terms of log odds ratio induces strong negative dependence, so if we
were to sample κ, then β, we would have much larger inefficiency and slower exploration.
Instead, the code used a bivariate Gaussian random walk proposal whose covariance ma-
trix was taken as a multiple of the inverse of the negative hessian (equivalently, to the
observed information matrix of the log posterior), evaluated at of the maximum a pos-
teriori. This Gaussian approximation is called Laplace approximation: it is advisable to
reparametrize the model so that the distribution is nearly symmetric, so that the approxi-
mation is good. In this example, because of the large sample, the Gaussian approximation
implied by Bernstein–von Mises’ theorem is excellent.

The quality of the mixing of the chain (autocorrelation), depends on the proposal variance,
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Figure 3.7: Traceplots of Markov chain of log rate and log odds rate for the Metropolis–
Hastings sampler applied to the Upworthy question data.

which can obtain by trial and error. Trace plots Figure 3.7 show the values of the chain as
a function of iteration number. If our algorithm works well, we expect the proposals to
center around the posterior mode and resemble a fat hairy caterpillar. If the variance is
too small, the acceptance rate will increase but most steps will be small. If the variance of
the proposal is too high, the acceptance rate will decrease (as many proposal moves will
have much lower posterior), so the chain will get stuck for long periods of time. This is
Goldilock’s principle, as illustrated in Figure 3.9.

One way to calibrate is to track the acceptance rate of the proposals: for the three chains
in Figure 3.9, these are 0.932, 0.33, 0.12. In one-dimensional toy problems with Gaussian
distributions, an acceptance rate of 0.44 is optimal, and this ratio decreases to 0.234 when
D ≥ 2 Sherlock (2013). This need not generalize to other settings and depends on the
context. Optimal rate for alternative algorithms, such as Metropolis-adjusted Langevin
algorithm, are typically higher.

We can tune the variance of the global proposal (Andrieu and Thoms 2008) to improve the
mixing of the chains at approximate stationarity. This is done by increasing (decreasing)
the variance if the historical acceptance rate is too high (respectively low) during the burn
in period, and reinitializing after any change with an acceptance target of 0.44. We stop
adapting to ensure convergence to the posterior after a suitable number of initial itera-
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Figure 3.8: Scatterplot of posterior draws (left) and marginal density plot of log odds rate
(right).

tions. Adaptive MCMC methods use an initial warm up period to find good proposals: we
can consider a block of length L, compute the acceptance rate, multiply the variance by
a scaling factor and run the chain a little longer. We only keep samples obtained after the
adaptation phase.

We can also plot the autocorrelation of the entries of the chain as a function of lags, a
display known as correlogram in the time series literature but colloquially referred to as
autocorrelation function (acf). The higher the autocorrelation, the more variance inflation
one has and the longer the number of steps before two draws are treated as independent.
Figure 3.10 shows the effect of the proposal variance on the correlation for the three chains.
Practitioners designing very inefficient Markov chain Monte Carlo algorithms often thin
their series: that is, they keep only every k iteration. This is not recommended practice
unless storage is an issue and usually points towards inefficient sampling algorithms.

Remark (Independence Metropolis–Hastings). If the proposal density q(·) does not de-
pend on the current state θt−1, the algorithm is termed independence. To maximize ac-
ceptance, we could design a candidate distribution whose mode is at the maximum a pos-
teriori value. To efficiently explore the state space, we need to place enough density in all
regions, for example by taking a heavy-tailed distributions, so that we explore the full sup-
port. Such proposals can be however inefficient and fail when the distribution of interest
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Figure 3.10: Correlogram for the three Markov chains.
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is multimodal. The independence Metropolis–Hastings algorithm then resembles accept-
reject. If the ratio p(θ)/q(θ) is bounded above by C ≥ 1, then we can make comparisons
with rejection sampling. Lemma 7.9 of Robert and Casella (2004) shows that the probabil-
ity of acceptance of a move for the Markov chain is at least 1/C, which is larger than the
accept-reject.

In models with multiple parameter, we can use Metropolis–Hastings algorithm to update
every parameter in turn, fixing the value of the others, rather than update them in block.
The reason behind this pragmatic choice is that, as for ordinary Monte Carlo sampling, the
acceptance rate goes down sharply with the dimension of the vector. Updating parameters
one at a time can lead to higher acceptance rates, but slower exploration as a result of the
correlation between parameters.

If we can factorize the log posterior, then some updates may not depend on all parameters:
in a hierarchical model, hyperpriors parameter only appear through priors, etc. This can
reduce computational costs.

Proposition 3.5 (Parameter transformation). If a parameter is bounded in the interval
(a, b), where −∞ ≤ a < b ≤ ∞, we can consider a bijective transformation ϑ ≡ t(θ) :
(a, b) → R with differentiable inverse. The log density of the transformed variable, assum-
ing it exists, is

fϑ(ϑ) = fθ{t−1(ϑ)}
∣∣∣∣ d
dϑ

t−1(ϑ)
∣∣∣∣

For example, we can use of the following transformations for finite a, b in the software:

• if θ ∈ (a,∞) (lower bound only), then ϑ = log(θ−a) and fϑ(ϑ) = fθ{exp(ϑ)+a}·exp(ϑ)
• if θ ∈ (−∞, b) (upper bound only), then ϑ = log(b − θ) and fϑ(ϑ) = fθ{b − exp(ϑ)} ·

exp(ϑ)
• if θ ∈ (a, b) (both lower and upper bound), then ϑ = logit{(θ − a)/(b− a)} and

fϑ(ϑ) = fθ{a + (b− a)expit(ϑ)}(b− a)
× expit(ϑ){1− expit(ϑ)}

To guarantee that our proposals fall in the support of θ, we can thus run a symmetric ran-
dom walk proposal on the transformed scale by drawing ϑ⋆

t ∼ ϑt−1 + τZ where Z ∼
Norm(0, 1). Due to the transformation, the kernel ratio now contains the Jacobian.

Proposition 3.6 (Truncated proposals). As an alternative, if we are dealing with param-
eters that are restricted in [a, b], we can simulate using a random walk but with truncated
Gaussian steps, taking θ⋆

t ∼ TruncNorm(ϑt−1, τ2, a, b). The benefits of using the truncated
proposal becomes more apparent when we move to more advanced proposals whose mean
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and variance depends on the gradient and or the hessian of the underlying unnormalized
log posterior, as the mean can be lower than a or larger than b: this would garantee zero ac-
ceptance with regular Gaussian random walk. The TruncatedNormal package can be used
to efficiently evaluate such instances using results from Botev and L’Écuyer (2017) even when
the truncation bounds are far from the mode. the normalizing constant of the truncated
Gaussian in the denominator of the density is a function of the location and scale parame-
ters: if these depend on the current value of θt−1, as is the case for a random walk, we need
to keep these terms as part of the Metropolis ratio. The mean and standard deviation of
the truncated Gaussian are not equal to the parameters µ (which corresponds to the mode,
provided a < µ < b) and σ.

Proposition 3.7 (Efficient proposals). Rather than simply build a random walk, we can
exploit the geometry of the posterior using the gradient, via Metropolis-ajusted Langevin
algorithm (MALA), or using local quadratic approximations of the target.

Let p(θ) denote the conditional (unnormalized) log posterior for a scalar parameter θ ∈
(a, b). We considering a Taylor series expansion of p(·) around the current parameter value
θt−1,

p(θ) ≈ p(θt−1) + p′(θt−1)(θ − θt−1) + 1
2p′′(θt−1)(θ − θt−1)2

plus remainder, which suggests a Gaussian approximation with mean µt−1 = θt−1 −
f ′(θt−1)/f ′′(θt−1) and precision τ−2 = −f ′′(θt−1). We can use truncated Gaussian distri-
bution on (a, b) with mean µ and standard deviation τ , denoted TruncNorm(µ, τ, a, b) with
corresponding density function q(·; µ, τ, a, b). The Metropolis acceptance ratio for a proposal
θ⋆

t ∼ TruncNorm(µt−1, τt−1, a, b) is

α = p(θ⋆
t )

p(θt−1)
q(θt−1 | µ⋆

t , τ⋆
t , a, b)

q(θ⋆
t | µt−1, τt−1, a, b)

and we set θ(t+1) = θ⋆
t with probability min{1, r} and θ(t+1) = θt−1 otherwise. To evaluate

the ratio of truncated Gaussian densities q(·; µ, τ, a, b), we need to compute the Taylor ap-
proximation from the current parameter value, but also the reverse move from the proposal
θ⋆

t . Another option is to modify the move dictated by the rescaled gradient by taking instead

µt−1 = θt−1 − ηf ′(θt−1)/f ′′(θt−1).

The proposal includes an additional learning rate parameter, η ≤ 1, whose role is to prevent
oscillations of the quadratic approximation, as in a Newton–Raphson algorithm. Relative
to a random walk Metropolis–Hastings, the proposal automatically adjusts to the local ge-
ometry of the target, which guarantees a higher acceptance rate and lower autocorrelation
for the Markov chain despite the higher evaluation costs. The proposal requires that both
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f ′′(θt−1) and f ′′(θ⋆
t ) be negative since the variance is −1/f ′′(θ): this shouldn’t be problem-

atic in the vicinity of the mode. Otherwise, one could use a global scaling derived from the
hessian at the mode.

The simpler Metropolis-adjusted Langevin algorithm is equivalent to using a Gaussian ran-
dom walk where the proposal has mean θt−1 + Aη∇ log p(θt−1; y) and variance τ2A, for
some mass matrix A and learning rate η < 1. Taking A as the identity matrix, which as-
sumes the parameters are isotropic (same variance, uncorrelated) is the default choice al-
though seldom far from optimal.

For MALA to work well, we need both to start near stationarity, to ensure that the gradient is
relatively small and to prevent oscillations. One can dampen the size of the step initially if
needed to avoid overshooting. The proposal variance, the other tuning parameter, is critical
to the success of the algorithm. The usual target for the variance is one that gives an accep-
tance rate of roughly 0.574. These more efficient methods require additional calculations
of the gradient and Hessian, either numerically or analytically. Depending on the situation
and the computational costs of such calculations, the additional overhead may not be worth
it.

Example 3.7. We revisit the Upworthy data, this time modelling each individual headline
as a separate observation. We view n =nimpression as the sample size of a binomial dis-
tribution and nclick as the number of successes. Since the number of trials is large, the
sample average nclick/nimpression, denoted y in the sequel, is approximately Gaussian.
We assume that each story has a similar population rate and capture the heterogeneity
inherent to each news story by treating each mean as a sample. The variance of the sam-
ple average or click rate is proportional to n−1, where n is the number of impressions.
To allow for underdispersion or overdispersion, we thus consider a Gaussian likelihood
Yi ∼ Norm(µ, σ2/ni). We perform Bayesian inference for µ, σ after assigning a truncated
Gaussian prior for µ ∼ TruncNorm(0.01, 0.12) over [0, 1] and an penalized complexity prior
for σ ∼ Exp(0.7).

data(upworthy_question, package = "hecbayes")
# Select data for a single question
qdata <- upworthy_question |>

dplyr::filter(question == "yes") |>
dplyr::mutate(y = clicks/impressions,

no = impressions)
# Create functions with the same signature (...) for the algorithm
logpost <- function(par, data, ...){

mu <- par[1]; sigma <- par[2]
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no <- data$no
y <- data$y
if(isTRUE(any(sigma <= 0, mu < 0, mu > 1))){

return(-Inf)
}
dnorm(x = mu, mean = 0.01, sd = 0.1, log = TRUE) +
dexp(sigma, rate = 0.7, log = TRUE) +
sum(dnorm(x = y, mean = mu, sd = sigma/sqrt(no), log = TRUE))

}

logpost_grad <- function(par, data, ...){
no <- data$no

y <- data$y
mu <- par[1]; sigma <- par[2]
c(sum(no*(y-mu))/sigmaˆ2 -(mu - 0.01)/0.01,

-length(y)/sigma + sum(no*(y-mu)ˆ2)/sigmaˆ3 -0.7
)

}

# Starting values - MAP
map <- optim(

par = c(mean(qdata$y), 0.5),
fn = function(x){-logpost(x, data = qdata)},
gr = function(x){-logpost_grad(x, data = qdata)},
hessian = TRUE,
method = "BFGS")

# Set initial parameter values
curr <- map$par
# Check convergence
logpost_grad(curr, data = qdata)
#> [1] 0.0076507 0.0000558
# Compute a mass matrix
Amat <- solve(map$hessian)
# Cholesky root - for random number generation
cholA <- chol(Amat)

# Create containers for MCMC
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B <- 1e4L # number of iterations
warmup <- 1e3L # adaptation period
npar <- 2L # number of parameters
prop_sd <- rep(1, npar) #updating both parameters jointly
chains <- matrix(nrow = B, ncol = npar)
damping <- 0.8 # learning rate
acceptance <- attempts <- 0
colnames(chains) <- names(curr) <- c("mu","sigma")
prop_var <- diag(prop_sd) %*% Amat %*% diag(prop_sd)
for(i in seq_len(B + warmup)){

ind <- pmax(1, i - warmup)
# Compute the proposal mean for the Newton step
prop_mean <- c(curr + damping *

Amat %*% logpost_grad(curr, data = qdata))
# prop <- prop_sd * c(rnorm(npar) %*% cholA) + prop_mean
prop <- c(mvtnorm::rmvnorm(

n = 1,
mean = prop_mean,
sigma = prop_var))

# Compute the reverse step
curr_mean <- c(prop + damping *

Amat %*% logpost_grad(prop, data = qdata))
# log of ratio of bivariate Gaussian densities
logmh <- mvtnorm::dmvnorm(

x = curr, mean = prop_mean,
sigma = prop_var,
log = TRUE) -
mvtnorm::dmvnorm(

x = prop,
mean = curr_mean,
sigma = prop_var,
log = TRUE) +

logpost(prop, data = qdata) -
logpost(curr, data = qdata)

if(logmh > log(runif(1))){
curr <- prop
acceptance <- acceptance + 1L

}
attempts <- attempts + 1L
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3 Simulation-based inference

# Save current value
chains[ind,] <- curr
if(i %% 100 & i < warmup){

out <- hecbayes::adaptive(
attempts = attempts,
acceptance = acceptance,
sd.p = prop_sd,
target = 0.574)

prop_sd <- out$sd
acceptance <- out$acc
attempts <- out$att
prop_var <- diag(prop_sd) %*% Amat %*% diag(prop_sd)

}
}

MALA requires critically a good mass matrix, especially if the gradient is very large at the
starting values (often the case when the starting value is far from the mode). Given the
precision of the original observations, we did not need to modify anything to deal with the
parameter constraints 0 ≤ µ ≤ 1 and σ > 0, outside of encoding them in the log posterior
function.

The posterior mean for the standard deviation is 0.64, which suggests overdispersion.

3.4 Gibbs sampling

The Gibbs sampling algorithm builds a Markov chain by iterating through a sequence of
conditional distributions. Consider a model with θ ∈ Θ ⊆ Rp. We consider a single (or
m ≤ p blocks of parameters), say θ[j], such that, conditional on the remaining components
of the parameter vector θ−[j], the conditional posterior p(θ[j] | θ−[j], y) is from a known
distribution from which we can simulate draws

At iteration t, we can update each block in turn: note that the kth block uses the partially
updated state

θ−[k]⋆ = (θ[1]
t , . . . , θ

[k−1]
t , θ

[k+1]
t−1 , θ

[m]
t−1)

which corresponds to the current value of the parameter vector after the updates. To check
the validity of the Gibbs sampler, see the methods proposed in Geweke (2004).
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3.4 Gibbs sampling

The Gibbs sampling can be viewed as a special case of Metropolis–Hastings where the pro-
posal distribution q is p(θ[j] | θ−[j]⋆, y). The particularity is that all proposals get accepted
because the log posterior of the partial update, equals the proposal distribution, so

R = p(θ[j]⋆
t | θ−[j]⋆, y)

p(θ[j]⋆
t−1 | θ−[j]⋆, y)

p(θ[j]⋆
t−1 | θ−[j]⋆, y)

p(θ[j]⋆
t | θ−[j]⋆, y)

= 1.

Regardless of the order (systematic scan or random scan), the procedure remains valid.
The Gibbs sampling is thus an automatic algorithm: we only need to derive the condi-
tional posterior distributions of the parameters and run the sampler, and there are no tun-
ing parameter involved. If the parameters are strongly correlated, the changes for each
parameter will be incremental and this will lead to slow mixing and large autocorrelation,
even if the values drawn are all different. Figure 3.11 shows 25 steps from a Gibbs algorithm
for a bivariate target.

Figure 3.11: Sampling trajectory for a bivariate target using Gibbs sampling.

As a toy illustration, we use Gibbs sampling to simulate data from a d-dimensional multi-
variate Gaussian target with mean µ and equicorrelation covariance matrix Σ = (1−ρ)Id+
ρ1d1⊤

d with inverse

Q = Σ−1 = (1− ρ)−1 {Id − ρ1d1d/(1 + (d− 1)ρ)} ,

for known correlation coefficient ρ. While we can easily sample independent observations,
the exercise is insightful to see how well the methods works as the dimension increases,
and when the correlation between pairs becomes stronger.
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3 Simulation-based inference

Consider Y ∼ Normd(µ, Σ) and a partition (Y ⊤
1 , Y ⊤

2 )⊤: the conditional distribution of the
k subvector Y 1 given the d − k other components Y 2 is, in terms of either the covariance
(first line) or the precision (second line), Gaussian where

Y 1 | Y 2 = y2 ∼ Normk

{
µ1 + Σ12Σ−1

22 (y2 − µ2), Σ11 −Σ12Σ−1
22 Σ21

}
∼ Normk

{
µ1 −Q−1

11 Q12(y2 − µ2), Q−1
11

}
.

# Create a 20 dimensional equicorrelation
d <- 20
Q <- hecbayes::equicorrelation(d = d, rho = 0.9, precision = TRUE)
B <- 1e4
chains <- matrix(0, nrow = B, ncol = d)
mu <- rep(2, d)
# Start far from mode
curr <- rep(-3, d)
for(i in seq_len(B)){

# Random scan, updating one variable at a time
for(j in sample(1:d, size = d)){

# sample from conditional Gaussian given curr
curr[j] <- hecbayes::rcondmvnorm(

n = 1,
value = curr,
ind = j,
mean = mu,
precision = Q)

}
chains[i,] <- curr # save values after full round of update

}

As the dimension of the parameter space increases, and as the correlation between com-
ponents becomes larger, the efficiency of the Gibbs sampler degrades: Figure 3.12 shows
the first component for updating one-parameter at a time for a multivariate Gaussian tar-
get in dimensions d = 20 and d = 3, started at four deviation away from the mode. The
chain makes smaller steps when there is strong correlation, resulting in an inefficient sam-
pler.

The main bottleneck in Gibbs sampling is determining all of the relevant conditional dis-
tributions, which often relies on setting conditionally conjugate priors. In large models
with multiple layers, full conditionals may only depend on a handful of parameters.
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Figure 3.12: Trace plots (top) and correlograms (bottom) for the first component of a Gibbs
sampler with d = 20 equicorrelated Gaussian variates with correlation ρ = 0.9
(left) and d = 3 with equicorrelation ρ = 0.5 (right).

Example 3.8. Consider a Gaussian model Yi ∼ Norm(µ, τ) (i = 1, . . . , n) are independent,
and where we assign priors µ ∼ Norm(ν, ω) and τ ∼ InvGamma(α, β).

The joint posterior is not available in closed form, but the independent priors for the mean
and variance of the observations are conditionally conjugate, since the joint posterior

p(µ, τ | y) ∝τ−n/2 exp
{
− 1

2τ

(
n∑

i=1
y2

i − 2µ
n∑

i=1
yi + nµ2

)}

× exp
{
−(µ− ν)2

2ω

}
× τ−α−1 exp(−β/τ)

gives us

p(µ | τ, y) ∝ exp
{
−1

2

(
µ2 − 2µy

τ/n
+ µ2 − 2νµ

ω

)}

p(τ | µ, y) ∝ τ−n/2−α−1 exp
[
−
{∑n

i=1(yi − µ)2

2 + β

}
/τ

]
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3 Simulation-based inference

so we can simulate in turn

µt | τt−1, y ∼ Norm
(

nyω + τν

τ + nω
,

ωτ

τ + nω

)
τt | µt, y ∼ InvGamma

{
n

2 + α,

∑n
i=1(yi − µ)2

2 + β

}
.

Remark (Gibbs sampler and proper posterior). Gibbs sampling cannot be used to deter-
mine if the posterior is improper. If the posterior is not well defined, the Markov chains
may seem to stabilize even though there is no proper target.

Proposition 3.8 (Bayesian linear model). Consider a linear regression model with
observation-specific mean µi = xiβ (i = 1, . . . , n) with xi the ith row of the n × p model
matrix X.

Concatenating records, Y ∼ Non(Xβ, σ2Q−1
y ), for a known precision matrix Qy, typically

In. To construct a conjugate joint prior for p(β, σ2), we consider the sequential formulation

β | σ2 ∼ Normp(νβ, σ2Q−1
β ), σ2 ∼ InvGamma(α, β)

where InvGamma denotes the inverse gamma distribution5

The joint posterior is Gaussian-inverse gamma and can be factorized

p(β, σ2 | y) = p(σ2 | y)p(β | σ2, y)

where p(σ2 | y) ∼ InvGamma(α∗, β∗) and p(β | σ2, y) ∼ Nop(Mm, σ2M) with α∗ = α +
n/2, β∗ = β + 0.5ν⊤

β Qβνβ + y⊤y − m⊤Mm, m = Qβνβ + X⊤Qyy and M = (Qβ +
X⊤QyX)−1; the latter can be evaluated efficiently using Shermann–Morrisson–Woodbury
identity. Given the conditionally conjugate priors, we can easily sample from the posterior
using Gibbs sampling.

3.4.1 Data augmentation and auxiliary variables

In many problems, the likelihood p(y; θ) is intractable or costly to evaluate and auxiliary
variables are introduced to simplify calculations, as in the expectation-maximization al-
gorithm. The Bayesian analog is data augmentation (Tanner and Wong 1987), which we
present succinctly: let θ ∈ Θ be a vector of parameters and consider auxiliary variables

5This simply means that the precision σ−2, the reciprocal of the variance, has a gamma distribution with
shape α and rate β.
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3.4 Gibbs sampling

u ∈ Rk such that
∫
Rk p(u, θ; y)du = p(θ; y), i.e., the marginal distribution is that of inter-

est, but evaluation of p(u, θ; y) is cheaper. The data augmentation algorithm consists in
running a Markov chain on the augmented state space (Θ,Rk), simulating in turn from the
conditionals p(u; θ, y) and p(θ; u, y) with new variables chosen to simplify the likelihood.
If simulation from the conditionals is straightforward, we can also use data augmentation
to speed up calculations or improve mixing. For more details and examples, see Dyk and
Meng (2001) and Hobert (2011).

Example 3.9. Consider binary responses Y i, for which we postulate a probit regression
model,

pi = Pr(Yi = 1) = Φ(β0 + β1Xi1 + · · ·+ βpXip),

where Φ is the distribution function of the standard Gaussian distribution. The likelihood
of the probit model for a sample of n independent observations is

L(β; y) =
n∏

i=1
pyi

i (1− pi)1−yi ,

and this prevents easy simulation. We can consider a data augmentation scheme where
Yi = I(Zi > 0), where Zi ∼ Norm(xiβ, 1), with xi denoting the ith row of the design matrix.

The augmented data likelihood is

p(z, y | β) ∝ exp
{
−1

2(z −Xβ)⊤(z −Xβ)
}
×

n∏
i=1

I(zi > 0)yi I(zi ≤ 0)1−yi

Given Zi, the coefficients β are simply the results of ordinary linear regression with unit
variance, so

β | z, y ∼ Norm
{

β̂, (X⊤X)−1
}

with β̂ = (X⊤X)−1X⊤z is the ordinary least square estimator from the regression with
model matrix X and response vector z. The augmented variables Zi are conditionally in-
dependent and truncated Gaussian with

Zi | yi, β ∼
{

TruncNorm(xiβ,−∞, 0) yi = 0
TruncNorm(xiβ, 0,∞) yi = 1.

and we can use the algorithms of Example 3.2 to simulate these.
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3 Simulation-based inference

probit_regression <- function(y, x, B = 1e4L, burnin = 100){
y <- as.numeric(y)
n <- length(y)
# Add intercept
x <- cbind(1, as.matrix(x))
xtxinv <- solve(crossprod(x))
# Use MLE as initial values
beta.curr <- coef(glm(y ~ x - 1, family=binomial(link = "probit")))
# Containers
Z <- rep(0, n)
chains <- matrix(0, nrow = B, ncol = length(beta.curr))
for(b in seq_len(B + burnin)){

ind <- max(1, b - burnin)
Z <- TruncatedNormal::rtnorm(

n = 1,
mu = as.numeric(x %*% beta.curr),
lb = ifelse(y == 0, -Inf, 0),
ub = ifelse(y == 1, Inf, 0),
sd = 1)

beta.curr <- chains[ind,] <- as.numeric(
mvtnorm::rmvnorm(

n = 1,
mean = coef(lm(Z ~ x - 1)),
sigma = xtxinv))

}
return(chains)
}

Example 3.10 (Bayesian LASSO). The Laplace distribution with mean µ and scale σ, which
has density

f(x; µ, σ) = 1
2σ

exp
(
−|x− µ|

σ

)
,

can be expressed as a scale mixture of Gaussians, where Y ∼ La(µ, σ) is equivalent to
Z | τ ∼ Norm(µ, τ) and τ ∼ Exp{(2σ)−1}. With the improper prior p(µ, σ) ∝ σ−1 and
with n independent and identically distributed Laplace variates, the joint posterior can be
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written

p(τ , µ, σ | y) ∝
(

n∏
i=1

τi

)−1/2

exp
{
−1

2

n∑
i=1

(yi − µ)2

τi

}

× 1
σn+1 exp

(
− 1

2σ

n∑
i=1

τi

)

and µ | · · · and σ | · · · are, as usual, Gaussian and inverse gamma, respectively. The vari-
ances, τj , are conditionally independent of one another with

p(τj | µ, σ, yj) ∝ τ
−1/2
j exp

{
−1

2
(yj − µ)2

τj
− 1

2
τj

σ

}

so with ξj = 1/τj , we have

p(ξj | µ, σ, yj) ∝ ξ
−3/2
j exp

{
− 1

2σ

ξj(yj − µ)2

σ
− 1

2
1
ξj

}

and we recognize the latter as a Wald (or inverse Gaussian) distribution, whose density
function is

f(y; ν, λ) =
(

λ

2πy3

)1/2
exp

{
−λ(y − ν)2

2ν2y

}
, y > 0

y∝ y−3/2 exp
{
−λ

2

(
y

ν
+ 1

y

)}
for location ν > 0 and shape λ > 0, where ξi ∼ Wald(νi, λ) with νi = {σ/(yi − µ)2}1/2 and
λ = σ−1.

Park and Casella (2008) use this hierarchical construction to defined the Bayesian LASSO.
With a model matrix X whose columns are standardized to have mean zero and unit stan-
dard deviation, we may write

Y | µ, β, σ2 ∼ Normn(µ1n + Xβ, σIn)
βj | σ, τ ∼ Norm(0, στ)

τ ∼ Exp(λ/2)

If we set an improper prior p(µ, σ) ∝ σ−1, the resulting conditional distributions are all
available and thus the model is amenable to Gibbs sampling.

The Bayesian LASSO places a Laplace penalty on the regression coefficients, with lower
values of λ yielding more shrinkage. Figure 3.13 shows a replication of Figure 1 of Park and
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Figure 3.13: Traceplot of β coefficients (penalized maximum likelihood estimates and me-
dian aposteriori as a function of the l1 norm of the coefficients, with lower
values of the latter corresponding to higher values of the penalty λ.

Casella (2008), fitted to the diabetes data. Note that, contrary to the frequentist setting,
none of the posterior draws of β are exactly zero.

Many elliptical distributions can be cast as scale mixture models of spherical or Gaussian
variables; see, e.g., Section 10.2 of Albert (2009) for a similar derivation with a Student-t
distribution.

Example 3.11 (Mixture models). In clustering problems, we can specify that observations
arise from a mixture model with a fixed or unknown number of coefficients: the interest
lies then in estimating

A K-mixture model is a weighted combination of models frequently used in clustering or
to model subpopulations with respective densities fk, with density

f(x; θ, ω) =
K∑

k=1
ωkfk(x; θk), ω1 + · · ·ωK = 1.

Since the density involves a sum, numerical optimization is challenging. Let Ci denote the
cluster index for observation i: if we knew the value of Ci = j, the density would involve
only fj . We can thus use latent variables representing the group allocation to simplify the
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3.5 Bayesian workflow and diagnostics for Markov chains

problem and run an EM algorithm or use the data augmentation. In an iterative frame-
work, we can consider the complete data as the tuples (Xi, Zi), where Zi = I(Ci = k).

With the augmented data, the conditional distribution of Zi | Xi, ω, θ ∼ Multinom(1, γik)
where

γik = ωkfk(Xiθk)∑K
j=1 fj(Xiθk)

.

Given suitable priors for the probabilities ω and θ ≡ {θ1, . . . , θk}, we can use Gibbs sam-
pling updating Z, ω and θ in turn.

3.5 Bayesian workflow and diagnostics for Markov chains

For a given problem, there are many different Markov chain Monte Carlo algorithms that
one can implement: they will typically be distinguished based on the running time and the
efficiency (with algorithms providing chains that have low autocorrelation being better).
Many visual diagnostics and standard tests can be used to diagnose lack of convergence,
or inefficiency. The purpose of this section is to review these in turn.

The Bayesian workflow is a coherent framework for model construction, estimation and
validation. It typically involves multiple iterations tuning, adapting and modifying both
the models and the algorithms in the hope of achieving a model that is useful (Gelman et
al. 2020); see also Michael Betancourt for excellent visualizations.

To illustrate these, we revisit the model from Example 2.15 with a penalized complexity
prior for the individual effect αi and vague normal priors. We also fit a simple Poisson
model with only the fixed effect, taking Yij ∼ Pois{exp(βj)} with βj ∼ Norm(0, 100) has
much too little variability relative to the observations.

3.5.1 Trace plots

It is useful to inspect visually the Markov chain, as it may indicate several problems. If
the chain drifts around without stabilizing around the posterior mode, then we can sus-
pect that it hasn’t reached it’s stationary distribution (likely due to poor starting values). In
such cases, we need to disregard the dubious draws from the chain by discarding the so-
called warm up or burn in period. While there are some guarantees of convergence in the
long term, silly starting values may translate into tens of thousands of iterations lost wan-
dering around in regions with low posterior mass. Preliminary optimization and plausible
starting values help alleviate these problems. Figure 3.14 shows the effect of bad starting
values on a toy problem where convergence to the mode is relatively fast. If the proposal
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3 Simulation-based inference

is in a flat region of the space, it can wander around for a very long time before converging
to the stationary distribution.

If we run several chains, as in Figure 3.14, with different starting values, we can monitor
convergence by checking whether these chains converge to the same target. A trace rank
plots, shown on right panel of Figure 3.14, compares the rank of the values of the different
chain at a given iteration: with good mixing, the ranks should switch frequently and be
distributed uniformly across integers.
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Figure 3.14: Traceplots of three Markov chains for the same target with different initial val-
ues for the first 500 iterations (left) and trace rank plot after discarding these
(right).

3.5.2 Diagnostics of convergence

Generally, one would run a MCMC algorithm. The first iterations, used during the burn
in period to tune proposal variances and allow the chains to converge to the stationary
distribution, are discarded. If visual inspection of the chains reveal that some of the chains
for one or more parameters are not stationary until some iteration, we will discard all of
these in addition.

The target of inference is functional (i.e., one-dimensional summaries of the chain): we
need to have convergence of the latter, but also sufficient effective sample size for our

76



3.5 Bayesian workflow and diagnostics for Markov chains

averages to be accurate (at least to two significant digits).

For the Poisson example, the effective sample size for the β for the multilevel model is a bit
higher than 1000 with B = 5000 iterations, whereas we have for the simple naive model is
10000 for B = 10000 draws, suggesting superefficient sampling. The dependency between
α and β is responsible for the drop in accuracy.

The coda (convergence diagnosis and output analysis) R package contains many tests. For
example, the Geweke Z-score compares the averages for the beginning and the end of the
chain: rejection of the null implies lack of convergence, or poor mixing.

Running multiple Markov chains can be useful for diagnostics. The Gelman–Rubin diag-
nostic R̂, also called potential scale reduction statistic, is obtained by considering the dif-
ference between within-chains and between-chains variance. Suppose we run M chains
for B iterations, post burn in. Denoting by θbm the bth draw of the mth chain, we compute
the global average θ = B−1M−1∑B

b=1
∑m

m=1 θbm and similarly the chain sample average
and variances, respectively θm and σ̂2

m (m = 1, . . . , M ). The between-chain variance and
within-chain variance estimator are

Vabetween = B

M − 1

M∑
m=1

(θm − θ)2

Vawithin = 1
M

m∑
m=1

σ̂2
m

and we can compute

R̂ =
(Vawithin(B − 1) + Vabetween

BVawithin

)1/2

The potential scale reduction statistic must be, by construction, larger than 1 in large
sample. Any value larger than this is indicative of problems of convergence. While the
Gelman–Rubin diagnostic is frequently reported, and any value larger than 1 deemed
problematic, it is not enough to have approximately R̂ = 1 to guarantee convergence,
but large values are usually indication of something being amiss. Figure 3.15 shows two
instances where the chains are visually very far from having the same average and this is
reflected by the large values of R̂.

More generally, it is preferable to run a single chain for a longer period than run multiple
chains sequentially, as there is a cost to initializing multiple times with different starting
values since we must discard initial draws. With parallel computations, multiple chains
are more frequent nowadays.

MCMC algorithms are often run thinning the chain (i.e., keeping only a fraction of the
samples drawn, typically every k iteration). This is wasteful as we can of course get more
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Figure 3.15: Two pairs of Markov chains: the top ones seem stationary, but with different
modes. This makes the between chain variance substantial, with a value of
R̂ ≈ 3.4, whereas the chains on the right hover around the same values of
zero, but do not appear stable with R̂ ≈ 1.6.

precise estimates by keeping all posterior draws, whether correlated or not. The only argu-
ment in favor of thinning is limited storage capacity: if we run very long chains in a model
with hundreds of parameters, we may run out of memory.

3.5.3 Posterior predictive checks

Posterior predictive checks can be used to compare models of varying complexity.One of
the visual diagnostics, outlined in Gabry et al. (2019), consists in computing a summary
statistic of interest from the posterior predictive (whether mean, median, quantile, skew-
ness, etc.) which is relevant for the problem at hand and which we hope our model can
adequately capture.

Suppose we have B draws from the posterior and simulate for each n observations from
the posterior predictive p(ỹ | y): we can benchmark summary statistics from our original
data y with the posterior predictive copies ỹb. Figure 3.16 shows this for the two compet-
ing models and highlight the fact that the simpler model is not dispersed enough. Even
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the more complex model struggles to capture this additional heterogeneity with the addi-
tional variables. One could go back to the drawing board and consider a negative binomial
model.
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Figure 3.16: Posterior predictive checks for the standard deviation (top) and density of pos-
terior draws (bottom) for hierarchical Poisson model with individual effects
(left) and simpler model with only conditions (right).

3.5.4 Information criterion

The widely applicable information criterion (Watanabe 2010) is a measure of predictive
performance that approximates the cross-validation loss. Consider first the log pointwise
predictive density, defined as the expected value over the posterior distribution p(θ | y),

LPPDi = Eθ|y {log p(yi | θ)} .

The higher the value of the predictive density LPPDi, the better the fit for that observa-
tion.

As in general information criteria, we sum over all observations, adding a penalization
factor that approximates the effective number of parameters in the model, with

nWAIC = −
n∑

i=1
LPPDi +

n∑
i=1

Vaθ|y{log p(yi | θ)}
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where we use again the empirical variance to compute the rightmost term. When com-
paring competing models, we can rely on their values of WAIC to discriminate about the
predictive performance. To compute WAIC, we need to store the values of the log den-
sity of each observation, or at least minimally compute the running mean and variance
accurately pointwise at storage cost O(n). Note that Section 7.2 of Gelman et al. (2013)
define the widely applicable information criterion as 2n×WAIC to make on par with other
information criteria, which are defined typically on the deviance scale and so that lower
values correspond to higher predictive performance. For the smartwatch model, we get
a value of 3.06 for the complex model and 4.51: this suggests an improvement in using
individual-specific effects.

We can also look at the predictive performance. For the diabetes data application with
the Bayesian LASSO with fixed λ, the predictive performance is a trade-off between the
effective number of parameter (with larger penalties translating into smaller number of
parameters) and the goodness-of-fit. Figure 3.17 shows that the decrease in predictive per-
formance is severe when estimates are shrunk towards 0, but the model performs equally
well for small penalties.
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Figure 3.17: Widely applicable information criterion for the Bayesian LASSO problem fit-
ted to the diabetes data, as a function of the penalty λ.

Ideally, one would measure the predictive performance using the leave-one-out predictive
distribution for observation i given all the rest, p(yi | y−i), to avoid double dipping — the
latter is computationally intractable because it would require running n Markov chains
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with n − 1 observations each, but we can get a good approximation using importance
sampling. The loo package uses this with generalized Pareto smoothing to avoid overly
large weights.

Once we have the collection of estimated p(yi | y−i), we can assess the probability level
of each observation. This gives us a set of values which should be approximately uniform
if the model was perfectly calibrated. The probability of seeing an outcome as extreme
as yi can be obtained by simulating draws from the posterior predictive given y−i and
computing the scaled rank of the original observation. Values close to zero or one may
indicate outliers.
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Figure 3.18: Quantile-quantile plots based on leave-one-out cross validation for model for
the Poisson hierarchical model with the individual random effects (left) and
without (right).
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