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Welcome

This book is a web complement to MATH 80601A Bayesian modelling, a graduate course
offered at HEC Montréal. Consult the course webpage for more details.

These notes are licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License and were last compiled on mardi, avril 29 2025.

The objective of the course is to provide a hands on introduction to Bayesian data analysis.
The course will cover the formulation, evaluation and comparison of Bayesian models
through examples and real-data applications.
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1 Introduction

This section review basic concepts in probability theory that will be used throughout
the course. The overview begins with basic statistical concepts, random variables, their
distribution and density, moments and likelihood derivations.

, Learning objectives:

At the end of the chapter, students should be able to

• review notions of joint, marginal and conditional distributions.
• identify the conditional from a joint density.
• calculate analytically the marginal distribution by completing a density function.
• calculate the density after a change of variables.
• calculate of moments, using the definition or using the tower property.
• write down the likelihood for simple settings involving independent observa-

tions and other simple scenarios (truncation, censoring, non-identical, serial
dependence).

1.1 Random vectors

We begin with a characterization of random vectors and their marginal, conditional and
joint distributions. A good reference for this material is Chapter 3 of McNeil, Frey, and
Embrechts (2005), and Appendix A of Held and Bové (2020).

Definition 1.1 (Density and distribution function). LetX denote a d-dimensional vector
with real entries in Rd. The distribution function ofX is

FX(x) = Pr(X ≤ x) = Pr(X1 ≤ x1, . . . , Xd ≤ xd).

If the distribution ofX is absolutely continuous, we may write

FX(x) =
∫ xd

−∞
· · ·
∫ x1

−∞
fX(z1, . . . , zd)dz1 · · · dzd,

3



1 Introduction

where fX(x) is the joint density function. The density function can be obtained as the
derivative of the distribution function with respect to all of it’s arguments.

We use the same notation for the mass function in the discrete case where fX(x) = Pr(X1 =
x1, . . . , Xd = xd), where the integral is understood to mean a summation over all values
lower or equal tox in the support. In the discrete case, 0 ≤ fX(x) ≤ 1 is a probability and the
total probability over all points in the support sum to one, meaning

∑
x∈supp(X) fX(x) = 1.

1.1.1 Common distributions

Definition 1.2 (Gamma, chi-square and exponential distributions). A random variable
follows a gamma distribution with shape α > 0 and rate β > 0, denoted Y ∼ gamma(α, β),
if it’s density is

f(x) = βα

Γ(α)x
α−1 exp(−βx), x ∈ (0,∞),

where Γ(α) :=
∫∞

0 tα−1 exp(−t)dt is the gamma function.

If α = 1, the density simplifies to β exp(−βx) and we recover the exponential distribution,
denote expo(β). The case gamma(ν/2, 1/2) corresponds to the chi-square distribution χ2

ν .

The mean and variance of a gamma are E(Y ) = α/β and Va(Y ) = α/β2.

Definition 1.3 (Beta and uniform distribution). The beta distribution beta(α1, α2) is a
distribution supported on the unit interval [0, 1] with shape parameters α1 > 0 and α2 > 0.
It’s density is

f(x) = Γ(α1 + α2)
Γ(α1)Γ(α2)x

α1−1(1− x)1−α2 , x ∈ [0, 1].

The case beta(1, 1), also denoted unif(0, 1), corresponds to a standard uniform distribution.
The beta distribution Y ∼ beta(α, β) has expectation E(Y ) = α/(α + β) and variance
Va(Y ) = αβ/{(α+ β)2(α+ β + 1)}.

The beta distribution is commonly used to model proportions, and can be generalized to
the multivariate setting as follows.

Definition 1.4 (Dirichlet distribution). Let α ∈ (0,∞)d denote shape parameters and
consider a random vector of size d with positive components on the simplex

Sd−1 : {0 ≤ xj ≤ 1; j = 1, . . . , d : x1 + · · ·+ xd = 1}.

4



1.1 Random vectors

The density of a Dirichlet random vector, denoted Y ∼ Dirichlet(α), is

f(x) =
∏d−1

j=1 Γ(αj)
Γ(α1 + · · ·+ αd)

d∏
j=1

x
αj−1
j , x ∈ Sd−1

Due to the linear dependence, the dth component xd = 1−x1−· · ·−xd−1 is fully determined.

Definition 1.5 (Binomial distribution). The density of the binomial distribution, denoted
Y ∼ binom(n, p), is

f(x) = Pr(Y = x) =
(
m

x

)
px(1− p)m−x, x = 0, 1, . . . , n.

If n = 1,we recover the Bernoulli distribution with density f(x) = py(1−p)1−y.The binomial
distribution is closed under convolution, meaning that the number the number of successes
Y out of n Bernoulli trials is binomial

Definition 1.6 (Multinomial distribution). If there are more than two outcomes, say d, we
can generalize this mass function. Suppose that Y = (Y1, . . . , Yd) denotes the number of
realizations of each of the d outcomes based on n trials, so that 0 ≤ Yj ≤ n(j = 1, . . . , d)
and Y1 + · · · + Yd = n. The joint density of the multinomial vector Y ∼ multinom(p) with
probability vector p ∈ Sd−1 is

f(x) = n!∏d
j=1 xj !

d∏
j=1

p
xj

j , y/n ∈ Sd−1,

where x! = Γ(x+ 1) denotes the factorial function.

Definition 1.7 (Poisson distribution). If the probability of success p of a Bernoulli event is
small in the sense that np→ λ when the number of trials n increases, then the number of
success follows approximately a Poisson distribution with mass function

f(x) = Pr(Y = x) = exp(−λ)λy

Γ(y + 1) , x = 0, 1, 2, . . .

where Γ(·) denotes the gamma function. The parameter λ of the Poisson distribution is
both the expectation and the variance of the distribution, meaning E(Y ) = Va(Y ) = λ. We
denote the distribution as Y ∼ Poisson(λ).
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1 Introduction

Definition 1.8 (Gaussian distribution). Consider a d dimensional vector Y ∼
Gaussd(µ,Q−1) with density

f(x) = (2π)−d/2|Q|1/2 exp
{
−1

2(x− µ)⊤Q(x− µ)
}
, x ∈ Rd

The mean vectorµ is the vector of expectation of individual observations, whereasQ−1 ≡ Σ
is the d× d covariance matrix of Y andQ, the canonical parameter, is called the precision
matrix.

In the univariate case, the density of Gauss(µ, σ2) reduces to

f(x) = (2πσ2)−1/2 exp
{
−(x− µ)2

2σ2

}
, x ∈ R.

Although the terminology “normal” is frequent, we will stick to Gaussian in these course
notes.

Definition 1.9 (Student-t distribution). The name “Student” comes from the pseudonym
used by William Gosset in Gosset (1908), who introduced the asymptotic distribution of the
t-statistic. The density of the Student-t univariate distribution with ν degrees of freedom,
location µ and scale σ, denoted Student(µ, σ, ν), is

f(y;µ, σ, ν) =
Γ
(

ν+1
2

)
σΓ
(

ν
2
)√

νπ

(
1 + 1

ν

(
y − µ
σ

)2
)− ν+1

2

.

We also write Student+ to denote the truncated distribution on the positive half-line, [0,∞).

The density of the random vector Y ∼ Studentd(µ,Q−1, ν), with location vector µ, scale
matrixQ−1 and ν degrees of freedom is

f(x) =
Γ
(

ν+d
2

)
|Q|1/2

Γ
(

ν
2
)

(νπ)d/2

(
1 + (x− µ)⊤Q(x− µ)

ν

)− ν+d
2

, x ∈ Rd

The Student distribution is a location-scale family and an elliptical distribution. The
distribution has polynomial tails, is symmetric around µ and is unimodal. As ν → ∞,
the Student distribution converges to a normal distribution. It has heavier tails than the
normal distribution and only the first ν − 1 moments of the distribution exist. The case
ν = 1 is termed Cauchy distribution.
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1.1 Random vectors

Definition 1.10 (Weibull distribution). The distribution function of a Weibull random
variable with scale λ > 0 and shape α > 0 is

F (x;λ, α) = 1− exp {−(x/λ)α} , x ≥ 0,

while the corresponding density is

f(x;λ, α) = α

λα
xα−1 exp {−(x/λ)α} , x ≥ 0.

The quantile function, the inverse of the distribution function, isQ(p) = λ{− log(1− p)}1/α.
The Weibull distribution includes the exponential as special case when α = 1. The expected
value of Y ∼Weibull(λ, α) is E(Y ) = λΓ(1 + 1/α).

Definition 1.11 (Generalized Pareto distribution). The generalized Pareto distribution with
scale τ > 0 and shape ξ ∈ R has distribution and density functions equal to, respectively

F (x) =

1−
(
1 + ξ

τ x
)−1/ξ

+
ξ ̸= 0

1− exp(−x/τ) ξ = 0
, x ≥ 0;

f(x) =

τ−1
(
1 + ξ

τ x
)−1/ξ−1

+
ξ ̸= 0

τ−1 exp(−x/τ) ξ = 0
x ≥ 0;

with x+ = max{x, 0}. The case ξ = 0 corresponding to the exponential distribution with
rate τ−1. The distribution is used to model excesses over a large threshold u, as extreme
value theory dictates that, under broad conditions, Y − u | Y > u ∼ gen.Pareto(τu, ξ) as u
tends to the endpoint of the support of Y , regardless of the underlying distribution of Y .
See Example 2.6 for an application of this model.

Definition 1.12 (Location and scale distribution). A random variable Y is said to belong to
a location scale family with location parameter b and scale a > 0 if it is equal in distribution
to a location and scale transformation of a standard variable X with location zero and unit
scale, denoted Y=d aX + b and meaning,

Pr(Y ≤ y) = Pr(aX + b ≤ y).

If the density exists, then fY (y) = a−1fX{(y − b)/a}.

We can extend this definition to the multivariate setting for location vector b ∈ Rd and
positive definite scale matrix A, such that

Pr(Y ≤ y) = Pr(AX + b ≤ y).

7



1 Introduction

Definition 1.13 (Exponential family). A univariate distribution is an exponential family if
it’s density or mass function can be written for all θ ∈ Θ and y ∈ R as

f(y;θ) = exp
{

K∑
k=1

Qk(θ)tk(y) +D(θ) + h(y)
}
,

where functions Q1(·), . . . , QK(·) and D(·) depend only on θ and not on the data, and
conversely t1(·), . . . , tK(·) and h(·) do not depend on the vector of parameters θ.

The support of f must not depend on θ. The transformed parameters Qk(θ) (k = 1, . . . ,K)
are termed canonical parameters.

If we have an independent and identically distributed sample of observations y1, . . . , yn,
the log likelihood is thus of the form

ℓ(θ) =
K∑

k=1
Qk(θ)

n∑
i=1

tk(yi) + nD(θ),

where the collection
∑n

i=1 tk(yi) (k = 1, . . . ,K) are sufficient statistics.

We term conjugate family families of distribution on Θ with parametersχ, γ if their density
is proportional to

exp
{

K∑
k=1

Qk(θ)χk + γD(θ)
}

A log prior density with parameters η, ν1, . . . , νK that is proportional to

log p(θ) ∝ ηD(θ) +
K∑

k=1
Qk(θ)νk

is conjugate.

Exponential families play a crucial role due to the fact that the vector of sufficient statistics t
for a random sample allows for data compression. They feature prominently in generalized
linear models.

Example 1.1 (Gaussian as exponential family). We can rewrite the density of Gauss(µ, σ2) as

f(y;µ, σ2) = (2π)−1/2 exp
{
−y2 + 2yµ− µ2

2σ2 − log σ
}
,

so taking Q1(µ, σ2) = µ/σ2 and Q2(µ, σ2) = 1/σ2 and t1(y) = y and t2(y) = −y2/2. The
Gaussian-inverse-gamma distribution is a conjugate family.

8
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1.1 Random vectors

Example 1.2 (Binomial as exponential family). The binomial log density with y successes
out of n trials is proportional to

y log(p) + (n− y) log(1− p) = y log
(

p

1− p

)
+ n log(1− p)

with canonical parameter Q1(p) = logit(p) = log{p/(1− p)}with t1(y) = y. The canonical
link function for Bernoulli gives rise to logistic regression model. The binomial distribution
is thus an exponential family. The beta distribution is conjugate to the binomial.

Example 1.3 (Poisson as exponential family). Consider Y ∼ Poisson(µ) with mass function

f(y; p) = exp {−µ+ y logµ− log Γ(x+ 1)} .

and so the canonical parameter is Q1(p) = logµ with the gamma distribution as conjugate
family.

Proposition 1.1 (Change of variable formula). Consider an injective (one-to-one) differen-
tiable function g : Rd → Rd, with inverse g−1. Then, if Y = g(X),

Pr(Y ≤ y) = Pr{g(X) ≤ y} = Pr{X ≤ x = g−1(y)}.

Using the chain rule, we get that the density of Y may be written as

fY (y) = fX
{
g−1(y)

} ∣∣∣Jg−1(y)
∣∣∣ = fX(x) |Jg(x)|−1

where Jg(x) is the Jacobian matrix with (i, j)th element ∂[g(x)]i/∂xj .

Example 1.4 (Location-scale transformation of Gaussian vectors). Consider d independent
standard Gaussian variates Xj ∼ Gauss(0, 1) for j = 1, . . . , d, with joint density function

fX(x) = (2π)−d/2 exp
(
−x

⊤x

2

)
.

Consider the transformation Y = AX + b, with A an invertible matrix. The inverse
transformation is g−1(y) = A−1(y− b). The Jacobian Jg(x) is simply A, so the joint density
of Y is

fY (y) = (2π)−d/2|A|−1 exp
{
−(y − b)⊤A−⊤A−1(y − b)

2

}
.

Since |A−1| = |A|−1 and A−⊤A−1 = (AA⊤)−1, we recover that Y ∼ Gaussd(b,AA⊤).

9



1 Introduction

Example 1.5 (Inverse gamma distribution). Consider Y ∼ gamma(α, β) and the reciprocal
g(x) = 1/x. The Jacobian of the transformation is |g′(y)| = 1/y2. The density of the inverse
gamma inv.gamma(α, β) with shape α > 0 and scale β > 0 is thus

fY (y) = βα

Γ(α)y
−α−1 exp(−β/y), y > 0.

The expected value and variance are E(Y ) = β/(α − 1) for α > 1 and Va(Y ) = β2/{(α −
1)2(α− 2)} for α > 2.

Proposition 1.2 (Simulation of Gaussian vectors). Example 1.4 shows that the Gaussian
distribution is a location-scale family: if L = chol(Q), meaning Q = LL⊤ for some lower
triangular matrixL, then

L⊤(Y − µ) ∼ Gaussd(0d, Id).

Conversely, we can use the Cholesky root to sample multivariate Gaussian vectors by first
drawing d independent standard GaussiansZ = (Z1, . . . , Zd)⊤, then computing

Y ← L−1Z + µ.

Example 1.6 (Dirichlet vectors from Gamma random variables). ConsiderX a d vector of
independent gamma random variables gamma(αi, 1). Then, if Z = X1 + · · ·+Xd, we have
(X1, . . . , Xd−1)/Z ∼ Dirichlet(α) and Z ∼ gamma(1, α1 + · · ·+ αd).

Proof. The joint density forX is

fX(x) =
d∏

j=1

x
αj−1
j exp(−xj)

Γ(αj) .

Let g(·) be a d place function with ith element gi(x) = xj/(x1 + · · ·xd) for j = 1, . . . , d−1 and
gd = x1 + · · ·xd and write the transformation as g(X) = (Y ⊤, Z)⊤ with y = (y1, . . . , yd−1)⊤

and the redundant coordinate yd = 1− y1 − · · · yd−1 to simplify the notation. The inverse
transformation yields xj = zyj for j = 1, . . . , d − 1 and xd = z(1 − y1 − · · · − yd−1). The
Jabobian matrix is

Jg−1(y, z) =
(
zId−1 y
0⊤

d−1 yd

)
.

10



1.1 Random vectors

The absolute value of the determinant is then zd−1yd. Using the change of variable formula,
the joint density is

fY ,Z(y, z) =
d∏

j=1

(zyj)αj−1 exp(−zyj)
Γ(αj) × zd−1yd

= zα1+···+αd−1 exp(−z)
d∏

j=1

y
αj−1
j

Γ(αj) .

Since the density factorizes, we find the result upon multiplying and dividing by the nor-
malizing constant Γ(α1 + · · ·+ αd), which yields both the Dirichlet for Y and a gamma for
Z.

1.1.2 Marginal and conditional distributions

Definition 1.14 (Marginal distribution). The marginal distribution of a subvectorX1:k =
(X1, . . . , Xk)⊤, without loss of generality consisting of the k first components ofX (1 ≤ k <
d) is

FX1:k(x1:k) = Pr(X1:k ≤ x1:k) = FX(x1, . . . , xk,∞, . . . ,∞).

and thus the marginal distribution of component j, Fj(xj), is obtained by evaluating all
components but the jth at∞.

We likewise obtain the marginal density

f1:k(x1:k) = ∂kF1:k(x1:k)
∂x1 · · · ∂xk

,

or through integration from the joint density as

f1:k(x1:k) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(x1, . . . , xk, zk+1, . . . , zd)dzk+1 · · · dzd.

Definition 1.15 (Conditional distribution). Let (X⊤,Y ⊤)⊤ be a d-dimensional random
vector with joint density or mass function fX,Y (x,y) and marginal distribution fX(x). The
conditional distribution function of Y givenX = x, is

fY |X(y;x) = fX,Y (x,y)
fX(x)

for any value of x in the support ofX, i.e., the set of values with non-zero density or mass,
meaning fX(x) > 0; it is undefined otherwise.

11



1 Introduction

Theorem 1.1 (Bayes’ theorem). Denote by fX and fY denotes the marginal density of X
and Y , respectively, fX|Y the conditional of X given Y and fX,Y the joint density. Bayes’
theorem states that for y in the support of Y ,

fX|Y (x;y) =
fY |X(y;x)fX(x)

fY (y)

which follows since fX|Y (x;y)fY (y) = fX,Y (x,y) and likewise fY |X(y;x)fX(x) =
fX,Y (x,y).

In the case of a discrete random variableX with support X , the denominator can be evaluated
using the law of total probability, and

Pr(X = x | Y = y) = Pr(Y = y | X = x) Pr(X = x)
Pr(Y = y)

= Pr(Y = y | X = x) Pr(X = x)∑
x∈X Pr(Y = y | X = x) Pr(X = x) .

Example 1.7 (Covid rapid tests). Back in January 2021, the Quebec government was debat-
ing whether or not to distribute antigen rapid test, with strong reluctance from authorities
given the paucity of available resources and the poor sensitivity.

A Swiss study analyse the efficiency of rapid antigen tests, comparing them to repeated
polymerase chain reaction (PCR) test output, taken as benchmark (Jegerlehner et al. 2021).
The results are presented in Table 1.1

Table 1.1: Confusion matrix of Covid test results for PCR tests versus rapid antigen tests,
from Jegerlehner et al. (2021).

PCR + PCR−

rapid + 92 2
rapid− 49 1319
total 141 1321

Estimated seropositivity at the end of January 2021 according to projections of the Institute
for Health Metrics and Evaluation (IHME) of 8.18M out of 38M inhabitants (Mathieu et al.
2020), a prevalence of 21.4%. Assuming the latter holds uniformly over the country, what is
the probability of having Covid if I get a negative result to a rapid test?

12
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1.1 Random vectors

Let R− (R+) denote a negative (positive) rapid test result and C+ (C−) Covid positivity
(negativity). Bayes’ formula gives

Pr(C+ | R−) = Pr(R− | C+) Pr(C+)
Pr(R− | C+) Pr(C+) + Pr(R− | C−) Pr(C−)

= 49/141 · 0.214
49/141 · 0.214 + 1319/1321 · 0.786

so there is a small, but non-negligible probability of 8.66% that the rapid test result is
misleading. Jegerlehner et al. (2021) indeed found that the sensitivity was 65.3% among
symptomatic individuals, but dropped down to 44% for asymptomatic cases. This may
have fueled government experts skepticism.

Bayes’ rule is central to updating beliefs: given initial beliefs (priors) and information in the
form of data, we update our beliefs iteratively in light of new information.

Example 1.8 (Conditional and marginal for contingency table). Consider a bivariate distri-
bution for (Y1, Y2) supported on {1, 2, 3} × {1, 2}, whose joint probability mass function is
given in Table 1.2

Table 1.2: Bivariate mass function with probability of each outcome for (Y1, Y2).
Y1 = 1 Y1 = 2 Y1 = 3 total

Y2 = 1 0.20 0.3 0.10 0.6
Y2 = 2 0.15 0.2 0.05 0.4
total 0.35 0.5 0.15 1.0

The marginal distribution of Y1 is obtain by looking at the total probability for each column,
as

Pr(Y1 = i) = Pr(Y1 = i, Y2 = 1) + Pr(Y1 = i, Y2 = 2).
This gives Pr(Y1 = 1) = 0.35, Pr(Y1 = 2) = 0.5 and Pr(Y1 = 3) = 0.15. Similarly, we find that
Pr(Y2 = 1) = 0.6 and Pr(Y2 = 2) = 0.4 for the other random variable.

The conditional distribution

Pr(Y2 = i | Y1 = 2) = Pr(Y1 = 2, Y2 = i)
Pr(Y1 = 2) ,

so Pr(Y2 = 1 | Y1 = 2) = 0.3/0.5 = 0.6 and Pr(Y2 = 2 | Y1 = 2) = 0.4. We can condition on
more complicated events, for example

Pr(Y2 = i | Y1 ≥ 2) = Pr(Y1 = 2, Y2 = i) + Pr(Y1 = 3, Y2 = i)
Pr(Y1 = 2) + Pr(Y1 = 3) .

13



1 Introduction

Example 1.9 (Margins and conditional distributions of multinomial vectors). Consider
Y = (Y1, Y2, n − Y1 − Y2) a trinomial vector giving the number of observations in group
j ∈ {1, 2, 3}withn trials and probabilities of each component respectively (p1, p2, 1−p1−p2).
The marginal distribution of Y2 is obtained by summing over all possible values of Y1,which
ranges from 0 to n, so

f(y2) = n!py2
2

y2!

n∑
y1=1

py1
1 (1− p1 − p2)n−y1−y2

y1!(n− y1 − y2)!

A useful trick is to complete the expression on the right so that it sum (in the discrete case)
or integrate (in the continuous case) to 1. If we multiply and divide by (1−p2)n−y2/(n−y2)!,
we get p∗

1 = p1/(1− p2) and

f(y2) = n!py2
2

(1− p2)n−y2y2!(n− y2)!

n∑
y1=1

(
n− y2
y1

)
p⋆y1

1 (1− p⋆
1)n−y2

= n!py2
2

(1− p2)n−y2y2!(n− y2)!

is binomial with n trials and probability of success p2. We can generalize this argument to
multinomials of arbitrary dimensions.

The conditional density of Y2 | Y1 = y1 is, up to proportionality,

fY2|Y1(y2; y1) ∝ py2
2 (1− p1 − p2)n−y1−y2

y2!(n− y1 − y2)!

If we write p⋆
2 = p2/(1− p1),we find that Y2 | Y1 ∼ binom(n− y1, p

⋆
2). Indeed, we can see that

fY (y) = fY2|Y1(y2; y1)fY1(y1)

=
(
n− y1
y2

)(
p2

1− p1

)y2 (1− p1 − p2
1− p1

)n−y1−y2

·
(
n

y1

)
py1

1 (1− p1)n−y1 .

Example 1.10 (Gaussian-gamma model). Consider the bivariate density function of the
pair (X,Y ), where for λ > 0,

f(x, y) = λy1/2

(2π)1/2 exp
{
−y(x2 + λ)

}
, x ∈ R, y > 0.

14



1.1 Random vectors

We see that the conditional distribution of X | Y = y ∼ Gauss(0, y−1). The marginals are

f(y) =
∫ ∞

−∞

λy1/2

(2π)1/2 exp
{
−y(x2 + λ)

}
dx

= λ exp(−λy)

so marginally Y follows an exponential distribution with rate λ. The marginal of X can be
obtained by noting that the joint distribution, as a function of y, is proportional to the kernel
of a gamma distribution with shape 3/2 and ratex2+λ,withY | X = x ∼ gamma(3/2, x2+λ).
If we pull out the normalizing constant, we find

f(x) =
∫ ∞

0

λy1/2

(2π)1/2 exp
{
−y(x2 + λ)

}
dy

= λΓ(3/2)
(2π)1/2(x2 + λ)3/2

∫ ∞

0
fY |X(y | x)dy

= λ

23/2(x2 + λ)3/2

since Γ(a + 1) = aΓ(a) for a > 0 and Γ(1/2) =
√
π. We conclude that marginally X ∼

Student(0, λ, 2), a Student distribution with scale λ and two degrees of freedom. The Student-
t can be viewed as a scale mixture of Gaussian, where the variance is inverse gamma
distributed.

Example 1.11 (Bivariate geometric distribution of Marshall and Olkin). Consider a couple
(U1, U2) of Bernoulli random variables whose mass function is Pr(U1 = i, U2 = j = pij for
(i, j) ∈ {0, 1}2. The marginal distributions are, by the law of total probability

Pr(U1 = i) = Pr(U1 = i, U2 = 0) + Pr(U1 = i, U2 = 1) = pi0 + pi1 = pi•

Pr(U2 = j) = Pr(U1 = 0, U2 = j) + Pr(U1 = 1, U2 = j) = p0j + p1j = p•j

We consider a joint geometric distribution (Marshall and Olkin (1985), Section 6) and the
pair (Y1, Y2) giving the number of zeros for (U1, U2) before the variable equals one for the
first time. The bivariate mass function is (Nadarajah 2008)

Pr(Y1 = k, Y2 = l) =


pk

00p01p
l−k−1
0• p1• 0 ≤ k < l;

pk
00p11 k = l;
pl

00p10p
k−l−1
•0 p•1 0 ≤ l < k.

We can compute the joint survival function Pr(Y1 ≥ k, Y2 ≥ l) by using properties of the
partial sum of geometric series, using the fact

∑n
i=0 p

i = pn/(1 − p). Thus, for the case

15



1 Introduction

0 ≤ k < l, we have

Pr(Y1 ≥ k, Y2 ≥ l) =
∞∑

i=k

∞∑
j=l

Pr(Y1 = i, Y2 = j)

=
∞∑

i=k

pi
00p01p

−i−1
0• p1•

∞∑
j=l

pj
0•

=
∞∑

i=k

pi
00p01p

−i−1
0• p1•

pl
0•

1− p0•

= pl−1
0• p01

∞∑
i=k

(
p00
p0•

)i

= pk
00p

l−k
0•

since p0• + p1• = 1. We can proceed similarly with other subcases to find

Pr(Y1 ≥ k, Y2 ≥ l) =


pk

00p
l−k
0• 0 ≤ k < l

pk
00 0 ≤ k = l

pl
00p

k−l
•0 0 ≤ l < k

and we can obtain the marginal survival function by considering Pr(Y1 ≥ 0, Y2 ≥ l), etc.,
which yields Pr(Y2 ≥ l) = pl

0•, whence

Pr(Y2 = l) = Pr(Y2 ≥ l)− Pr(Y2 ≥ l + 1)
= pl

0•(1− p0•)
= pl

0•p1•

and so both margins are geometric.

Definition 1.16 (Independence). We say that Y andX are independent if their joint distri-
bution function factorizes as

FX,Y (x,y) = FX(x)FY (y)

for any value of x, y. It follows from the definition of joint density that, should the latter
exists, it also factorizes as

fX,Y (x,y) = fX(x)fY (y).

If two subvectorsX and Y are independent, then the conditional density fY |X(y;x) equals
the marginal fY (y).

16



1.2 Expectations

Proposition 1.3 (Gaussian vectors, independence and conditional independence proper-
ties).

A unique property of the multivariate normal distribution is the link between independence
and the covariance matrix: components Yi and Yj are independent if and only if the (i, j)
off-diagonal entry of the covariance matrixQ−1 is zero.

If qij = 0, then Yi and Yj are conditionally independent given the other components.

1.2 Expectations

The expected value of some function of a random vector g(Y ),where Y has density fY , is

E{g(Y )} =
∫
g(y)fY (y)dy

and can be understood as a weighted integral of g with weight fY ; the latter does not exist
unless the integral is finite.

Taking g(y) = y yields the expected value of the random variable E(Y ). We define the
covariance matrix of Y as

Va(Y ) = E
[
{Y − E(Y )} {Y − E(Y )}⊤

]
,

which reduces in the unidimensional setting to

Va(Y ) = E{Y − E(Y )}2 = E(Y 2)− E(Y )2.

More generally, the k ×m covariance matrix between two random vectors Y of size k and
X of size m is

Co(Y ,X) = E
[
{Y − E(Y )} {X − E(X)}⊤

]
,

If Y is d-dimensional and A is p× d and b is a p vector, then

E(AY + b) = AE(Y ) + b,
Va(AY + b) = AVa(Y )A⊤.

17
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The expected value (theoretical mean) of the vector Y is thus calculated componentwise
using each marginal density, i.e.,

E(Y ) = µ =
(
E(Y1) · · · E(Yn)

)⊤

whereas the second moment of Y is encoded in the n× n covariance matrix

Va(Y ) = Σ =


Va(Y1) Co(Y1, Y2) · · · Co(Y1, Yn)

Co(Y2, Y1) Va(Y2) . . .
...

...
. . . . . .

...
Co(Yn, Y1) Co(Yn, Y2) · · · Va(Yn)


The ith diagonal element of Σ, σii = σ2

i , is the variance of Yi, whereas the off-diagonal
entries σij = σji (i ̸= j) are the covariance of pairwise entries, with

Co(Yi, Yj) =
∫
R2

(yi − µi)(yj − µj)fYi,Yj (yi, yj)dyidyj

= EYi,Yj

[
{Yi − EYi(Yi)}

{
Yj − EYj (Yj)

}]
The covariance matrix Σ is thus symmetric. It is customary to normalize the pairwise
dependence so they do not depend on the component variance. The linear correlation
between Yi and Yj is

ρij = Cor(Yi, Yj) = Co(Yi, Yj)√
Va(Yi)

√
Va(Yj)

= σij

σiσj
.

Proposition 1.4 (Law of iterated expectation and variance). LetZ and Y be random vectors.
The expected value of Y is

EY (Y ) = EZ
{

EY |Z(Y )
}
.

The tower property gives a law of iterated variance

VaY (Y ) = EZ
{

VaY |Z(Y )
}

+ VaZ
{

EY |Z(Y )
}
.

In a hierarchical model, the variance of the unconditional distribution is thus necessarily
larger than that of the conditional distribution.

18



1.2 Expectations

Example 1.12. Let Y | X ∼ Gauss(X,σ2) and X ∼ Gauss(0, τ2). The unconditional mean
and variance of Y are

E(Y ) = EX{EY |X(Y )} = EX(X) = 0

and

Va(Y ) = EX{VaY |X(Y )}+ VaX{EY |X(Y )}
= EX(σ2) + VaX(X)
= σ2 + τ2

Example 1.13 (Negative binomial as a Poisson mixture).

One restriction of the Poisson model is that the restriction on its moments is often unrealis-
tic. The most frequent problem encountered is that of overdispersion, meaning that the
variability in the counts is larger than that implied by a Poisson distribution.

One common framework for handling overdispersion is to have Y | Λ = λ ∼ Poisson(λ),
where the mean of the Poisson distribution is itself a positive random variable with mean µ,
if Λ follows a gamma distribution with shape kµ and rate k > 0, Λ ∼ gamma(kµ, k). Since
the joint density of Y and Λ can be written

p(y, λ) = p(y | λ)p(λ)

= λy exp(−λ)
Γ(y + 1)

kkµλkµ−1 exp(−kλ)
Γ(kµ)

so the conditional distribution of Λ | Y = y can be found by considering only terms that are
function of λ, whence

f(λ | Y = y) λ∝ λy+kµ−1 exp(−(k + 1)λ)

and the conditional distribution is Λ | Y = y ∼ gamma(kµ+ y, k + 1).

We can isolate the marginal density

p(y) = p(y, λ)
p(λ | y)

=
λy exp(−λ)

Γ(y+1)
kkµλkµ−1 exp(−kλ)

Γ(kµ)
(k+1)kµ+yλkµ+y−1 exp{−(k+1)λ}

Γ(kµ+y)

= Γ(kµ+ y)
Γ(kµ)Γ(y + 1)k

kµ(k + 1)−kµ−y

= Γ(kµ+ y)
Γ(kµ)Γ(y + 1)

(
1− 1

k + 1

)kµ ( 1
k + 1

)y
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1 Introduction

and this is the density of a negative binomial distribution with probability of success
1/(k + 1). We can thus view the negative binomial as a Poisson mean mixture.

By the laws of iterated expectation and iterative variance,

E(Y ) = EΛ{E(Y | Λ}
= E(Λ) = µ

Va(Y ) = EΛ{Va(Y | Λ)}+ VaΛ{E(Y | Λ)}
= E(Λ) + Va(Λ)
= µ+ µ/k.

The marginal distribution of Y, unconditionally, has a variance which exceeds its mean, as

E(Y ) = µ, Va(Y ) = µ(1 + 1/k).

In a negative binomial regression model, the term k is a dispersion parameter, which is
fixed for all observations, whereas µ = exp(βX) is a function of covariates X. As k → ∞,
the distribution of Λ degenerates to a constant at µ and we recover the Poisson model.

Proposition 1.5 (Partitioning of covariance matrices). Let Σ be a d × d positive definite
covariance matrix. We define the precision matrix Q = Σ−1. Suppose the matrices are
partitioned into blocks,

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
and Σ−1 = Q =

(
Q11 Q12
Q21 Q22

)

with dim(Σ11) = k × k and dim(Σ22) = (d− k)× (d− k). The following relationships hold:

• Σ12Σ−1
22 = −Q−1

11 Q12
• Σ11 −Σ12Σ−1

22 Σ21 = Q−1
11

• det(Σ) = det(Σ22) det(Σ1|2) where Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21.

Proof. By writing explicitly the relationship QΣ = In, we get

Q11Σ11 + Q12Σ21 = Ik

Q21Σ12 + Q22Σ22 = Ip−k

Q21Σ11 + Q22Σ21 = Op−k,k

Q11Σ12 + Q12Σ22 = Ok,p−k.

Recall that we can only invert matrices whose double indices are identical and that both
Q and Σ are symmetric, so Σ12 = Σ⊤

21. One easily obtains Σ12Σ−1
22 = −Q−1

11 Q12 making
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1.2 Expectations

use of the last equation. Then, Σ11 −Σ12Σ−1
22 Σ21 = Q−1

11 by substituting Q12 from the last
equation into the first.

For the last result, take B :=
(

I −Σ12Σ−1
22

O I

)
, noting that det(B) = det

(
B⊤) = 1. Comput-

ing the quadratic form BΣB⊤, we get det(Σ) = det(Σ22) det(Σ1|2) where Σ1|2 = Σ11 −
Σ12Σ−1

22 Σ21.

Proposition 1.6 (Conditional distribution of Gaussian vectors). Let Y ∼ Gaussd(µ,Σ) and
consider the partition

Y =
(
Y 1
Y 2

)
, µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

where Y 1 is a k × 1 and Y 2 is a (d − k) × 1 vector for some 1 ≤ k < d. Then, we have the
conditional distribution

Y 1 | Y 2 = y2 ∼ Gaussk(µ1 + Σ12Σ−1
22 (y2 − µ2),Σ1|2)

∼ Gaussk(µ1 −Q−1
11 Q12(y2 − µ2),Q−1

11 )

and Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21 is the Schur complement of Σ22.

Proof. It is easier to obtain this result by expressing the density of the Gaussian distribution
in terms of the precision matrix Q =

(
Q11 Q12
Q21 Q22

)
rather than in terms of the covariance

matrix Σ.

Consider the partitionY = (Y 1,Y 2).The log conditional density log f(y1 | y2) as a function
of y1 is, up to proportionality,

− 1
2 (y1 − µ1)⊤Q11 (y1 − µ1)− (y1 − µ1)⊤Q12 (y2 − µ2)

− 1
2y

⊤
1 Q11y1 − y⊤

1 {Q11µ1 −Q12 (y2 − µ2)}

upon completing the square in y1. This integrand is proportional to the density of a Gaus-
sian distribution (and hence must be Gaussian) with precision matrixQ11, while the mean
vector and covariance matrix are

µ1|2 = µ1 −Q−1
11 Q12 (y2 − µ2)

= µ1 + Σ12Σ−1
22 (y2 − µ2)

Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21.

Note that Σ1|2 = Q−1
11 corresponds to the Schur complement of Σ22.
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Remark that the above is sufficient (why?) The quadratic form appearing in the exponential
term of the density of a Gaussian vector with mean ν and precision Ψ is

(x− ν)⊤Ψ (x− ν) = x⊤Ψx− x⊤Ψν − ν⊤Ψx+ ν⊤Ψν.

uniquely determines the parameters of the Gaussian distribution. The quadratic term
in x forms a sandwich around the precision matrix, while the linear term identifies the
location vector. Since any (conditional) density function integrates to one, there is a unique
normalizing constant and the latter need not be computed.

1.3 Likelihood

Definition 1.17 (Likelihood). The likelihood L(θ) is a function of the parameter vector θ
that gives the probability (or density) of observing a sample under a postulated distribution,
treating the observations as fixed,

L(θ;y) = f(y;θ),

where f(y;θ) denotes the joint density or mass function of the n-vector containing the
observations.

If the latter are independent, the joint density factorizes as the product of the density of
individual observations, and the likelihood becomes

L(θ;y) =
n∏

i=1
fi(yi;θ) = f1(y1;θ)× · · · × fn(yn;θ).

The corresponding log likelihood function for independent and identically distributions
observations is

ℓ(θ;y) =
n∑

i=1
log f(yi;θ)

Definition 1.18 (Score and information matrix). Let ℓ(θ), θ ∈ Θ ⊆ Rp, be the log likelihood
function. The gradient of the log likelihood U(θ) = ∂ℓ(θ)/∂θ is termed score function.

The observed information matrix is the hessian of the negative log likelihood

j(θ;y) = −∂
2ℓ(θ;y)
∂θ∂θ⊤ ,
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1.3 Likelihood

evaluated at the maximum likelihood estimate θ̂, so j(θ̂). Under regularity conditions, the
expected information, also called Fisher information matrix, is

i(θ) = E
{
U(θ;Y )U(θ;Y )⊤

}
= E {j(θ;Y )}

Both the Fisher (or expected) and the observed information matrices are symmetric and
encode the curvature of the log likelihood and provide information about the variability of
θ̂.

The information of an independent and identically distributed sample of size n is n times
that of a single observation, so information accumulates at a linear rate.

Example 1.14 (Likelihood for right-censoring). Consider a survival analysis problem for
independent time-to-event data subject to (noninformative) random right-censoring. We
assume failure times Yi(i = 1, . . . , n) are drawn from a common distribution F (·;θ) sup-
ported on (0,∞) and complemented with an independent censoring indicator Ci ∈ {0, 1},
with 0 indicating right-censoring andCi = 1 observed failure time. If individual observation
i has not experienced the event at the end of the collection period, then the likelihood
contribution Pr(Y > y) = 1− F (y;θ), where yi is the maximum time observed for Yi.

We write the log likelihood in terms of the right-censoring binary indicator as

ℓ(θ) =
∑

i:ci=0
log{1− F (yi;θ)}+

∑
i:ci=1

log f(yi;θ)

Suppose for simplicity that Yi ∼ expo(λ) and let m = c1 + · · · + cn denote the number of
observed failure times. Then, the log likelihood and the Fisher information are

ℓ(λ) = λ
n∑

i=1
yi + log λm

i(λ) = m/λ2

and the right-censored observations for the exponential model do not contribute to the
information.

Example 1.15 (Information for the Gaussian distribution). Consider Y ∼ Gauss(µ, τ−1),
parametrized in terms of precision τ. The likelihood contribution for an n sample is, up to
proportionality,

ℓ(µ, τ) ∝ n

2 log(τ)− τ

2

n∑
i=1

(Y 2
i − 2µYi + µ2)
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The observed and Fisher information matrices are

j(µ, τ) =
(

nτ −
∑n

i=1(Yi − µ)
−
∑n

i=1(Yi − µ) n
2τ2

)
,

i(µ, τ) = n

(
τ 0
0 1

2τ2

)

Since E(Yi) = µ, the expected value of the off-diagonal entries of the Fisher information
matrix are zero.

Example 1.16 (Likelihood, score and information of the Weibull distribution). The log
likelihood for a simple random sample whose realizations are y1, . . . , yn of size n from a
Weibull(λ, α) model is

ℓ(λ, α) = n log(α)− nα log(λ) + (α− 1)
n∑

i=1
log yi − λ−α

n∑
i=1

yα
i .

The score, which is the gradient of the log likelihood, is easily obtained by differentiation1

U(λ, α) =
(

∂ℓ(λ,α)
∂λ

∂ℓ(λ,α)
∂α

)

=
(

−nα
λ + αλ−α−1∑n

i=1 y
α
i

n
α +

∑n
i=1 log(yi/λ)−

∑n
i=1

(yi
λ

)α × log
(yi

λ

)
.

)

and the observed information is the 2× 2 matrix-valued function

j(λ, α) = −
(

∂2ℓ(λ,α)
∂λ2

∂2ℓ(λ,α)
∂λ∂α

∂2ℓ(λ,α)
∂α∂λ

∂2ℓ(λ,α)
∂α2

)
=
(
jλ,λ jλ,α

jλ,α jα,α

)

whose entries are

jλ,λ = λ−2
{
−nα+ α(α+ 1)

n∑
i=1

(yi/λ)α

}

jλ,α = λ−1
n∑

i=1
[1− (yi/λ)α{1 + α log(yi/λ)}]

jα,α = nα−2 +
n∑

i=1
(yi/λ)α{log(yi/λ)}2

1Using for example a symbolic calculator.
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1.3 Likelihood

To compute the expected information matrix, we need to compute expectation of
E{(Y/λ)α}, E[(Y/λ)α log{(Y/λ)α}] and E[(Y/λ)α log2{(Y/λ)α}]. By definition,

E {(Y/λ)α} =
∫ ∞

0
(x/λ)α α

λα
xα−1 exp {−(x/λ)α} dx

=
∫ ∞

0
s exp(−s)ds = 1

making a change of variable S = (Y/λ)α ∼ Exp(1). The two other integrals are tabulated
in Gradshteyn and Ryzhik (2014), and are equal to 1− γ and γ2 − 2γ + π2/6, respectively,
where γ ≈ 0.577 is the Euler–Mascherroni constant. The expected information matrix of
the Weibull distribution has entries

iλ,λ = nλ−2α {(α+ 1)− 1}
iλ,α = −nλ−1(1− γ)
iα,α = nα−2(1 + γ2 − 2γ + π2/6)

We can check this result numerically by comparing the expected value of the observed
information matrix

exp_info_weib <- function(scale, shape){
i11 <- shape*((shape + 1) - 1)/(scaleˆ2)
i12 <- -(1+digamma(1))/scale
i22 <- (1+digamma(1)ˆ2+2*digamma(1)+piˆ2/6)/(shapeˆ2)
matrix(c(i11, i12, i12, i22), nrow = 2, ncol = 2)

}
obs_info_weib <- function(y, scale, shape){

ys <- y/scale # scale family
o11 <- shape*((shape + 1)*mean(ysˆshape)-1)/scaleˆ2
o12 <- (1-mean(ysˆshape*(1+shape*log(ys))))/scale
o22 <- 1/(shape*shape) + mean(ysˆshape*(log(ys))ˆ2)
matrix(c(o11, o12, o12, o22), nrow = 2, ncol = 2)

}
nll_weib <- function(pars, y){

-sum(dweibull(x = y, scale = pars[1], shape = pars[2], log = TRUE))}
# Fix parameters
scale <- rexp(n = 1, rate = 0.5)
shape <- rexp(n = 1)
nobs <- 1000L
dat <- rweibull(n = nobs, scale = scale, shape = shape)
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# Compare Hessian with numerical differentiation
o_info <- obs_info_weib(dat, scale = scale, shape = shape)
all.equal(

numDeriv::hessian(nll_weib, x = c(scale, shape), y = dat) / nobs,
o_info)

# Compute approximation to Fisher information
exp_info_sim <- replicate(n = 1000, expr = {

obs_info_weib(y = rweibull(n = nobs,
shape = shape,
scale = scale),

scale = scale, shape = shape)})
all.equal(apply(exp_info_sim, 1:2, mean),

exp_info_weib(scale, shape))

The joint density function only factorizes for independent data, but an alternative sequen-
tial decomposition can be helpful. For example, we can write the joint density f(y1, . . . , yn)
using the factorization

f(y) = f(y1)× f(y2 | y1)× . . . f(yn | y1, . . . , yn)

in terms of conditional. Such a decomposition is particularly useful in the context of
time series, where data are ordered from time 1 until time n and models typically relate
observation yn to it’s past.

Example 1.17 (First-order autoregressive process). Consider an AR(1) model of the form

Yt = µ+ ϕ(Yt−1 − µ) + εt,

where ϕ is the lag-one correlation, µ the global mean and εt is an iid innovation with mean
zero and variance σ2. If |ϕ| < 1, the process is stationary.

The Markov property states that the current realization depends on the past,
Yt | Y1, . . . , Yt−1, only through the most recent value Yt−1. The log likelihood thus
becomes

ℓ(θ) = log f(y1) +
n∑

i=2
log f(yi | yi−1).

The AR(1) stationary process Yt,marginally, has mean µ and unconditional variance σ2/(1−
ϕ2). If we use the recursive definition, we find

Yt = µ(1− ϕ) + εt + ϕ{µ+ ϕ(Yt−2 − µ) + εt−1} = µ+
∞∑

j=0
ϕjεt−j
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1.3 Likelihood

whence E(Yt) = µ and

Va(Yt) = Va

 ∞∑
j=0

ϕjεt−j

 =
∞∑

j=0
ϕ2jVa(εt−j) = σ2

(1− ϕ2)

where the geometric series converges if ϕ < 1 and diverges otherwise.

If innovations {εt} are Gaussian, we have

Yt | Yt−1 = yt−1 ∼ Gauss{µ(1− ϕ) + ϕyt−1, σ
2}, t > 1;

The likelihood can then be written as

ℓ(µ, ϕ, σ2) = −n2 log(2π)− n log σ + 1
2 log(1− ϕ2)

− (1− ϕ2)(y1 − µ)2

2σ2 −
n∑

i=2

(yt − µ(1− ϕ)− ϕyt−1)2

2σ2

, Summary

• Many families of distributions are closed under conditioning and marginaliza-
tion (elliptical distribution such as Gaussian or Student, Dirichlet or categorical).

• Location-scale families can be standardized.
• Distributions are characterized by their moments. Statistical models typically

specify a parametric form for the latter, notably regression models.
• Hierarchical models specify a joint distribution through marginal and condition-

als.
• The law of iterated expectation and variance (tower property) can be used to

retrieve the first two moments more easily.
• Families of distribution can be identified from their kernel (density or mass

function) and support, up to normalizing constants. It suffices to identify the
parameters of the distribution to retrieve the model.

• Marginalization from a joint density involves integration. We can often rewrite
the integral in terms of an unnormalized density, and use knowledge of the
marginalization constant.

• The likelihood depends on the distribution of the data. It encodes the informa-
tion about the data.

• The score (gradient vector of the log likelihood) can be set to zero to find the
maximum likelihood estimator in regular models.

• The curvature of the log likelihood (Hessian matrix) gives an idea of the infor-
mation. The observed information is the sample version, the expected or Fisher
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1 Introduction

information obtained by replacing data observations with their expectation.
• In independent samples, the information grows linearly with the sample size

and is O(n). For identically distributed samples, we can compute the Fisher
information for a single observation.
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2 Bayesics

The Bayesian paradigm is an inferential framework that is widely used in data science.
It builds on likelihood-based inference, offers a natural framework for prediction and
for uncertainty quantification. The interpretation is more natural than that of classical
(i.e., frequentist) paradigm, and it is more easy to generalized models to complex settings,
notably through hierarchical constructions. The main source of controversy is the role of
the prior distribution, which allows one to incorporate subject-matter expertise but leads
to different inferences being drawn by different practitioners; this subjectivity is not to the
taste of many and has been the subject of many controversies.

The Bayesian paradigm includes multiples notions that are not covered in undergraduate
introductory courses. The purpose of this chapter is to introduce these concepts and put
them in perspective; the reader is assumed to be familiar with basics of likelihood-based
inference. We begin with a discussion of the notion of probability, then define priors,
posterior distributions, marginal likelihood and posterior predictive distributions. We focus
on the interpretation of posterior distributions and explain how to summarize the posterior,
leading leading to definitions of high posterior density region, credible intervals, posterior
mode for cases where we either have a (correlated) sample from the posterior, or else have
access to the whole distribution. Several notions, including sequentiality, prior elicitation
and estimation of the marginal likelihood, are mentioned in passing. A brief discussion of
Bayesian hypothesis testing (and alternatives) is presented.

, Learning objectives:

At the end of the chapter, students should be able to

• define key notions (prior, marginal likelihood, Bayes factor, credible intervals,
etc.) of Bayesian inference.

• distinguish between questions that relate to the posterior distribution versus the
posterior predictive.

• calculate and compute numerically summaries of posterior distributions (point
estimators and credible intervals) given a posterior sample.

• explain some of the conceptual differences between frequentist and Bayesian
inference.
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2 Bayesics

2.1 Probability and frequency

In classical (frequentist) parametric statistic, we treat observations Y as realizations of a
distribution whose parameters θ are unknown. All of the information about parameters is
encoded by the likelihood function.

The interpretation of probability in the classical statistic is in terms of long run frequency,
which is why we term this approach frequentist statistic. Think of a fair die: when we
state that values {1, . . . , 6} are equiprobable, we mean that repeatedly tossing the die
should result, in large sample, in each outcome being realized roughly 1/6 of the time (the
symmetry of the object also implies that each facet should be equally likely to lie face up).
This interpretation also carries over to confidence intervals: a (1− α) confidence interval
either contains the true parameter value or it doesn’t, so the probability level (1 − α) is
only the long-run proportion of intervals created by the procedure that should contain the
true fixed value, not the probability that a single interval contains the true value. This is
counter-intuitive to most.

In practice, the true value of the parameter θ vector is unknown to the practitioner, thus
uncertain: Bayesians would argue that we should treat the latter as a random quantity rather
than a fixed constant. Since different people may have different knowledge about these
potential values, the prior knowledge is a form of subjective probability. For example, if
you play cards, one person may have recorded the previous cards that were played, whereas
other may not. They thus assign different probability of certain cards being played. In
Bayesian inference, we consider θ as random variables to reflect our lack of knowledge
about potential values taken. Italian scientist Bruno de Finetti, who is famous for the claim
“Probability does not exist’ ’, stated in the preface of Finetti (1974):

Probabilistic reasoning — always to be understood as subjective — merely stems
from our being uncertain about something. It makes no difference whether the
uncertainty relates to an unforseeable future, or to an unnoticed past, or to a
past doubtfully reported or forgotten: it may even relate to something more or
less knowable (by means of a computation, a logical deduction, etc.) but for
which we are not willing or able tho make the effort; and so on [. . . ] The only
relevant thing is uncertainty — the extent of our knowledge and ignorance. The
actual fact of whether or not the events considered are in some sense determined,
or known by other people, and so on, is of no consequence.

On page 3, de Finetti continues (Finetti 1974)

only subjective probabilities exist — i.e., the degree of belief in the occurrence
of an event attributed by a given person at a given instant and with a given set of
information.
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2.2 Posterior distribution

2.2 Posterior distribution

We consider a parametric model with parameters θ defined on Θ ⊆ Rp. In Bayesian learning,
we adjoin to the likelihood L(θ;y) ≡ p(y | θ) a prior function p(θ) that reflects the prior
knowledge about potential values taken by the p-dimensional parameter vector, before
observing the data y. The prior makes θ random and the distribution of the parameter
reflects our uncertainty about the true value of the model parameters.

In a Bayesian analysis, observations are random variables but inference is performed
conditional on the observed sample values. By Bayes’ theorem, our target is therefore the
posterior density p(θ | y), defined as

p(θ | y)
posterior

=

likelihood

p(y | θ)×
prior

p(θ)∫
p(y | θ)p(θ)dθ

marginal likelihood p(y)

. (2.1)

The posterior p(θ | y) is proportional, as a function of θ, to the product of the likelihood
and the prior function.

For the posterior to be proper, we need the product of the prior and the likelihood on
the right hand side to be integrable as a function of θ over the parameter domain Θ. The
integral in the denominator, termed marginal likelihood or prior predictive distribution and
denoted p(y) = Eθ{p(y | θ)}. It represents the distribution of the data before data collection,
the respective weights being governed by the prior probability of different parameters values.
The denominator of Equation 2.1 is a normalizing constant, making the posterior density
integrate to unity. The marginal likelihood plays a central role in Bayesian testing.

If θ is low dimensional, numerical integration such as quadrature methods can be used to
compute the marginal likelihood.

To fix ideas, we consider next a simple one-parameter model where the marginal likelihood
can be computed explicitly.

Example 2.1 (Binomial model with beta prior). Consider a binomial likelihood with proba-
bility of success θ ∈ [0, 1] and n trials, Y ∼ binom(n, θ). If we take a beta prior, θ ∼ beta(α, β)
and observe y successes, the posterior is

p(θ | y = y) ∝
(
n

y

)
θy(1− θ)n−y Γ(α+ β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1

θ∝ θy+α−1(1− θ)n−y+β−1
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2 Bayesics

and is ∫ 1

0
θy+α−1(1− θ)n−y+β−1dθ = Γ(y + α)Γ(n− y + β)

Γ(n+ α+ β) ,

a beta function. Since we need only to keep track of the terms that are function of the
parameter θ,we could recognize directly that the posterior distribution is beta(y+α, n−y+β)
and deduce the normalizing constant from there.

If Y ∼ binom(n, θ), the expected number of success is nθ and the expected number of
failures n(1− θ) and so the likelihood contribution, relative to the prior, will dominate as
the sample size n grows.

Another way to see this is to track moments (expectation, variance, etc.) From Definition 1.3,
the posterior mean is

E(θ | y) = w
y

n
+ (1− w) α

α+ β
, w = n

n+ α+ β
,

a weighted average of the maximum likelihood estimator and the prior mean. We can think
of the parameter α (respectively β) as representing the fixed prior number of success (resp.
failures). The variance term is O(n−1) and, as the sample size increases, the likelihood
weight w dominates.

Figure 2.1 shows three different posterior distributions with different beta priors: the first
prior, which favors values closer to 1/2, leads to a more peaked posterior density, contrary
to the second which is symmetric, but concentrated toward more extreme values near
endpoints of the support. The rightmost panel is truncated: as such, the posterior is zero
for any value of θ beyond 1/2 and so the posterior mode may be close to the endpoint of the
prior. The influence of such a prior will not necessarily vanish as sample size and should be
avoided, unless there are compelling reasons for restricting the domain.

Remark (Proportionality). Any term appearing in the likelihood times prior function that
does not depend on parameters can be omitted since they will be absorbed by the nor-
malizing constant. This makes it useful to compute normalizing constants or likelihood
ratios.

Remark. An alternative parametrization for the beta distribution sets α = µκ, β = (1− µ)κ
for µ ∈ (0, 1) and κ > 0, so that the model is parametrized directly in terms of mean µ, with
κ capturing the dispersion.

Remark. A density integrates to 1 over the range of possible outcomes, but there is no guar-
antee that the likelihood function, as a function of θ, integrates to one over the parameter
domain Θ.

32



2.2 Posterior distribution

0

1

2

3

0 0.25 0.5 0.75 1
0

1

2

3

4

0 0.25 0.5 0.75 1
0

1

2

3

4

0 0.25 0.5 0.75 1

likelihood posterior prior

Figure 2.1: Scaled binomial likelihood for six successes out of 14 trials, with beta(3/2, 3/2)
prior (left), beta(1/4, 1/4) (middle) and truncated uniform on [0, 1/2] (right), with
the corresponding posterior distributions.

For example, the binomial likelihood with n trials and y successes satisfies∫ 1

0

(
n

y

)
θy(1− θ)n−ydθ = 1

n+ 1 .

Moreover, the binomial distribution is discrete with support 0, . . . , n,whereas the likelihood
is continuous as a function of the probability of success, as evidenced by Figure 2.2

Definition 2.1 (Bayes factor and model comparison). The marginal likelihood enters in
the comparison of different models. Suppose that we have models Mm (m = 1, . . . ,M) to
be compared, with parameter vectors θ(m) and data vector y. Consider pm = Pr(Mm) the
prior probability of the different models under consideration, with p1 + · · ·+ pM = 1. The
posterior odds for Models Mi vs Mj are

Pr(Mi | y)
Pr(Mj | y)
posterior odds

= p(y |Mi)
p(y |Mj)
Bayes factor

Pr(Mi)
Pr(Mj)
prior odds
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Figure 2.2: Binomial mass function (left) and scaled likelihood function (right).

where the first term on the right hand side is the Bayes factor for model i vs j, denoted BFij .
The Bayes factor is the ratio of marginal likelihoods, as

p(y |Mi) =
∫
p(y | θ(i),Mi)p(θ(i) |Mi)dθ(i).

Values of BFij > 1 correspond to model Mi being more likely than Mj .

While Bayes factors are used for model comparison, the answers depend very strongly on
the prior p(θ(i) |Mi) specified and the latter must be proper as a general rule for the ratio
to be well-defined.

The Bayes factor require that we compare the same data, but both likelihood and priors
could be different from one model to the next.

Example 2.2 (Bayes factor for the binomial model). The marginal likelihood for the Y | P =
p ∼ binom(n, p) model with prior P ∼ beta(α, β) is

pY (y) =
(
n

y

)
beta(α+ y, β + n− y)

beta(α, β) .
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2.2 Posterior distribution

where beta(α, β) = Γ(α)Γ(β)/Γ(α+ β) is the beta function, expressed in terms of gamma
functions.

Consider three models with Y | P (i) = p,Mi ∼ binom(n, p) for i = 1, 2, 3 and uniform, point
mass and beta priors P (1) ∼ unif(0, 1), P (2) ∼ beta(3/2, 3/2) and P (3) ∼ 1p=0.5. For M3, the
marginal likelihood is simply equal to the binomial distribution with p = 0.5.

If n = 14, but we let instead the number of success varies, the models that put more mass
closer to the ratio y/n will be favored. The uniform prior in model M1 will have a higher
Bayes factor than model M2 or M3 for values closer to p = 0 or p = 1, but there is mild
evidence as shown in Figure 2.3.

# Log of marginal posterior for binom with beta prior (default is uniform)
log_marg_post_beta <- function(n, y, alpha = 1, beta = 1){

lchoose(n, y) + lbeta(alpha + y, beta + n - y) - lbeta(alpha, beta)
}
# Log of Bayes factor
logBF2vs3 <- function(y, n){ # model 2 (beta(1.5,1.5) vs 3 (point mass at 0.5)

log_marg_post_beta(n = n, y = y, alpha = 1.5, beta = 1.5) - dbinom(x = y, size = n, prob = 0.5, log = TRUE)
}

Proposition 2.1 (Sequentiality and Bayesian updating). The likelihood is invariant to the or-
der of the observations if they are independent. Thus, if we consider two blocks of observations
y1 and y2

p(θ | y1,y2) = p(θ | y1)p(θ | y2),

so it makes no difference if we treat data all at once or in blocks. More generally, for data
exhibiting spatial or serial dependence, it makes sense to consider rather the conditional
(sequential) decomposition

f(y;θ) = f(y1;θ)f(y2;θ,y1) · · · f(yn;θ,y1, . . . ,yn−1)

where f(yk;y1, . . . ,yk−1) denotes the conditional density function given observations
y1, . . . ,yk−1.

By Bayes’ rule, we can consider updating the posterior by adding terms to the likelihood,
noting that

p(θ | y1,y2) ∝ p(y2 | y1,θ)p(θ | y1)

which amounts to treating the posterior p(θ | y1) as a prior. If data are exchangeable, the
order in which observations are collected and the order of the belief updating is irrelevant to
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Figure 2.3: Log of Bayes factors for comparison of binomial models with n = 14 trials as
a function of the number of successes n. Values larger than zero (on log scale)
indicate preference for Model 2.

the full posterior. Figure 2.4 shows how the posterior becomes gradually closer to the scaled
likelihood as we increase the sample size, and the posterior mode moves towards the true
value of the parameter (here 0.3).

Example 2.3 (Numerical integration). While we can calculate analytically the value of
the normalizing constant for the beta-binomial model, we could also for arbitrary priors
use numerical integration or Monte Carlo methods in the event the parameter vector θ is
low-dimensional.

While estimation of the normalizing constant is possible in simple models, the following
highlights some challenges that are worth keeping in mind. In a model for discrete data (that
is, assigning probability mass to a countable set of outcomes), the terms in the likelihood
are probabilities and thus the likelihood becomes smaller as we gather more observations
(since we multiply terms between zero or one). The marginal likelihood term becomes
smaller and smaller, so it’s reciprocal is big and this can lead to arithmetic underflow.
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Figure 2.4: Beta posterior and binomial likelihood with a uniform prior for increasing num-
ber of observations (from left to right) out of a total of 100 trials.

y <- 6L # number of successes
n <- 14L # number of trials
alpha <- beta <- 1.5 # prior parameters
unnormalized_posterior <- function(theta){

thetaˆ(y+alpha-1) * (1-theta)ˆ(n-y + beta - 1)
}
integrate(f = unnormalized_posterior,

lower = 0,
upper = 1)

1.066906e-05 with absolute error < 1e-12

# Compare with known constant
beta(y + alpha, n - y + beta)

[1] 1.066906e-05

# Monte Carlo integration
mean(unnormalized_posterior(runif(1e5)))
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2 Bayesics

[1] 1.064067e-05

When θ is high-dimensional, the marginal likelihood is intractable. This is one of the main
challenges of Bayesian statistics and the popularity and applicability has grown drastically
with the development and popularity of numerical algorithms, following the publication
of Geman and Geman (1984) and Alan E. Gelfand and Smith (1990). Markov chain Monte
Carlo methods circumvent the calculation of the denominator by drawing approximate
samples from the posterior.

Example 2.4 (Importance of selling format). Duke and Amir (2023) consider the differ-
ence between integrated and sequential format for sales. The sellingformat dataset con-
tains n = 397 observations split into two groups: quantity-integrated decision (decide the
amount to buy) and quantity-sequential (first select buy, then select the amount). Partici-
pants of the study were randomly allocated to either of these two format and their decision,
either buy, 1, or do not buy 0, is recorded.

Table 2.1: Aggregated data from Duke and Amir (2023), experiment 1. Number of partic-
ipants who did not (0) or did buy (1) products as a function of experimental
condition.

0 1

quantity-integrated 152 46
quantity-sequential 176 23

We consider the number of purchased out of the total, treating records as independent
Bernoulli observations with a flat (uniform prior).

With a beta-binomial model, the posterior for the probability of buying is beta(47, 153)
for quantity-integrated and beta(24, 177) for quantity-sequential. We can compute the
posterior of the odds ratio,

O = Pr(Y = 1 | integrated)
Pr(Y = 0 | integrated)

Pr(Y = 0 | sequential)
Pr(Y = 1 | sequential) ,

by simulating independent draws from the posteriors of each condition and computing the
odds ratio.
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2.2 Posterior distribution

data(sellingformat, package = "hecbayes")
contingency <- with(sellingformat, table(format, purchased))
# Posterior draws of the parameters
post_p_int <- rbeta(n = 1e4, shape1 = 47, shape2 = 153)
post_p_seq <- rbeta(n = 1e4, shape1 = 24, shape2 = 177)
# Reparametrization
post_odds_int <- (post_p_int / (1 - post_p_int))
post_odds_seq <- (post_p_seq / (1 - post_p_seq))
post_oddsratio <- post_odds_int / post_odds_seq

Figure 2.5 shows the posterior of the probability of buying for each group, and the odds.
It is clear that the integrated format leads to much more sales in the experiment, with a
posterior ratio exceeding 1 with probability 99.89%.
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Figure 2.5: Posterior curves per group (left) and odds ratio (right)
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2 Bayesics

2.3 Posterior predictive distribution

Prediction in the Bayesian paradigm is obtained by considering the posterior predictive
distribution,

p(ynew | y) =
∫

Θ
p(ynew | θ)p(θ | y)dθ

In a simulation context, we generate one new dataset (or observation) for each posterior
draw θ from the posterior p(θ | y).

Given draws from the posterior distribution, say θb (b = 1, . . . , B), we sample from each a
new realization from the distribution appearing in the likelihood p(ynew | θb). This is differ-
ent from the frequentist setting, which fixes the value of the parameter to some estimate
θ̂; by contrast, the posterior predictive, here a beta-binomial distribution betabinom(n, α+
y, n−y+β), carries over the uncertainty so will typically be wider and overdispersed relative
to the corresponding binomial model. This can be easily seen from the left-panel of Fig-
ure 2.6, which contrasts the binomial mass function evaluated at the maximum likelihood
estimator θ̂ = 6/14 with the posterior predictive.

npost <- 1e4L
# Sample draws from the posterior distribution
post_samp <- rbeta(n = npost, y + alpha, n - y + beta)
# For each draw, sample new observation
post_pred <- rbinom(n = npost, size = n, prob = post_samp)

Given the beta(a, b) posterior with a = y + α and b = n− y + β, the predictive distribution
of Ynew for fixed nnew number of trials is beta-binomial with mass function

p(ynew | y) =
∫ 1

0

(
nnew

ynew

)
θa+ynew−1(1− θ)b+nnew−ynew−1

beta(a, b) dθ

=
(
nnew

ynew

)
beta(a+ ynew, b+ nnew − ynew)

beta(a, b)

Example 2.5 (Posterior predictive distribution of univariate Gaussian with known
mean). Consider an n sample of independent and identically distributed Gaussian,
Yi ∼ Gauss(0, τ−1) (i = 1, . . . , n), where we assign a gamma prior on the precision
τ ∼ gamma(α, β). The posterior is

p(τ | y) τ∝
n∏

i=1
τn/2 exp

(
−τ
∑n

i=1 y
2
i

2

)
× τα−1 exp(−βτ)
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Figure 2.6: Beta-binomial posterior predictive distribution with corresponding binomial
mass function evaluated at the maximum likelihood estimator.

and rearranging the terms to collect powers of τ, etc. we find that the posterior for τ must
also be gamma, with shape parameter α∗ = α+ n/2 and rate β∗ = β +

∑n
i=1 y

2
i /2.

The posterior predictive is

p(ynew | y) =
∫ ∞

0

τ1/2

(2π)1/2 exp(−τy2
new/2) β

∗α∗

Γ(α∗)τ
α∗−1 exp(−β∗τ)dτ

= (2π)−1/2 β
∗α∗

Γ(α∗)

∫ ∞

0
τα∗−1/2 exp

{
−τ(y2

new/2 + β∗)
}

dτ

= (2π)−1/2 β
∗α∗

Γ(α∗)
Γ(α∗ + 1/2)

(y2
new/2 + β∗)α∗+1/2

=
Γ
(

2α∗+1
2

)
√

2πΓ
(

2α∗

2

)
β∗1/2

(
1 + y2

new

2β∗

)−α∗−1/2

=
Γ
(

2α∗+1
2

)
√
π
√

2α∗Γ
(

2α∗

2

)
(β∗/α∗)1/2

(
1 + 1

2α∗
y2

new

(β∗/α∗)

)−α∗−1/2

41



2 Bayesics

which entails that Ynew is a scaled Student-t distribution with scale (β∗/α∗)1/2 and 2α+ n
degrees of freedom. This example also exemplifies the additional variability relative to the
distribution generating the data: indeed, the Student-t distribution is more heavy-tailed
than the Gaussian, but since the degrees of freedom increase linearly with n, the distribution
converges to a Gaussian as n→∞, reflecting the added information as we collect more and
more data points and the variance gets better estimated through

∑n
i=1 y

2
i /n.

2.4 Summarizing posterior distributions

The output of the Bayesian learning problem will be either of:

1. a fully characterized distribution
2. a numerical approximation to the posterior distribution (pointwise)
3. an exact or approximate sample drawn from the posterior distribution

In the first case, we will be able to directly evaluate quantities of interest if there are closed-
form expressions for the latter, or else we could draw samples from the distribution and
evaluate them via Monte-Carlo. In case of numerical approximations, we will need to resort
to numerical integration or otherwise to get our answers.

Often, we will also be interested in the marginal posterior distribution of each component
θj in turn (j = 1, . . . , J). To get these, we carry out additional integration steps,

p(θj | y) =
∫
p(θ | y)dθ−j .

With a posterior sample, this is trivial: it suffices to keep the column corresponding to θj

and discard the others.

Most of the field of Bayesian statistics revolves around the creation of algorithms that either
circumvent the calculation of the normalizing constant (notably using Monte Carlo and
Markov chain Monte Carlo methods) or else provide accurate numerical approximation of
the posterior pointwise, including for marginalizing out all but one parameters (integrated
nested Laplace approximations, variational inference, etc.) The target of inference is the
whole posterior distribution, a potentially high-dimensional object which may be difficult
to summarize or visualize. We can thus report only characteristics of the the latter.

The choice of point summary to keep has it’s root in decision theory.

Definition 2.2 (Loss function). A loss function c(θ,υ) is a mapping from Rp → Rk that
assigns a weight to each value of θ, corresponding to the regret or loss arising from choosing
this value. The corresponding point estimator υ̂ is the minimizer of the expected loss,
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2.4 Summarizing posterior distributions

υ̂ = argmin
υ

EΘ|Y {c(θ,v)}

= argmin
υ

∫
Rd
c(θ,υ)p(θ | y)dθ

For example, in a univariate setting, the quadratic loss c(θ, υ) = (θ−υ)2 returns the posterior
mean, the absolute loss c(θ, υ) = |θ − υ| returns the posterior median and the 0-1 loss
c(θ, υ) = I(υ ̸= θ) returns the posterior mode.

For example consider the quadratic loss function which is differentiable. Provided we can
interchange differential operator and integral sign,

0 =
∫
R

∂(υ − θ)2

∂υ
p(θ | y)dθ

=
∫
R

∂2(υ − θ)
∂υ

p(θ | y)dθ

= 2υ − 2E(θ)

which is minimized when υ̂ = EΘ|Y (θ).

All of these point estimators are central tendency measures, but some may be more ade-
quate depending on the setting as they can correspond to potentially different values, as
shown in the left-panel of Figure 2.7. The choice is application specific: for multimodal
distributions, the mode is likely a better choice.

If we know how to evaluate the distribution numerically, we can optimize to find the mode
or else return the value for the pointwise evaluation on a grid at which the density achieves
it’s maximum. The mean and median would have to be evaluated by numerical integration
if there is no closed-form expression for the latter.

If we have rather a sample from the posterior with associated posterior density values,
then we can obtain the mode as the parameter combination with the highest posterior, the
median from the value at rank ⌊n/2⌋ and the mean through the sample mean of posterior
draws.

The loss function is often a functional (meaning a one-dimensional summary) from the
posterior. The following example shows how it reduces a three-dimensional problem into a
single risk measure.

Example 2.6 (Value-at-risk for Danish insurance losses). In extreme value, we are often
interested in assessing the risk of events that are rare enough that they lie beyond the range
of observed data. To provide a scientific extrapolation, it often is justified to fit a generalized
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Figure 2.7: Point estimators from a right-skewed distribution (left) and from a multimodal
distribution (right).

Pareto distribution to exceedances of Z = Y − u, for some user-specified threshold u
which is often taken as a large quantile of the distribution of Z ∼ gen.Pareto(τ, ξ); see
Definition 1.11

Insurance companies provide coverage in exchange for premiums, but need to safeguard
themselves against very high claims by buying reinsurance products. These risks are often
communicated through the value-at-risk (VaR), a high quantile exceeded with probability
p. We model Danish fire insurance claim amounts for inflation-adjusted data collected
from January 1980 until December 1990 that are in excess of a million Danish kroner, found
in the evir package and analyzed in Example 7.23 of McNeil, Frey, and Embrechts (2005).
These claims are denoted Y and there are 2167 observations.

We fit a generalized Pareto distribution to exceedances above 10 millions krones, keeping
109 observations or roughly the largest 5% of the original sample. Preliminary analy-
sis shows that we can treat data as roughly independent and identically distributed and
goodness-of-fit diagnostics (not shown) for the generalized Pareto suggest that the fit is
adequate for all but the three largest observations, which are (somewhat severely) underes-
timated by the model.
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Figure 2.8: Time series of Danish fire claims exceeding a million krone (left) and posterior
samples from the scale τ and shape ξ of the generalized Pareto model fitted to
exceedances above 10 million krone (right).

The generalized Pareto model only describes the nu exceedances above u = 10, so we need
to incorporate in the likelihood a binomial contribution for the probability ζu of exceeding
the threshold u. The log likelihood for the full model for yi > u is

ℓ(τ, ξ, ζu) ∝ −109 log τ +
109∑
i=1

(1 + 1/ξ) log
(

1 + ξ
yi − 10
τ

)
+

+

109 log ζu + 2058 log(1− ζu),

Provided that the priors for (τ, ξ) are independent of those for ζu, the posterior also factorizes
as a product, so ζu and (τ, ξ) are a posteriori independent.

Suppose for now that we set a beta(0.5, 0.5) prior for ζu and a non-informative prior for the
generalized Pareto parameters.

We consider the modelling of insurance losses exceeding u = 10 millions krones using
a generalized Pareto distribution to the danish fire insurance data with some prior; see
Definition 1.11 for the model. The model has three parameters: the scale τ , the shape ξ and
the probability of exceeding the threshold ζu.
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2 Bayesics

Our aim is to evaluate the posterior distribution for the value-at-risk, the α quantile of Y for
high values of α and see what point estimator one would obtain depending on our choice
of loss function. For any α > 1− ζu, the qα can be written in terms of the generalized Pareto
survival function times the probability of exceedance above the threshold,

1− α = Pr(Y > qα | Y > u) Pr(Y > u)

=
(

1 + ξ
qα − u
τ

)−1/ξ

+
ζu

and solving for qα gives

qα = u+ τ

ξ

{(
ζu

1− α

)ξ

− 1
}
.

We obtained, using tools that will be discussed in Example 4.3, a matrix post_samp that
contains exact samples from the posterior distribution of (τ, ξ, ζu). To obtain the posterior
distribution of the α quantile, qα, it thus suffices to plug in each posterior sample and
evaluate the function: the uncertainty is carried over from the simulated values of the
parameters to those of the quantile qα. The left panel of Figure 2.9 shows the posterior
density estimate of the VaR(0.99) along with the maximum a posteriori (mode) of the latter.

Suppose that we prefer to under-estimate the value-at-risk rather than overestimate: this
could be captured by the custom loss function

c(q, q0) =
{

0.5(0.99q − q0), q > q0

0.75(q0 − 1.01q), q < q0.

For a given value of the value-at-risk q0 evaluated on a grid, we thus compute

r(q0) =
∫

Θ
c(q(θ), q0)p(θ | y)dθ

and we seek to minimize the risk, q̂ = argminq0∈R+r(q0). The value returned that minimizes
the loss, shown in Figure 2.9, is to the left of the posterior mean for qα.

# Compute value at risk from generalized Pareto distribution quantile fn
VaR_post <- with(post_samp, # data frame of posterior draws

revdbayes::qgp( # with columns 'probexc', 'scale', 'shape'
p = 0.01/probexc,
loc = 10,
scale = scale,
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shape = shape,
lower.tail = FALSE))

# Loss function
loss <- function(qhat, q){

mean(ifelse(q > qhat,
0.5*(0.99*q-qhat),
0.75*(qhat-1.01*q)))

}
# Create a grid of values over which to estimate the loss for VaR
nvals <- 101L
VaR_grid <- seq(

from = quantile(VaR_post, 0.01),
to = quantile(VaR_post, 0.99),
length.out = nvals)

# Create a container to store results
risk <- numeric(length = nvals)
for(i in seq_len(nvals)){

# Compute integral (Monte Carlo average over draws)
risk[i] <- loss(q = VaR_post, qhat = VaR_grid[i])

}

To communicate uncertainty, we may resort to credible regions and intervals.

Definition 2.3. A (1− α) credible region (or credible interval in the univariate setting) is a
set Sα such that, with probability level α,

Pr(θ ∈ Sα | Y = y) = 1− α

These intervals are not unique, as are confidence sets. In the univariate setting, the cen-
tral or equitailed interval are the most popular, and easily obtained by considering the
α/2, 1− α/2 quantiles. These are easily obtained from samples by simply taking empirical
quantiles. An alternative, highest posterior density credible sets, which may be a set of
disjoint intervals obtained by considering the parts of the posterior with the highest density,
may be more informative. The top panel Figure 2.10 shows two extreme cases in which
these intervals differ: the distinction for a bimodal mixture distribution, and a even more
striking difference for 50% credible intervals for a symmetric beta distribution whose mass
lie near the endpoints of the distribution, leading to no overlap between the two intervals.
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Figure 2.9: Posterior density (left) and losses functions for the 0.99 value-at-risk for the
Danish fire insurance data. The vertical lines denote point estimates of the
quantiles that minimize the loss functions.

set.seed(2023)
postsamp <- rbeta(n = 1000, shape1 = 0.5, shape2 = 0.2)
alpha <- 0.11
# Compute equitailed interval bounds
quantile(postsamp, probs = c(alpha/2, 1-alpha/2))

5.5% 94.5%
0.0246807 0.9999980

qbeta(p = c(alpha/2, 1-alpha/2), shape1 = 0.5, shape2 = 0.2)

[1] 0.02925205 0.99999844
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2.4 Summarizing posterior distributions

# Highest posterior density intervals
hdiD <- HDInterval::hdi(density(postsamp), credMass = 1-alpha, allowSplit = TRUE)

The equitailed intervals for a known posterior can be obtained directly from the quantile
function or via Monte Carlo simply by querying sample quantiles. The HPD region is more
complicated to obtain and requires dedicated software, which in the above case may fail to
account for the support of the posterior!
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Figure 2.10: Density plots with 89% (top) and 50% (bottom) equitailed or central credible
(left) and highest posterior density (right) regions for two data sets, highlighted
in grey. The horizontal lign gives the posterior density value determining the
cutoff for the HDP region.

, Summary:

• Bayesians treat both parameter and observations as random, the former due
to uncertainty about the true value. Inference is performed conditional on
observed data, and summarized in the posterior.

• Bayesians specify both a prior for the parameter, and a likelihood specifying
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the data generating mechanism. It is thus an extension of likelihood-based
inference.

• Information from the prior is updated in light of new data, which is encoded by
the likelihood. Sequential updating leads.

• Under weak conditions on the prior, large-sample behaviour of Bayesian and
frequentist.

• Bayesian inference is complicated by the fact that there is more often than not
no closed-form expression for the posterior distribution. Evaluation of the nor-
malizing constant, the so-called marginal likelihood, is challenging, especially
in high dimensional settings.

• Rather than hypothesis testing, Bayesian methods rely on the posterior distribu-
tion of parameters, or on Bayes factor for model comparisons.

• The posterior predictive distribution, used for model assessment and prediction,
and it has a higher variance than the data generating distribution from the
likelihood, due to parameter uncertainty.

• Bayesians typically will have approximations to the posterior distribution, or
samples drawn from it.

• Loss functions can be used to summarize a posterior distribution into a numeri-
cal summary of interest, which may vary depending on the objective.

• Uncertainty is reflected by credible sets or credible intervals, which encode the
posterior probability that the true value θ belongs to the set.
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The posterior distribution combines two ingredients: the likelihood and the prior. If
the former is a standard ingredient of any likelihood-based inference, prior specification
requires some care. The purpose of this chapter is to consider different standard way of
constructing prior functions, and to specify the parameters of the latter: we term these
hyperparameters.

The posterior is a compromise prior and likelihood: the more informative the prior, the
more the posterior resembles it, but in large samples, the effect of the prior is often negli-
gible if there is enough information in the likelihood about all parameters. We can assess
the robustness of the prior specification through a sensitivity analysis by comparing the
outcomes of the posterior for different priors or different values of the hyperparameters.

Oftentimes, we will specify independent priors in multiparameter models, but the posterior
of these will not be independent.

We can use moment matching to get sensible values, or tune via trial-and-error using the
prior predictive draws to assess the implausibility of the prior outcomes. One challenge is
that even if we have some prior information (e.g., we can obtain sensible prior values for
the mean, quantiles or variance of the parameter of interest), these summary statisticss
will not typically be enough to fully characterize the prior: many different functions or
distributions could encode the same information. This means that different analysts
get different inferences. Generally, we will choose the prior for convenience. Priors are
controversial because they could be tuned aposteriori to give any answer an analyst might
want.

, Learning objectives:

At the end of the chapter, students should be able to

• define and distinguish between improper, weak and informative priors.
• propose conjugate priors for exponential families.
• assess by using the prior predictive distribution the compatibility of the prior

with the model.
• use moment matching to specify the parameters of a prior distribution.
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• perform sensitivity analysis by running a model with different priors and assess-
ing changes to the posterior distribution.

3.1 Prior simulation

Expert elicitation is difficult and it is hard to grasp what the impacts of the hyperparameters
are. One way to see if the priors are reasonable is to sample values from them and generate
new observations, resulting in prior predictive draws.

The prior predictive is
∫

Θ f(ynew;θ)p(θ)dθ: we can simulate outcomes from it by first draw-
ing parameter values θ0 from the prior, then sampling new observations from the distribu-
tion f(ynew;θ0) with those parameters values and keeping only ynew. If there are sensible
bounds for the range of the response, we could restrict the prior range and shape until
values abide to these.

Working with standardized inputs xi 7→ (xi − x)/sd(x) is useful. For example, in a simple
linear regression (with a sole numerical explanatory), the slope is the correlation between
standardized explanatory X and standardized response Y and the intercept should be mean
zero.

Example 3.1. Consider the daily number of Bixi bike sharing users for 2017–2019 at the
Edouard Montpetit station next to HEC: we can consider a simple linear regression with log
counts as a function of temperature,1

log(nusers) ∼ Gauss+{β0 + β1(temp− 20), σ2}.

The β1 slope measures units in degree Celsius per log number of person.

The hyperparameters depend of course on the units of the analysis, unless one standardizes
response variable and explanatories: it is easier to standardize the temperature so that
we consider deviations from, say 20◦C, which is not far from the observed mean in the
sample. After some tuning, the independent priors β0 ∼ Gauss(y, 0.52), β1 ∼ Gauss(0, 0.052)
and σ ∼ Exp(3) seem to yield plausible outcomes and relationships.2

We can draw regression lines from the prior, as in the left panel of Figure 3.1: while some
of the negative relationships appear unlikely after seeing the data, the curves all seem to
pass somewhere in the cloud of point. By contrast, a silly prior is one that would result in

1If counts are Poisson, then the log transform is variance stabilizing.
2One can object to the prior parameters depending on the data, but an alternative would be to model centered

data y − y, in which case the prior for the intercept parameter β0 would be zero.
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Figure 3.1: Prior draws of the linear regressions with observed data superimposed (left), and
draws of observations from the prior predictive distribution (in gray) against
observed data (right).

all observations being above or below the regression line, or yield values that are much too
large near the endpoints of the explanatory variable. Indeed, given the number of bikes
for rental is limited (a docking station has only 20 bikes), it is also sensible to ensure that
simulations do not return overly large numbers. The maximum number of daily users in
the sample is 68, so priors that return simulations with more than 200 (rougly 5.3 on the
log scale) are not that plausible. The prior predictive draws can help establish this and the
right panel of Figure 3.1 shows that, expect for the lack of correlation between temperature
and number of users, the simulated values from the prior predictive are plausible even if
overdispersed.

3.2 Conjugate priors

In very simple models, there may exists prior densities that result in a posterior distribution
of the same family. We can thus directly extract characteristics of the posterior. Conjugate
priors are chosen for computational convenience and because interpretation is conve-
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nient, as the parameters of the posterior will often be some weighted average of prior and
likelihood component.

Definition 3.1 (Conjugate priors). A prior density p(θ) is conjugate for likelihood L(θ;y)
if the product L(θ;y)p(θ), after renormalization, is of the same parametric family as the
prior.

Exponential families (see Definition 1.13, including the binomial, Poisson, exponential,
Gaussian distributions) admit conjugate priors.

distribution unknown parameter conjugate prior

Y ∼ expo(λ) λ λ ∼ gamma(α, β)
Y ∼ Poisson(µ) µ µ ∼ gamma(α, β)
Y ∼ binom(n, θ) θ θ ∼ Be(α, β)
Y ∼ Gauss(µ, σ2) µ µ ∼ Gauss(ν, ω2)
Y ∼ Gauss(µ, σ2) σ σ2 ∼ inv.gamma(α, β)
Y ∼ Gauss(µ, σ2) µ, σ µ | σ2 ∼ Gauss(ν, ωσ2),

σ2 ∼ inv.gamma(α, β)

Example 3.2 (Conjugate prior for the binomial model). Since the density of the binomial
is of the form py(1− p)n−y and it belongs to an exponential family (Example 1.2), the beta
distribution beta(α, β) with density

f(x) ∝ xα−1(1− x)β−1

is the conjugate prior.

The beta distribution is also the conjugate prior for the negative binomial, geometric and
Bernoulli distributions, since their likelihoods are all proportional to that of the beta. The
fact that different sampling schemes that result in proportional likelihood functions give
the same inference is called likelihood principle.

Example 3.3 (Conjugate prior for the Poisson model). We saw in Example 1.3 that the
Poisson distribution is an exponential family. The gamma density,

f(x) ∝ βα/Γ(α)xα−1 exp(−βx)

with shape α and rate β is the conjugate prior for the Poisson. For an n-sample of in-
dependent observations Poisson(µ) observations with µ ∼ gamma(α, β), the posterior is
gamma(

∑n
i=1 yi + α, β + n).
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Knowing the analytic expression for the posterior can be useful for calculations of the
marginal likelihood, as Example 1.13 demonstrated.

Example 3.4 (Posterior rates for A/B tests using conjugate Poisson model). Upworthy.com,
a US media publisher, revolutionized headlines online advertisement by running systematic
A/B tests to compare the different wording of headlines, placement and image and what
catches attention the most. The Upworthy Research Archive (Matias et al. 2021) contains
results for 22743 experiments, with a click through rate of 1.58% on average and a standard
deviation of 1.23%. The clickability_test_id gives the unique identifier of the experi-
ment, clicks the number of conversion out of impressions. See Section 8.5 of Alexander
(2023) for more details about A/B testing and background information.

Consider an A/B test from November 23st, 2014, that compared four different headlines for
a story on Sesame Street workshop with interviews of children whose parents were in jail
and visiting them in prisons. The headlines tested were:

1. Some Don’t Like It When He Sees His Mom. But To Him? Pure Joy. Why
Keep Her From Him?

2. They’re Not In Danger. They’re Right. See True Compassion From The
Children Of The Incarcerated.

3. Kids Have No Place In Jail . . . But In This Case, They Totally Deserve It.
4. Going To Jail Should Be The Worst Part Of Their Life. It’s So Not. Not At All.

At first glance, the first and third headlines seem likely to lead to a curiosity gap. The
wording of the second is more explicit (and searchable), whereas the first is worded as a
question.

We model the conversion rate λi for each headline separately using a Poisson distribution
and compare the posterior distributions for all four choices. Using a conjugate prior
and selecting the parameters by moment matching yields approximately α = 1.65 and
β = 104.44 for the hyperparameters, setting α/β = 0.0158 and α/β2 = 0.01232 and solving
for the two unknown parameters.

Table 3.2: Number of views, clicks for different headlines for the Upworthy data.

headline impressions clicks

H1 3060 49
H2 2982 20
H3 3112 31
H4 3083 9
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Figure 3.2: Gamma posterior for conversion rate of the different Upworthy Sesame Street
headline.

We can visualize the posterior distributions. In this context, the large sample size lead
to the dominance of the likelihood contribution p(Yi | λi) ∼ Poisson(niλi) relative to the
prior. We can see there is virtually no overlap between different rates for headers H1
(preferred) relative to H4 (least favorable). The probability that the conversion rate for
Headline 3 is higher than Headline 1 can be approximated by simulating samples from both
posteriors and computing the proportion of times one is larger: we get 2% for H3 relative to
H1, indicating a clear preference for the first headline H1.

Example 3.5 (Should you phrase your headline as a question?). We can also consider
aggregate records for Upworthy, as Alexander (2023) did. The upworthy_question database
contains a balanced sample of all headlines where at least one of the choices featured a
question, with at least one alternative statement. Whether a headline contains a question
or not is determined by querying for the question mark. We consider aggregated counts for
all such headlines, with the question factor encoding whether there was a question, yes or
no. For simplicity, we treat the number of views as fixed, but keep in mind that A/B tests are
often sequential experiments with a stopping rule.3

3The stopping rule means that data stops being collected once there is enough evidence to determine if an
option is more suitable, or if a predetermined number of views has been reached.
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We model first the rates using a Poisson regression; the corresponding frequentist analysis
would include an offset to account for differences in views. If λj (j = 1, 2) are the average
rate for each factor level (yes and no), then E(Yij/nij) = λj . In the frequentist setting, we
can fit a simple Poisson generalized linear regression model with an offset term and a binary
variable.

data(upworthy_question, package = "hecbayes")
poismod <- glm(

clicks ~ offset(log(impressions)) + question,
family = poisson(link = "log"),
data = upworthy_question)

coef(poismod)

(Intercept) questionno
-4.51264669 0.07069677

The coefficients represent the difference in log rate (multiplicative effect) relative to the
baseline rate, with an increase of 6.3 percent when the headline does not contain a question.
A likelihood ratio test can be performed by comparing the deviance of the null model
(intercept-only), indicating strong evidence that including question leads to significatively
different rates. This is rather unsurprising given the enormous sample sizes.

Consider instead a Bayesian analysis with conjugate prior: we model separately the rates
of each group (question or not). Suppose we think apriori that the click-rate is on average
1%, with a standard deviation of 2%, with no difference between questions or not. For a
Gamma(α, β) prior, this would translate, using moment matching, into a rate of β = 25 =
E0(λj)/Var0(λj) and a shape of α = 0.25 (j = 1, 2). If λj is the average rate for each factor
level (yes and no), then E(Yij/nij) = λj so the log likelihood is proportional, as a function of
λ1 and λ2, to

ℓ(λ;y,n) λ∝
n∑

i=1

2∑
j=1

yij log λj − λjnij

and we can recognize that the posterior for λi is gamma with shape α+
∑n

i=1 yij and rate
β +

∑n
i=1 nij . For inference, we thus only need to select hyperparameters and calculate

the total number of clicks and impressions per group. We can then consider the posterior
difference λ1 − λ2 or, to mimic the Poisson multiplicative model, of the ratio λ1/λ2. The
former suggests very small differences, but one must keep in mind that rates are also small.
The ratio, shown in the right-hand panel of Figure 3.3, gives a more easily interpretable
portrait that is in line with the frequentist analysis.
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Figure 3.3: Histograms of posterior summaries for differences (left) and rates (right) based
on 1000 simulations from the independent gamma posteriors.

To get an approximation to the posterior mean of the ratio λ1/λ2, it suffices to draw in-
dependent observations from their respective posterior, compute the ratio and take the
sample mean of those draws. We can see that the sampling distribution of the ratio is nearly
symmetrical, so we can expect Wald intervals to perform well should one be interested in
building confidence intervals. This is however hardly surprising given the sample size at
play.

Example 3.6 (Conjugate prior for Gaussian mean with known variance). Consider an n
simple random sample of independent and identically distributed Gaussian variables with
mean µ and standard deviation σ, denoted Yi ∼ Gauss(µ, σ2). We pick a Gaussian prior for
the location parameter, µ ∼ Gauss(ν, τ2) where we assume ν, τ are fixed hyperparameter
values. For now, we consider only inference for the conditional marginal posterior p(µ |
y, σ): discarding any term that is not a function of µ, the conditional posterior is

p(µ | σ,y) ∝ exp
{
− 1

2σ2

n∑
i=1

(yi − µ)2
}

exp
{
− 1

2τ2 (µ− ν)2
}

∝ exp
{(∑n

i=1 yi

σ2 + ν

τ2

)
µ−

(
n

2σ2 + 1
2τ2

)
µ2
}
.
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The log of the posterior density conditional on σ is quadratic in µ, it must be a Gaussian
distribution truncated over the positive half line. This can be seen by completing the square
in µ, or by comparing this expression to the density of Gauss(µ, σ2),

f(x;µ, σ) µ∝ exp
(
− 1

2σ2µ
2 + x

σ2µ

)
we can deduce by matching mean and variance that the conditional posterior p(µ | σ) is
Gaussian with reciprocal variance (precision) n/σ2+1/τ2 and mean (nyτ2+νσ2)/(nτ2+σ2).
The precision is an average of that of the prior and data, but assigns more weight to the
latter, which increases linearly with the sample size n. Likewise, the posterior mean is
a weighted average of prior and sample mean, with weights proportional to the relative
precision.

The exponential family is quite large; Fink (1997) A Compendium of Conjugate Priors gives
multiple examples of conjugate priors and work out parameter values.

In general, unless the sample size is small and we want to add expert opinion, we may
wish to pick an uninformative prior, i.e., one that does not impact much the outcome. For
conjugate models, one can often show that the relative weight of prior parameters (relative
to the random sample likelihood contribution) becomes negligible by investigating their
relative weights.

3.3 Uninformative priors

Definition 3.2 (Proper prior). We call a prior function proper if it’s integral is finite over the
parameter space; such prior function automatically leads to a valid posterior. A prior over
Θ is improper if

∫
Θ p(θ)dθ =∞.

The best example of proper priors arise from probability density function. We can still
employ this rule for improper priors: for example, taking α, β → 0 in the beta prior leads
to a prior proportional to x−1(1− x)−1, the integral of which diverges on the unit interval
[0, 1]. However, as long as the number of success and the number of failures is larger than 1,
meaning k ≥ 1, n − k ≥ 1, the posterior distribution would be proper, i.e., integrable. To
find the posterior, normalizing constants are also superfluous.

Many uninformative priors are flat, or proportional to a uniform on some subset of the real
line and therefore improper. It may be superficially tempting to set a uniform prior on a
large range to ensure posterior property, but the major problem is that a flat prior may be
informative in a different parametrization, as the following example suggests.

Gelman et al. (2013) uses the following taxonomy for various levels of prior information:
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3 Priors

• uninformative priors are generally flat or uniform priors with p(β) ∝ 1.
• vague priors are typically nearly flat even if proper, e.g., β ∼ Gauss(0, 100),
• weakly informative priors provide little constraints β ∼ Gauss(0, 10), and
• informative prior are typically application-specific, but constrain the ranges.

Uninformative and vague priors are generally not recommended unless they are known to
give valid posterior inference and the amount of information from the likelihood is high.

Example 3.7 (Transformation of flat prior for scales). Consider the parameter log(τ) ∈ R
and the prior p(log τ) ∝ 1. If we reparametrize the model in terms of τ, the new prior
(including the Jacobian of the transformation) is τ−1

Some priors are standard and widely used. In location scale families with location ν and
scale τ, the density is such that

f(x; ν, τ) = 1
τ
f

(
x− ν
τ

)
, ν ∈ R, τ > 0.

We thus wish to have a prior so that p(τ) = c−1p(τ/c) for any scaling c > 0,whence it follows
that p(τ) ∝ τ−1, which is uniform on the log scale.

The priors p(ν) ∝ 1 and p(τ) ∝ τ−1 are both improper but lead to location and scale
invariance, hence that the result is the same regardless of the units of measurement.

One criticism of the Bayesian approach is the arbitrariness of prior functions. However,
the role of the prior is often negligible in large samples (consider for example the posterior
of exponential families with conjugate priors). Moreover, the likelihood is also chosen for
convenience, and arguably has a bigger influence on the conclusion. Data fitted using a
linear regression model seldom follow Gaussian distributions conditionally, in the same
way that the linearity is a convenience (and first order approximation).

Definition 3.3 (Jeffrey’s prior). In single parameter models, taking a prior function for θ
proportional to the square root of the determinant of the information matrix, p(θ) ∝ |ı(θ)|1/2

yields a prior that is invariant to reparametrization, so that inferences conducted in different
parametrizations are equivalent.4

4The Fisher information is linear in the sample size for independent and identically distributed data so we
can derive the result for n = 1 without loss of generality.

60



3.3 Uninformative priors

To see this, consider a bijective transformation θ 7→ ϑ. Under the reparametrized model
and suitable regularity conditions5, the chain rule implies that

i(ϑ) = −E
(
∂2ℓ(ϑ)
∂2ϑ

)

= −E
(
∂2ℓ(θ)
∂θ2

)(dθ
dϑ

)2
+ E

(
∂ℓ(θ)
∂θ

) d2θ

dϑ2

Since the score has mean zero, E {∂ℓ(θ)/∂θ} = 0 and the rightmost term vanishes. We can
thus relate the Fisher information in both parametrizations, with

ı1/2(ϑ) = ı1/2(θ)
∣∣∣∣dθdϑ

∣∣∣∣ ,
implying invariance.

In multiparameter models, the system isn’t invariant to reparametrization if we consider
the determinant of the Fisher information.

Example 3.8 (Jeffrey’s prior for the binomial distribution). Consider the binomial distribu-
tion Bin(1, θ) with density f(y; θ) ∝ θy(1−θ)1−y1θ∈[0,1]. The negative of the second derivative
of the log likelihood with respect to p is

ȷ(θ) = −∂2ℓ(θ; y)/∂θ2 = y/θ2 + (1− y)/(1− θ)2

and since E(Y ) = θ, the Fisher information is

ı(ϑ) = E{ȷ(θ)} = 1/θ + 1/(1− θ) = 1/{θ(1− θ)}

Jeffrey’s prior is thus p(θ) ∝ θ−1/2(1− θ)−1/2, a conjugate Beta prior beta(0.5, 0.5).

Exercise 3.1 (Jeffrey’s prior for the normal distribution). Check that for the Gaussian distri-
bution Gauss(µ, σ2), the Jeffrey’s prior obtained by treating each parameter as fixed in turn,
are p(µ) ∝ 1 and p(σ) ∝ 1/σ, which also correspond to the default uninformative priors for
location-scale families.

Example 3.9 (Jeffrey’s prior for the Poisson distribution). The Poisson distribution with
ℓ(λ) ∝ −λ + y log λ, with second derivative −∂2ℓ(λ)/∂λ2 = y/λ2. Since the mean of the
Poisson distribution is λ, the Fisher information is ı(λ) = λ−1 and Jeffrey’s prior is λ−1/2.

5Using Bartlett’s identity; Fisher consistency can be established using the dominated convergence theorem.
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3.4 Priors for regression models

Regression models often feature Gaussian priors on the mean coefficients β, typically
chosen to be vague with large variance. Below are some alternatives, many of which aim to
enforce shrinkage towards zero, or sparsity.

Proposition 3.1 (Zellner’s g prior). Consider an ordinary linear regression model
for Y ∼ Gaussn(β01n + Xβ, σ2In), with intercept β0 and mean coefficient vector
β = (β1, . . . , βp)⊤ associated to the model matrix X. Zellner (1986)’s g prior consists in letting
β ∼ Gaussp{0p, gσ

2(X⊤X)−1}, where g > 0 is a constant.

The ordinary least square estimator of the mean coefficients satisfies under regularity condi-
tions on the model matrix β̂ ∼ Gaussp{β, σ2(X⊤X)−1} for Gaussian data, whence we get the
closed-form conditional distributions

β0 | σ2,Y ∼ Gauss(y, σ2/n)

β | β0, σ
2,Y ∼ Gaussp

{
g

g + 1 β̂,
g

g + 1σ
2(X⊤X)−1

}
where y = y⊤1n/n is the sample mean of the observed response vector. We can interpret g > 0
as a prior weight, with the posterior conditional mean giving weight of n/g to “phantom
(prior) observations” with mean zero, relative to the n observations in the observed sample:
the ratio g/(g + 1) is called shrinkage factor.

By virtue of Proposition 1.6, the prior is also closed under conditioning, which is useful for
model comparison using Bayes factors. Consider a partition β = (β⊤

1 ,β
⊤
2 )⊤ of the mean

coefficients and similarly the block of columns from the model matrix, say X = [X1 X2] for
blocks of size k and p− k. If we remove p− k regressors from the model setting β2 = 0, then
the conditional is

β1 | β2 = 0p−k ∼ Gaussk{0k, gσ
2(X⊤

1 X1)−1},

which is the g prior for the submodel in which we omit the columns corresponding to X2.

3.5 Informative priors

One strength of the Bayesian approach is the capability of incorporating expert and domain-
based knowledge through priors. Often, these will take the form of moment constraints,
so one common way to derive a prior is to perform moment matching to related elicited
quantities with moments of the prior distribution. It may be easier to set priors on a
different scale than those of the observations, as Example 3.10 demonstrates.
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Example 3.10 (Gamma quantile difference priors for extreme value distributions). The gen-
eralized extreme value distribution arises as the limiting distribution for the maximum ofm
independent observations from some common distribution F. The GEV(µ, σ, ξ) distribution
is a location-scale with distribution function

F (x) = exp
[
−{1 + ξ(x− µ)/σ}−1/ξ

+

]
where x+ = max{0, x}.

Inverting the distribution function yields the quantile function

Q(p)µ+ σ
(− log p)−ξ − 1

ξ

In environmental data, we often model annual maximum. Engineering designs are often
specified in terms of the k-year return levels, defined as the quantile of the annual maximum
exceeded with probability 1/k in any given year. Using a GEV for annual maximum, Coles
and Tawn (1996) proposed modelling annual daily rainfall and specifying a prior on the
quantile scale q1 < q2 < q3 for tail probabilities p1 > p2 > p3. To deal with the ordering
constraints, gamma priors are imposed on the differences

• q1 − o ∼ gamma(α1, β1),
• q2 − q1 ∼ gamma(α2, β2) and
• q3 − q2 ∼ gamma(α3, β3),

where o is the lower bound of the support. The prior is thus of the form

p(q) ∝ qα1−1
1 exp(−β1q1)

3∏
i=2

(qi − qi−1)αi−1 exp{βi(qi − qi−1)}.

where 0 ≤ q1 ≤ q2 ≤ q3. The fact that these quantities refer to moments or risk estimates
which practitioners often must compute as part of regulatory requirements makes it easier
to specify sensible values for hyperparameters.

Example 3.11 (Priors in extreme value theory). The generalized extreme value distribution
obtained as the limit of maximum of blocks of sizemwhen suitably normalizes is a location-
scale family with a shape parameter ξ ∈ R. The latter describes the heavyness of the tail,
with negative values corresponding to approximation by bounded upper tail distributions
(such as the beta), ξ = 0 to exponential tail decay and ξ > 0 to polynomial tails, with finite
moments of order 1/ξ. For example, the Cauchy or Student-t distribution with one degree
of freedom has infinite first moment and ξ = 1.
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In practice, the maximum likelihood estimators do not exist if ξ < −1 as the model is
nonregular (Smith 1985), and the cumulant of order k exists only if ξ > −1/k; the Fisher
information matrix exists only when ξ > −1/2. Thus, informative priors that restrict the
range of the shape, may be useful as in environmental applications the shapes would be in
the vicinity of zero. Martins and Stedinger (2000) proposed a prior of the form

p(ξ) = (0.5 + ξ)p−1(0.5− ξ)q−1

beta(p, q) , ξ ∈ [−0.5, 0.5]

a shifted beta(p, q) prior.

On the contrary, the maximal data information (MDI) prior (Zellner 1971) is defined in
terms of entropy,

p(θ) = exp E{log f(Y | θ)}.
It is an objective prior that reflects little about the parameter and leads to inferences that
have good frequentist property.

For the generalized Pareto distribution, p(ξ) ∝ exp(−ξ). In this particular case, however,
it is improper without modification since limξ→−∞ exp(−ξ) = ∞, and the prior density
increases without bound as ξ becomes smaller.

1

2

3

4

−1.5 −1.0 −0.5 0.0 0.5 1.0

ξ

unscaled prior density

Figure 3.4: Unscaled maximum data information (MDI) prior density.

If we restrict the range of the MDI prior p(ξ) to ξ ≥ −1, then p(ξ + 1) ∼ expo(1) and the
resulting posterior is proper Zhang and Shaby (2023). While being “objective”, it is perhaps
not much suitable as it puts mass towards lower values of the shape, an undesirable feature.
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What would you do if we you had prior information from different sources? One way to
combine these is through a mixture: given M different prior distributions pm(θ), we can
assign each a positive weight wm to form a mixture of experts prior through the linear
combination

p(θ) ∝
M∑

m=1
wmpm(θ)

Proposition 3.2 (Penalized complexity priors). Oftentimes, there will be a natural family
of prior density to impose on some model component, p(θ | ζ), with hyperparameter ζ. The
flexibility of the underlying construction leads itself to overfitting. Penalized complexity
priors (Simpson et al. 2017) aim to palliate this by penalizing models far away from a simple
baseline model, which correspond to a fixed value ζ0. The prior will favour the simpler
parsimonious model the more prior mass one places on ζ0, which is in line with Occam’s
razor principle.

To construct a penalized-complexity prior, we compute the Kullback–Leibler divergence
(Simpson et al. 2017) or the Wasserstein distance (Bolin, Simas, and Xiong 2023) between the
model pζ ≡ p(θ | ζ) relative to the baseline with ζ0, p0 ≡ p(θ | ζ0); the distance between the
prior densities is then set to d(ζ) = {2KL(pζ || p0)}1/2, where the Kullback–Leibler divergence
is

KL(pζ∥ p0) =
∫
pζ log

(
pζ

p0

)
dθ.

The divergence is zero at the model with ζ0. The PC prior then constructs an expo-
nential prior on the distance scale, which after back-transformation gives p(ζ | λ) =
λ exp(−λd(ζ)) |∂d(ζ)/∂ζ| . To choose λ, the authors recommend elicitation of a pair (Qζ , α),
where Qζ is the quantile at level 1− α, such that Pr(λ > Qζ) = α.

The construction of Wasserstein complexity priors (Bolin, Simas, and Xiong 2023) is more
involved, but those priors are also parametrization-invariant and well-defined even when
the Kullback–Leibler divergence limit does not exist.

Example 3.12 (Penalized complexity prior for random effects models). Bolin, Simas, and
Xiong (2023) consider a Gaussian prior for independent and identically random effects
α, of the form αj | ζ ∼ Gauss(0, ζ2) where ζ0 = 0 corresponds to the absence of random
subject-variability. The penalized complexity prior for the scale ζ is then an exponential
with rate λ, with density

p(ζ | λ) = λ exp(−λζ).

We can elicit a high quantile Qζ at tail probability α for the standard deviation parameter ζ
and set λ = − ln(α/Qζ).
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Example 3.13 (Penalized complexity prior for autoregressive model of order 1). Sørbye and
Rue (2017) derive penalized complexity prior for the Gaussian stationary AR(1) model with
autoregressive parameter ϕ ∈ (−1, 1), where Yt | Yt−1, ϕ, σ

2 ∼ Gauss(ϕYt−1, σ
2). There are

two based models that could be of interest: one with ϕ = 0, corresponding to a memoryless
model with no autocorrelation, and a static mean ϕ = 1 for no change in time; note that the
latter is not stationary. For the former (ϕ = 0), the penalized complexity prior is

p(ϕ | λ) = λ

2 exp
[
−λ

{
− ln(1− ϕ2)

}1/2
] |ϕ|

(1− ϕ2) {− ln(1− ϕ2)}1/2 .

One can set λ by considering plausible values by relating the parameter to the variance of
the one-step ahead forecast error.

Remark 3.1 (Variance parameters in hierarchical models). Gaussian components are
widespread: not only for linear regression models, but more generally for the specification
of random effects that capture group-specific effects, residuals spatial or temporal variabil-
ity. In the Bayesian paradigm, there is no difference between fixed effects β and the random
effect parameters: both are random quantities that get assigned priors, but we will treat
these priors differently.

The reason why we would like to use a penalized complexity prior for a random effect, say
αj ∼ Gauss(0, ζ2), is because we don’t know a prior if there is variability between groups.
The inverse gamma prior for ζ, ζ ∼ InvGamma(ϵ, ϵ) does not have a mode at zero unless it
is improper with ϵ → 0. Generally, we want our prior for the variance to have significant
probability density at the null ζ = 0. The penalized complexity prior is not the only sensible
choice. Posterior inference is unfortunately sensitive to the value of ϵ in hierarchical models
when the random effect variance is close to zero, and more so when there are few levels for
the groups since the relative weight of the prior relative to that of the likelihood contribution
is then large.

Example 3.14 (Student-t prior for variance components). Gelman (2006) recommends a
Student-t distribution truncated below at 0, with low degrees of freedom. The rationale
for this choice comes from the simple two level model with nj independent in each group
j = 1, . . . , J : for observation i in group j,

Yij ∼ Gauss(µ+ αj , σ
2),

αj ∼ Gauss(0, τ2
α),

The conditionally conjugate prior p(τ | α, µ, σ) is inverse gamma. Standard inference with
this parametrization is however complicated, because there is strong dependence between
parameters.
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To reduce this dependence, one can add a parameter, taking αj = ξηj and τα = |ξ|τη; the
model is now overparametrized. Suppose ηj ∼ Gauss(0, τ2

η ) and consider the likelihood
conditional on µ, ηj : we have that (yij − µ)/ηj ∼ Gauss(ξ, σ2/ηj) so conditionally conjugate
priors for ξ and τη are respectively Gaussian and inverse gamma. This translates into a
prior distribution for τα which is that of the absolute value of a noncentral Student-t with
location, scale and degrees of freedom ν. If we set the location to zero, the prior puts high
mass at the origin, but is heavy tailed with polynomial decay. We recommend to set degrees
of freedom so that the variance is heavy-tailed, e.g., ν = 3. While this prior is not conjugate,
it compares favorably to the inv.gamma(ϵ, ϵ).

, Summary:

• Priors are distributions for the parameters. In multi-parameter models, they can
be specified through a joint distribution or assumed independent apriori (which
does not translate into independence a posteriori).

• Priors are not invariant to reparametrization, except when they are constructed
with this property (e.g., Jeffrey’s prior or penalized-complexity priors).

• Improper priors may lead to improper posterior.
• Priors that restrict the domain of θ will also restrict the posterior. These are

useful to avoid regions that are implausible or impossible.
• Physical knowledge of the system can be helpful to specify sensible values of the

prior through moment matching.
• Conjugate priors facilitate derivations, but are mostly chosen for convenience.
• Generally, the prior has constant weight O(1), relative to O(n) for the likelihood.

The posterior is thus dominated in most circumstances by the likelihood.
• We can compute the prior to posterior gain by comparing their density (if the

prior is proper).
• For many (conjugate) priors, we can view some function of the parameter as

given a prior number of observations (in Gaussian models, binomial, gamma,
etc.)

• Informative priors can be used to specify expert knowledge about the system.
This will impact the posterior, but often in a sensible manner, thereby regulariz-
ing or improving posterior inference.

67





4 Monte Carlo methods

There are two major approaches to handling the problem of the unknown normalizing
constant: deterministic and stochastic approximations. The former includes Laplace and
nested Laplace approximations, variational methods and expectation propagation. This
chapter covers the latter, stochastic approximations, and focuses on implementation of
basic Markov chain Monte Carlo algorithms. The simulation algorithms circumvent the
need to calculate the normalizing constant of the posterior entirely. We present several
examples of implementations, several tricks for tuning and diagnostics of convergence.

We have already used Monte Carlo methods to compute posterior quantities of interest
in conjugate models. Outside of models with conjugate priors, the lack of closed-form
expression for the posterior precludes inference. Indeed, calculating the posterior proba-
bility of an event, or posterior moments, requires integration of the normalized posterior
density and thus knowledge of the marginal likelihood. It is seldom possible to sample in-
dependent and identically distributed (iid) samples from the target, especially if the model
is high dimensional: rejection sampling and the ratio of uniform method are examples
of Monte Carlo methods which can be used to generate iid draws. Ordinary Monte Carlo
methods suffer from the curse of dimensionality, with few algorithms are generic enough
to be useful in complex high-dimensional problems. Instead, we will construct a Markov
chain with a given invariant distribution corresponding to the posterior. Markov chain
Monte Carlo methods generate correlated draws that will target the posterior under suitable
conditions.1

4.1 Monte Carlo methods

Monte Carlo methods relies on the ability to simulate random variable. If the quantile
function admits a closed-form, we can use this to simulation. Recall that if a random
variable X has distribution function F, then we can define it’s generalized inverse

F−1(u) = inf{x : f(x) ≥ u}

and ifG is continuous, then F (X) ∼ unif(0, 1).We can thus simulate data using the quantile
function F−1(U), with U ∼ unif(0, 1).

1While we won’t focus on the fine prints of the contract, there are conditions for validity and these matter!
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Example 4.1 (Simulation of exponential variates). The distribution function of Y ∼ expo(λ)
is F (y) = exp(−λy), so the quantile function is F−1(u) = − log(u)/λ

n <- 1e4L
-log(runif(n)) / 2 #simulate expo(2)

Theorem 4.1 (Fundamental theorem of simulation). Consider a d-variate random vector
X, independently U ∼ unif(0, 1) and c > 0 any positive constant. If (X, U) is uniformly
distributed on the set

Af = {(x, u) : 0 ≤ u ≤ cf(x)},

thenX has density f(x). Conversely, ifX has density f(x) and U ∼ unif(0, 1) independently,
then [X, cUf(X)] is uniformly distributed on Af

We can thus view f as the marginal density of X since f(x) =
∫ f(x)

0 du. If we can simu-
late uniformly from Af , then, we can discard the auxiliary variable u. See Devroye (1986),
Theorem 3.1 for a proof.

The fundamental theorem of simulation underlies rejection sampling, the generalized
ratio of uniform and slice sampling. The density function needs only to be known up to
normalizing constant thanks to the arbitrariness of c, which will also allow us to work with
unnormalized density functions.

Proposition 4.1 (Rejection sampling). Rejection sampling (also termed accept-reject al-
gorithm) samples from a random vector with density p(·) by drawing candidates from a
proposal with density q(·) with nested support, supp(p) ⊆ supp(q). The density q(·) must be
such that p(θ) ≤ Cq(θ) for C ≥ 1 for all values of θ in the support of p(·).

1. Generate θ⋆ from the proposal with density q and U ∼ U(0, 1)
2. Compute the ratio R← p(θ⋆)/q(θ⋆).
3. If R ≥ CU, return θ, else go back to step 1.

Rejection sampling requires the proposal q to have a support at least as large as that of
p and resemble closely the density. It should be chosen so that the upper bound C is as
sharp as possible and close to 1. The dominating density q must have heavier tails than the
density of interest. The expected number of simulations needed to accept one proposal is
C. Finally, for the method to be useful, we need to be able to simulate easily and cheaply
from the proposal. The optimal value of C is C = supθ p(θ)/q(θ). This quantity may be
obtained by numerical optimization, by finding the mode of the ratio of the log densities if
the maximum is not known analytically.
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Figure 4.1: Illustration of the fundamental theorem of simulation. All points in blue below
the density curve belong to Af .

Example 4.2 (Truncated Gaussian distribution). Consider the problem of sampling from a
Gaussian distribution Y ∼ Gauss(µ, σ2) truncated in the interval [a, b], which has density

f(x;µ, σ, a, b) = 1
σ

ϕ
(

x−µ
σ

)
Φ{(b− µ)/σ} − Φ{(a− µ)/σ} .

where ϕ(·),Φ(·) are respectively the density and distribution function of the standard Gaus-
sian distribution.

Since the Gaussian is a location-scale family, we can reduce the problem to sampling X
from a standard Gaussian truncated on α = (a−µ)/σ and β = (b−µ)/σ and back transform
the result as Y = µ+ σX.

A crude accept-reject sampling algorithm would consider sampling from the same un-
truncated distribution with density g(X) = σ−1ϕ{(x− µ)/σ}, and the acceptance ratio is
C−1 = {Φ(β)− Φ(α)}. We thus simply simulate points from the Gaussian and accept any
that falls within the bounds.
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Figure 4.2: Target density (full) and scaled proposal density (dashed): the vertical segment
at θ = 1 shows the percentage of acceptance for a uniform slice under the scaled
proposal, giving an acceptance ratio of 0.58.

# Standard Gaussian truncated on [0,1]
candidate <- rnorm(1e5)
trunc_samp <- candidate[candidate >= 0 & candidate <= 1]
# Acceptance rate
length(trunc_samp)/1e5

[1] 0.34174

# Theoretical acceptance rate
pnorm(1)-pnorm(0)

[1] 0.3413447
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We can of course do better: if we consider a random variable with distribution function F,
but truncated over the interval [a, b], then the resulting distribution function is

F (x)− F (a)
F (b)− F (a) , a ≤ x ≤ b,

and we can invert this expression to get the quantile function of the truncated variable in
terms of the distribution function F and the quantile function F−1 of the original untrun-
cated variable.

For the Gaussian, this gives

X ∼ Φ−1 [Φ(a) + {Φ(b)− Φ(a)}U ]

for U ∼ U(0, 1). Although the quantile and distribution functions of the Gaussian, pnorm
and qnorm in R, are very accurate, this method will fail for rare event simulation because
it will return Φ(x) = 0 for x ≤ −39 and Φ(x) = 1 for x ≥ 8.3, implying that a ≤ 8.3 for this
approach to work (Botev and L’Écuyer 2017).

Consider the problem of simulating events in the right tail for a standard Gaussian where
a > 0; Marsaglia’s method (Devroye 1986, 381), can be used for that purpose. Write the
density of the Gaussian as f(x) = exp(−x2/2)/c1, where c1 =

∫∞
a exp(−z2/2)dz, and note

that

c1f(x) ≤ x

a
exp

(
−x

2

2

)
= a−1 exp

(
−a

2

2

)
g(x), x ≥ a;

where g(x) is the density of a Rayleigh variable shifted by a, which has distribution function
G(x) = 1−exp{(a2−x2)/2} for x ≥ a.We can simulate such a random variateX through the
inversion method. The constant C = exp(−a2/2)(c1a)−1 approaches 1 quickly as a→∞.

The accept-reject thus proceeds with

1. Generate a shifted Rayleigh above a, X ← {a2 − 2 log(U)}1/2 for U ∼ U(0, 1)
2. Accept X if XV ≤ a, where V ∼ U(0, 1).

Should we wish to obtain samples on [a, b], we could instead propose from a Rayleigh
truncated above at b (Botev and L’Écuyer 2017).

a <- 8.3
niter <- 1000L
X <- sqrt(aˆ2 + 2*rexp(niter))
samp <- X[runif(niter)*X <= a]
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For a given candidate density g which has a heavier tail than the target, we can resort to
numerical methods to compute the mode of the ratio f/g and obtain the bound C; see
Albert (2009), Section 5.8 for an insightful example. A different use for the simulations is
to approximate integrals numerically. Consider a target distribution with finite expected
value. The law of large numbers guarantees that, if we can draw observations from our
target distribution, then the sample average will converge to the expected value of that
distribution, as the sample size becomes larger and larger, provided the expectation is finite.
We can thus compute the probability of any event or the expected value of any (integrable)
function by computing sample averages; the cost to pay for this generality is randomness.

Proposition 4.2 (Generalized ratio-of-uniform). An exact simulation algorithm is described
in Kinderman and Monahan (1977) and extended Wakefield, Gelfand, and Smith (1991)
for random number generation in low dimensions. Consider a d-vector X with density
cf(x) : Rd → R+ with support S ⊆ Rd, and c > 0 is the (possibly unknown) normalizing
constant. Consider variables u = (u0, u1, . . . , ud) uniformly distributed over the set

B(r) =
{

(u0, u1, . . . , ud) ∈ Rd+1 : 0 < u0 ≤
[
f

(
u1
ur

0
, . . . ,

ud

ur
0

)]1/(rd+1)
}

for some positive radius parameter r ≥ 0. The measure of the set B(r) = c−1(1 + rd)−1. By
Theorem 4.1, (u1/u

r
0, . . . , ud/u

r
0) is drawn from the renormalized density cf(x). The challenge

lies in simulating u uniformly over Br, but we can use accept-reject if the later is enclosed
in a bounding box B, keeping only samples that satisfy the constraints. If, over S, f(x)
and xrd+1

i f(x)r for i = 1, . . . , d are bounded then we can enclose B(r) within the (d + 1)-
dimensional bounding box

B = {aj(r) ≤ ui ≤ bj(r); j = 0, . . . , d},

with a0(r) = 0. The parameters of the bounding box are

b0(r) = sup
x∈S

f(x)1/(rd+1),

aj(r) = inf
x∈S
xi≤0

xi f(x)r/(rd+1),

bj(r) = sup
x∈S
xi≥0

xi f(x)r/(rd+1),

The probability of acceptance pa(d, r) of a point simulated uniformly over the bounding box
depends on both the radius and the dimension and is

pa(d, r) = c

(rd+ 1) b0(r)
d∏

j=1
{bj(r)− aj(r)}

−1

.
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Wakefield, Gelfand, and Smith (1991) propose using r = 1/2 and relocating the mode of f to
the origin increase the acceptance rate. Northrop proposes to use a Box–Cox transformation
(Box and Cox 1964) together with a rotation in the software Northrop (2024) to improve the
acceptance rate. The bounding box may exist only for certain values of r; see the rust package
vignette for technical details and examples.

Example 4.3 (Ratio-of-uniform for insurance loss). We use the ratio-of-uniform algorithm
presented in Proposition 4.2 for the data from Example 2.6 to generate draws from the
posterior. We illustrate below the rust package with a user-specified prior and posterior. We
fit a generalized Pareto distribution Y ∼ gen.Pareto(τ, ξ) to exceedances above 10 millions
krones to the danish fire insurance data, using a truncated maximal data information prior
p(τ, ξ) ∝ τ−1 exp(−ξ + 1)I(ξ > −1).

data(danish, package = "evir")
# Extract threshold exceedances
exc <- danish[danish > 10] - 10
# Create a function for the log prior
logmdiprior <- function(par, ...){

if(isTRUE(any(par[1] <= 0, par[2] < -1))){
return(-Inf)

}
-log(par[1]) - par[2]

}
# Same for log likelihood, assuming independent data
loglik_gp <- function(par, data = exc, ...){

if(isTRUE(any(par[1] <= 0, par[2] < -1))){
return(-Inf)

}
sum(mev::dgp(x = data, scale = par[1], shape = par[2], log = TRUE))

}
logpost <- function(par, ...){

logmdiprior(par) + loglik_gp(par)
}
# Sampler using ratio-of-uniform method
ru_output <- rust::ru(

logf = logpost, # log posterior function
n = 10000, # number of posterior draws
d = 2, # dimension of the parameter vector
init = mev::fit.gpd(danish, thresh = 10)$par, #mle
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4 Monte Carlo methods

lower = c(0, -1))
## Acceptance rate
# ru_output$pa
## Posterior samples
postsamp <- ru_output$sim_vals

Even without modification, the acceptance rate is 52%, which is quite efficient in the context.
The generalized Pareto approximation suggests a very heavy tail: values of ξ ≥ 1 correspond
to distributions with infinite first moment, and those with ξ ≥ 1/2 to infinite variance.

0.5
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ξ
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1

2

10 100 1000
insurance claims (in millions krones)
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ity

Figure 4.3: Scatterplot of posterior samples from the generalized Pareto model applied
to Danish fire insurance losses above 10 millions krones, with maximal data
information prior (left) and posterior predictive density on log scale (right).

Proposition 4.3 (Monte Carlo integration). Specifically, suppose we are interested in the
average E{g(X)} of X with density or mass function f supported on X for some function g.
Monte Carlo integration proceeds by drawingB independent samples x1, . . . , xB from density
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p and evaluating the empirical average of g, with

E{g(X)} =
∫
X
g(x)p(x)dx ≈ Ê{g(X)} = 1

B

B∑
b=1

g(xb).

By the law of large number, this estimator is convergent when B → ∞ provided that the
expectation is finite. If the variance of g(X) is finite, we can approximate the latter by the
sample variance of the simple random sample and obtain the Monte Carlo standard error of
the estimator

se2[Ê{g(X)}] = 1
B(B − 1)

B∑
b=1

[
g(xb)− Ê{g(X)}

]2
.

We can also use a similar idea to evaluate the integral of g(X) if X has density p, by drawing
instead samples from q. This is formalized in the next proposition.

Proposition 4.4 (Importance sampling). Consider a random variable X with density p(x)
supported on X . We can calculate the integral Ep{g(X)} =

∫
X g(x)p(x)dx by considering

instead draws from a density q(·) with nested support, X ⊆ supp(q). Then,

E{g(X)} =
∫
X
g(x)p(x)

q(x)q(x)dx

and we can proceed similarly by drawing samples from q. This is most useful when the
variance is finite, which happens if the integral∫

X
g2(x)p

2(x)
q(x) dx <∞.

An alternative Monte Carlo estimator, which is biased but has lower variance, is obtained by
drawing independent x1, . . . , xB from q and taking instead the weighted average of

Ẽ{g(X)} = B−1∑B
b=1wbg(xb)

B−1∑B
b=1wb

.

with weights wb = p(xb)/q(xb). The latter equal 1 on average, so one could omit the denomi-
nator without harm. The standard error for the independent draws equals

se2[Ẽ{g(X)}] =
∑B

b=1w
2
b

[
g(xb)− Ẽ{g(X)}

]2
(∑B

b=1wb

)2 .
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Example 4.4 (Importance sampling for the variance of a beta distribution). Consider
X ∼ beta(α, α) for α > 1 with E(X) = 0.5 since the density is symmetric. We tackle the
estimation of the variance, which can be written as E{(X − 0.5)2}. While we can easily
derive the theoretical expression, equal to Va(X) = {4 · (2α+ 1)}−1, we can also use Monte
Carlo integration as proof of concept.

Rather than simulate directly from our data generating mechanism, we can use an impor-
tance sampling density q(x) which puts more mass away from 0.5 where the integral is
zero. Consider the equiweighted mixture of beta(α, 3α) and beta(3α, α), which is bimodal.
Figure 4.4 shows the function we wish to integrate, the density and the importance sampling
density, and the weighting function p(x)/q(x) of the first 50 observations drawn from q(x)
with α = 1.5. The variance ratio shows an improvement of more than 9% for the same
Monte Carlo sample size.

B <- 2e4L
alpha <- 1.5
factor <- 3
# Mode at the mean 0.5
X0 <- rbeta(n = B, alpha, alpha)
px <- function(x){dbeta(x, alpha, alpha)}
# Importance sampling density - mixture of two betas (alpha, factor*alpha)
X1 <- ifelse(runif(B) < 0.5, rbeta(B, alpha, factor*alpha), rbeta(B, factor*alpha, alpha))
qx <- function(x){0.5*dbeta(x, alpha, factor*alpha) + 0.5*dbeta(x, factor*alpha, alpha)}
# Function to integrate - gives variance of a symmetric beta distribution
g <- function(x){(x - 0.5)ˆ2}
# Weights for importance sampling
w <- px(X1)/qx(X1)
# Monte Carlo integration
mc_est <- mean(g(X0))
mc_var <- var(g(X0))/B
# Importance sampling weighted mean and variance
is_est <- weighted.mean(g(X1), w = w) # equivalent to mean(g(X1)*w)/mean(w)
is_var <- sum(wˆ2*(g(X1) - is_est)ˆ2)/ (sum(w)ˆ2)
# True value for the beta variance
th_est <- 1/(4*(2*alpha+1))
# Point estimates and differences
round(c(true = th_est, "monte carlo" = mc_est, "importance sampling" = is_est),4)

true monte carlo importance sampling
0.0625 0.0620 0.0623
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# Ratio of std. errors for means
mc_var/is_var # value > 1 means that IS is more efficient

[1] 1.080627
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Figure 4.4: Monte Carlo integration with importance sampling for the variance of a sym-
metric beta distribution. Top left: variance function f(x) = (x− 0.5)2. Top right:
density of beta(α, α) (orange) and importance sampling mixture distribution
(blue). Bottom left: weighting function and weights for 50 first importance sam-
pling draws. Bottom right: sample paths of Monte Carlo mean with Wald 95%
confidence intervals.

Example 4.5 (Expectations of functions of a gamma variate). Consider X ∼ gamma(α, β), a
gamma distribution with shape α and rate β. We can compute the probability that X < 1
easily by Monte Carlo since Pr(X < 1) = E{I(X < 1)} and this means we only need
to compute the proportion of draws less than one. We can likewise compute the mean
g(x) = x or the variance as E(X2)− {E(X)}2.
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Suppose we have drawn a Monte Carlo sample of size B. If the function g(·) is square
integrable,2 with variance σ2

g , then a central limit theorem applies. In large samples and
for independent observations, our Monte Carlo average µ̂g = B−1∑B

b=1 g(Xi) has variance
σ2

g/B. We can approximate the unknown variance σ2
g by it’s empirical counterpart.3. Note

that, while the variance decreases linearly with B, the choice of g impacts the speed of
convergence: for our examples, we can compute

σ2
g = Pr(X ≤ 1){1− Pr(X ≤ 1)} = 0.0434

(left) and σ2
g = α/β2 = 1/8 (middle plot).

Figure 4.5 shows the empirical trace plot of the Monte Carlo average (note the
√
B x-

axis scale!) as a function of the Monte Carlo sample size B along with 95% Wald-based
confidence intervals (gray shaded region), µ̂g ± 1.96× σg/

√
B. We can see that the ‘likely

region’ for the average shrinks with B.

What happens if our function is not integrable? The right-hand plot of Figure 4.5 shows
empirical averages of g(x) = x−1, which is not integrable if α < 1. We can compute the
empirical average, but the result won’t converge to any meaningful quantity regardless of
the sample size. The large jumps are testimonial of this.

Example 4.6 (Tail probability of a Gaussian distribution). Consider estimation of the prob-
ability that a standard Gaussian random variable exceeds a = 4, which is p = 1− Φ(a). We
can use standard numerical approximations to the distribution function implemented in
any software package, which shows this probability is roughly 1/31574.

If we consider a truncated Gaussian above a, then the integral of I(x > a) is one (since the
truncated Gaussian is a valid density). Thus, we can estimate rather the normalizing con-
stant by simulating standard Gaussian and comparing this with the importance sampling
estimator, using the knowledge of the value of the integral to derive rather the normalizing
constant. Monte Carlo integration from with B = 106 is demonstrated using the following
code

a <- 4
B <- 1e6L # 1 million draws
exact <- pnorm(a, lower.tail = FALSE)
# Vanilla Monte Carlo
X <- rnorm(B)
mc <- mean(X >= a)

2Meaning E{g2(X)} < ∞, so the variance of g(X) exists.
3By contrasts, if data are identically distributed but not independent, more care is needed.
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Figure 4.5: Running mean trace plots for g(x) = I(x < 1) (left), g(x) = x (middle) and
g(x) = 1/x (right) for a Gamma distribution with shape 0.5 and rate 2, as a
function of the Monte Carlo sample size.

# Importance sampling with Rayleigh
Y <- sqrt(aˆ2 + 2*rexp(B))
drayleigh <- function(x, a){ x*exp((aˆ2-xˆ2)/2)}
is <- mean(dnorm(Y)/drayleigh(Y, a = a))
# Relative error
c(mc = (mc - exact)/exact, is = (is - exact)/exact)

mc is
-2.119405e-02 -2.927613e-05

We can see that the relative error for importance sampling is three orders of magnitude
smaller than that from vanilla Monte Carlo.
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4.2 Markov chains

Before going forward with algorithms for sampling, we introduce some terminology that
should be familiar to people with a background in time series analysis. The treatment of
Markov chains in this chapter is rather loose and non-formal. Readers can refer to Chapter
6 of Robert and Casella (2004) for a more rigourous exposition.

Definition 4.1 (Discrete-time stochastic process). A discrete-time stochastic process is a
random sequences whose elements are part of some set (finite or countable), termed state
space S.We can encode the probability of moving from one state to the next via a transition
matrix, whose rows contain the probabilities of moving from one state to the next and thus
sum to one.

Definition 4.2 (Stationarity). A stochastic (i.e., random) process is (strongly) stationary if
the distribution of {X1, . . . , Xn} is the same as that of {Xt+1, . . . Xn+t} for any value of t and
given n.

It is weakly stationary if the expected value is constant, meaning E(Xt) = µ for all time
points t, and the covariance at lag h, Cov(Xt, Xt+h) = γh, does not depend on t. Strong
stationarity implies weak stationarity.

Definition 4.3 (Markov property). A stochastic process is markovian if it satisfies the Markov
property: given the current state of the chain, the future only depends on the current state
and not on the past.

Definition 4.4 (Ergodicity). Let {Yt} is a weakly stationary sequence with mean E(Yt) = µ
and γh = Cov(Yt, Yt+h). Then, if the autocovariance series is convergent, meaning

∞∑
t=0
|γh| <∞,

then {Yt} is ergodic for the mean and Y
p→ µ. In other words, the ergodic theorem is a

law of large numbers for stochastic processes that allows for serial dependence between
observations, provided the latter is not too large.

Ergodicity means that two segments of a time series far enough apart act as independent.

Proposition 4.5 (Ergodicity and transformations). Any transformation g(·) of a stationary
and ergodic process {Yt} retains the ergodicity properties, so g = T−1∑T

t=1 g(Yt)→ E{g(Yt)}
as T →∞.
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Autoregressive processes are not the only ones we can consider, although their simplicity
lends itself to analytic calculations.

Example 4.7 (Stationarity and AR(1)). Consider a Gaussian AR(1) model with conditional
mean and variance EYt|Yt−1(Yt) = µ + ϕ(Yt−1 − µ) and VaYt|Yt−1(Yt) = σ2. Using the law
of iterated expectation and variance, if the process is weakly stationary, then EYt(Yt) =
EYt−1(Yt−1)

EYt(Yt) = EYt−1

{
EYt|Yt−1(Yt)

}
= µ(1− ϕ) + ϕEYt−1(Yt−1)

and so the unconditional mean is µ. For the variance, we have

EYt(Yt) = EYt−1

{
VaYt|Yt−1(Yt)

}
+ VaYt−1

{
EYt|Yt−1(Yt)

}
= σ2 + VaYt−1 {µ+ ϕ(Yt−1 − µ)}
= σ2 + ϕ2VaYt−1(Yt−1).

and we recover the formulas from Example 1.17.

The covariance at lag k, in terms of innovations, gives

γk = Co(Yt, Yt−k) = Va(ϕYt−1, Yt−k) + Va(εt, Yt−k) = ϕγk−1

so by recursion γk = ϕkVa(Yt).

The AR(1) process is first-order Markov since the conditional distribution p(Yt |
Yt−1, . . . , Yt−p) equals p(Yt | Yt−1).

When can we use output from a Markov chain in place of independent Monte Carlo draws?
The assumptions laid out in the ergodic theorem, which provides guarantees for the con-
vergence of sample average, are that the chain is irreducible. If the chain is also acyclic, the
chain has a unique stationary distribution.

We can run a Markov chain by sampling an initial state X0 at random from S and then
consider the transitions from the conditional distribution, sampling p(Xt | Xt−1). This
results in correlated draws, due to the reliance on the previous observation.

Proposition 4.6 (Effective sample size). Intuitively, a sample of correlated observations
carries less information than an independent sample of draws. If we want to compute sample
averages Y T = (Y1 + · · ·+ YT )/T, the variance will be

Va
(
Y T

)
= 1
T 2

T∑
t=1

Va(Yt) + 2
T 2

T −1∑
t=1

T∑
s=t+1

Co(Yt, Ys).
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In the independent case, the covariance is zero so we get the sum of variances. If the process is
stationary, the covariance at lag k are the same regardless of the time index and the variance
is some constant, say σ2; this allows us to simplify calculations,

Va(Y T ) = σ2
{

1 + 2
T

T −1∑
t=1

(T − t)Cor(YT −k, YT )
}
.

Denote the lag-k autocorrelation Cor(Yt, Yt+k) = ρk. Under technical conditions4, a central
limit theorem applies and we get an asymptotic variance for the mean of

lim
T →∞

TVa
(
Y T

)
= σ2

{
1 + 2

∞∑
t=1

ρt

}
.

This statement holds only if we start with draws from the stationary distribution, otherwise
bets are off.

We need the effective sample size of our Monte Carlo averages based on a Markov chain of
length B to be sufficient for the estimates to be meaningful.

Definition 4.5 (Effective sample size). Loosely speaking, the effective sample size is the
equivalent number of observations if the marginal posterior draws were independent. We
define it as

ESS = B

{1 + 2
∑∞

t=1 ρt}
(4.1)

where ρt is the lag t correlation. The relative effective sample size is simply the fraction
of the effective sample size over the Monte Carlo number of replications: small values
of ESS/B indicate pathological or inefficient samplers. If the ratio is larger than one, it
indicates the sample is superefficient (as it generates negatively correlated draws).

In practice, we replace the unknown autocorrelations by sample estimates and truncate
the series in Equation 4.1 at the point where they become negligible — typically when the
consecutive sum of two consecutive becomes negative; see Section 1.4 of the Stan manual or
Section 1.10.2 of Geyer (2011) for details.

4Geometric ergodicity and existence of moments, among other things.
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4.2.1 Discrete Markov chains

Consider a Markov chain on integers {1, 2, 3}. Because of the Markov property, the history
of the chain does not matter: we only need to read the value i = Xt−1 of the state and pick
the ith row of the transition matrix P to know the probability of the different moves from the
current state.

Irreducible means that the chain can move from anywhere to anywhere, so it doesn’t get stuck
in part of the space forever. A transition matrix such as P1 below describes a reducible Markov
chain, because once you get into state 2 or 3, you won’t escape. With reducible chains, the
stationary distribution need not be unique, and so the target would depend on the starting
values.

Cyclical chains loop around and visit periodically a state: P2 is an instance of transition
matrix describing a chain that cycles from 1 to 3, 3 to 2 and 2 to 1 every three iteration. An
acyclic chain is needed for convergence of marginals.

P1 =

0.5 0.3 0.2
0 0.4 0.6
0 0.5 0.5

 , P2 =

0 0 1
1 0 0
0 1 0

 .
If a chain is irreducible and aperiodic, it has a unique stationary distribution and the limiting
distribution of the Markov chain will converge there. For example, consider a transition P3
on 1, . . . , 5 defined as

P3 =


2
3

1
3 0 0 0

1
6

2
3

1
6 0 0

0 1
6

2
3

1
6 0

0 0 1
6

2
3

1
6

0 0 0 1
3

2
3


The stationary distribution is the value of the row vector p, such that p = pP for transition
matrix P: we get p1 = (0, 5/11, 6/11) for P1, (1/3, 1/3, 1/3) for P2 and (1, 2, 2, 2, 1)/8 for P3.

While the existence of a stationary distribution require aperiodicity, the latter is not really
important from a computational perspective as ergodicity holds without it.

Figure 4.7 shows the path of the random walk driven by P3 and the empirical proportion of
the time spent in each state, as time progress. Since the Markov chain has a unique stationary
distribution, we expect the sample proportions to converge to the stationary distribution
proportions.

Since we will be dealing with continuous random variables in later chapters, we use transition
kernels rather than transition matrices, but the intuition will carry forward.
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Figure 4.6: Graphical representation of the transition matrix P1.

Definition 4.6 (Transition kernel). A transition kernel K(θcur,θprop) proposes a move from
the current value θcur to a proposal θprop.

Example 4.8 (Effective sample size of first-order autoregressive process). The lag-k correla-
tion of the stationary autoregressive process of order 1 is ρk = ϕk, so summing the series
gives an effective sample size for B draws of B(1− ϕ)/(1 + ϕ). The price to pay for having
correlated samples is inefficiency: the higher the autocorrelation, the larger the variability
of our mean estimators.

We can see from Figure 4.8 that, when the autocorrelation is positive (as will be the cause in
all applications of interest), we will suffer from variance inflation. To get the same variance
estimates for the mean with an AR(1) process with ϕ = 0.75 than with an iid sample, we
would need 7 times as many observations: this is the prize to pay for autocorrelation.

Proposition 4.7 (Uncertainty estimation with Markov chains). With a simple random
sample containing independent and identically distributed observations, the standard error
of the sample mean is σ/

√
n and we can use the empirical standard deviation σ̂ to estimate

the first term. For Markov chains, the correlation prevents us from using this approach. The
output of thecoda package are based on fitting a high order autoregressive process to the
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Figure 4.7: Discrete Markov chain on integers from 1 to 5, with transition matrix P3, with
traceplot of 1000 first iterations (left) and running mean plots of sample propor-
tion of each state visited per 100 iterations (right).

Markov chain and using the formula of the unconditional variance of the AR(p) to obtain
the central limit theorem variance. An alternative method recommended by Geyer (2011)
and implemented in his R package mcmc, is to segment the time series into batch, compute
the means of each non-overlapping segment and use this standard deviation with suitable
rescaling to get the central limit variance for the posterior mean. Figure 4.9 illustrate the
method of batch means.

1. Break the chain of length B (after burn in) in K blocks of size≈ K/B.
2. Compute the sample mean of each segment. These values form a Markov chain and

should be approximately uncorrelated.
3. Compute the standard deviation of the segments mean. Rescale byK−1/2 to get standard

error of the global mean.

Why does the approach work? If the chain samples from the stationary distribution, all
samples have the same mean. If we partition the sample into long enough, the sample mean
of each blocks should be roughly independent (otherwise we could remove an overlapping
portion). We can then compute the empirical standard deviation of the estimators. We can
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Figure 4.8: Scaled asymptotic variance of the sample mean for a stationary autoregressive
first-order process with unit variance (full line) and a corresponding sample
of independent observations with the same marginal variance (dashed line).
The right panel gives the ratio of variances for a restricted range of positive
correlation coefficients.

then compute the overall mean and use a scaling argument to relate the variability of the
global estimator with the variability of the means of the smaller blocks.
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Figure 4.9: Calculation of the standard error of the posterior mean using the batch method.
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5 Metropolis–Hastings algorithm

The Markov chain Monte Carlo revolution in the 1990s made Bayesian inference main-
stream by allowing inference for models when only approximations were permitted, and
coincided with a time at which computers became more widely available. The idea is
to draw correlated samples from a posterior via Markov chains, constructed to have the
posterior as invariant stationary distribution.

, Learning objectives:

At the end of the chapter, students should be able to

• implement a Metropolis–Hastings algorithm to draw samples from the posterior
• tune proposals to obtain good mixing properties.

Named after Metropolis et al. (1953), Hastings (1970), its relevance took a long time to gain
traction in the statistical community. The idea of the Metropolis–Hastings algorithm is to
construct a Markov chain targeting a distribution p(·).

Proposition 5.1 (Metropolis–Hastings algorithm). We consider from a density function p(θ),
known up to a normalizing factor not depending on θ. We use a (conditional) proposal
density q(θ | θ∗) which has non-zero probability over the support of p(·), as transition kernel
to generate proposals.

The Metropolis–Hastings build a Markov chain starting from an initial value θ0 :

1. draw a proposal value θ⋆
t ∼ q(θ | θt−1).

2. Compute the acceptance ratio

R = p(θ⋆
t )

p(θt−1)
q(θt−1 | θ⋆

t )
q(θ⋆

t | θt−1) (5.1)

3. With probability min{R, 1}, accept the proposal and set θt ← θ⋆
t , otherwise set the value

to the previous state, θt ← θt−1.

The following theoretical details provided for completeness only.
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Definition 5.1 (Detailed balance). If our target is p(·), then the Markov chain satisfies the
detailed balance condition with respect to p(·) if

K(θcur,θprop)p(θcur) = K(θprop,θcur)p(θprop).

If a Markov chain satisfies the detailed balance with respect to p(·), then the latter is neces-
sarily the invariant density of the Markov chain and the latter is reversible.

Proposition 5.2 (Metropolis–Hastings satisfies detailed balance). The Metropolis–Hastings
algorithm has transition kernel for a move from x to a proposal y

K(x,y) = α(x,y)q(y | x) + {1− r(x)}I(y = x)

where r(x) =
∫
α(x,y)q(y | x)dy is the average probability of acceptance of a move from x,

I(· = x) is a point mass at x, and α(·) is defined on the next slide.

One can show that the Metropolis–Hastings algorithm satisfies detailed balanced; see, e.g.,
Theorem 7.2 of Robert and Casella (2004).

If θt is drawn from the posterior, then the left hand side is the joint density of (θt,θt+1) and
the marginal distribution obtained by integrating over θt,∫

f(θt+1 | θt)p(θt | y)dθt =
∫
f(θt | θt+1)p(θt+1 | y)dθt

= p(θt+1 | y)

and any draw from the posterior will generate a new realization from the posterior. It also
ensures that, provided the starting value has non-zero probability under the posterior, the
chain will converge to the stationarity distribution (albeit perhaps slowly).

Remark (Interpretation of the algorithm). If R > 1, the proposal has higher density and we
always accept the move. If the ratio is less than one, the proposal is in a lower probability
region, we accept the move with probability R and set θt = θ⋆

t ; if we reject, the Markov
chain stays at the current value, which induces autocorrelation. Since the acceptance
probability depends only on the density through ratios, we can work with unnormalized
density functions and this is what allows us, if our proposal density is the (marginal)
posterior of the parameter, to obtain approximate posterior samples without having to
compute the marginal likelihood.

Remark (Blank run). To check that the algorithm is well-defined, we can remove the log
likelihood component and run the algorithm: if it is correct, the resulting draws should be
drawn from the prior provided the latter is proper (Green 2001, 55).

92



Remark (Symmetric proposals). Suppose we generate a candidate sample θ⋆
t from a sym-

metric distribution q(· | ·) centered at θt−1, such as the random walk θ⋆
t = θt−1 + Z where

Z has a symmetric distribution. Then, the proposal density ratio cancels so need not be
computed in the Metropolis ratio of Equation 5.1.

Remark (Calculations). In practice, we compute the log of the acceptance ratio, lnR, to
avoid numerical overflow. If our target is log posterior density, we have

ln
{
p(θ⋆

t )
p(θt−1)

}
= ℓ(θ⋆

t ) + ln p(θ⋆
t )− ℓ(θt−1)− ln p(θt−1)

and we proceed likewise for the log of the ratio of transition kernels. We then compare
the value of lnR (if less than zero) to log(U), where U ∼ U(0, 1). We accept the move if
ln(R) > log(U) and keep the previous value otherwise.

Example 5.1. Consider again the Upworthy data from Example 3.5. We model the Poisson
rates λi (i = 1, 2), this time with the usual Poisson regression parametrization in terms
of log rate for the baseline yes, log(λ2) = β, and log odds rates κ = log(λ1) − log(λ2). Our
model is

Yi ∼ Po(niλi), (i = 1, 2)
λ1 = exp(β + κ)
λ2 = exp(β)
β ∼ Gauss(log 0.01, 1.5)
κ ∼ Gauss(0, 1)

There are two parameters in the model, which can be updated in turn or jointly.

data(upworthy_question, package = "hecbayes")
# Compute sufficient statistics
data <- upworthy_question |>

dplyr::group_by(question) |>
dplyr::summarize(ntot = sum(impressions),

y = sum(clicks))
# Code log posterior as sum of log likelihood and log prior
loglik <- function(par, counts = data$y, offset = data$ntot, ...){

lambda <- exp(c(par[1] + log(offset[1]), par[1] + par[2] + log(offset[2])))
sum(dpois(x = counts, lambda = lambda, log = TRUE))

}
logprior <- function(par, ...){
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dnorm(x = par[1], mean = log(0.01), sd = 1.5, log = TRUE) +
dnorm(x = par[2], log = TRUE)

}
logpost <- function(par, ...){

loglik(par, ...) + logprior(par, ...)
}
# Compute maximum a posteriori (MAP)
map <- optim(

par = c(-4, 0.07),
fn = logpost,
control = list(fnscale = -1),
offset = data$ntot,
counts = data$y,
hessian = TRUE)

# Use MAP as starting value
cur <- map$par
# Compute logpost_cur - we can keep track of this to reduce calculations
logpost_cur <- logpost(cur)
# Proposal covariance
cov_map <- -2*solve(map$hessian)
chol <- chol(cov_map)

set.seed(80601)
niter <- 1e4L
chain <- matrix(0, nrow = niter, ncol = 2L)
colnames(chain) <- c("beta","kappa")
naccept <- 0L
for(i in seq_len(niter)){

# Multivariate normal proposal - symmetric random walk
prop <- chol %*% rnorm(n = 2) + cur
logpost_prop <- logpost(prop)
# Compute acceptance ratio (no q because the ratio is 1)
logR <- logpost_prop - logpost_cur
if(logR > -rexp(1)){

cur <- prop
logpost_cur <- logpost_prop
naccept <- naccept + 1L

}
chain[i,] <- cur
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}
# Posterior summaries
summary(coda::as.mcmc(chain))

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta -4.51268 0.001697 1.697e-05 6.176e-05
kappa 0.07075 0.002033 2.033e-05 9.741e-05

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta -4.51591 -4.51385 -4.51273 -4.51154 -4.50929
kappa 0.06673 0.06933 0.07077 0.07212 0.07463

# Computing standard errors using batch means
sqrt(diag(mcmc::olbm(chain, batch.length = niter/40)))

[1] 5.717097e-05 8.220816e-05

The acceptance rate of the algorithm is 35.1% and the posterior means are β = −4.51 and
κ = 0.07.

Figure 5.2 shows the posterior samples, which are very nearly bivariate Gaussian. The
parametrization in terms of log odds ratio induces strong negative dependence, so if we
were to sample κ, then β, we would have much larger inefficiency and slower exploration.
Instead, the code used a bivariate Gaussian random walk proposal whose covariance matrix
was taken as a multiple of the inverse of the negative hessian (equivalently, to the observed
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Figure 5.1: Traceplots of Markov chain of log rate and log odds rate for the Metropolis–
Hastings sampler applied to the Upworthy question data.

information matrix of the log posterior), evaluated at of the maximum a posteriori. This
Gaussian approximation is called Laplace approximation: it is advisable to reparametrize
the model so that the distribution is nearly symmetric, so that the approximation is good.
In this example, because of the large sample, the Gaussian approximation implied by
Bernstein–von Mises’ theorem is excellent.

Remark 5.1 (Reparametrization). A better parametrization would simply sample two pa-
rameters with λ2 = exp(α), where α is the log mean of the second group, with the same
prior as for β. Since the likelihood factorizes and the parameters are independent apriori,
this would lead to zero correlation and lead to more efficient mixing of the Markov chain,
should we wish to sample parameters in turn one at the time. A Markov chain for κ can
then be obtained by substracting the values of α− β from the new draws.

The quality of the mixing of the chain (autocorrelation), depends on the proposal variance,
which can obtain by trial and error. Trace plots Figure 5.1 show the values of the chain as
a function of iteration number. If our algorithm works well, we expect the proposals to
center around the posterior mode and resemble a fat hairy caterpillar. If the variance is
too small, the acceptance rate will increase but most steps will be small. If the variance of
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Figure 5.2: Scatterplot of posterior draws (left) and marginal density plot of log odds rate
(right).

the proposal is too high, the acceptance rate will decrease (as many proposal moves will
have much lower posterior), so the chain will get stuck for long periods of time. This is
Goldilock’s principle, as illustrated in Figure 5.3.

One way to calibrate is to track the acceptance rate of the proposals: for the three chains
in Figure 5.3, these are 0.932, 0.33, 0.12. In one-dimensional toy problems with Gaussian
distributions, an acceptance rate of 0.44 is optimal, and this ratio decreases to 0.234 when
D ≥ 2 (Roberts and Rosenthal 2001; Sherlock 2013). This need not generalize to other
settings and depends on the context. Optimal rate for alternative algorithms, such as
Metropolis-adjusted Langevin algorithm, are typically higher.

We can tune the variance of the global proposal (Andrieu and Thoms 2008) to improve the
mixing of the chains at approximate stationarity. This is done by increasing (decreasing)
the variance if the historical acceptance rate is too high (respectively low) during the burn
in period, and reinitializing after any change with an acceptance target of 0.44. We stop
adapting to ensure convergence to the posterior after a suitable number of initial iterations.
Adaptive MCMC methods use an initial warm up period to find good proposals: we can
consider a block of length L, compute the acceptance rate, multiply the variance by a
scaling factor and run the chain a little longer. We only keep samples obtained after the
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Figure 5.3: Example of traceplot with proposal variance that is too small (top), adequate
(middle) and too large (bottom).

adaptation phase.

We can also plot the autocorrelation of the entries of the chain as a function of lags, a
display known as correlogram in the time series literature but colloquially referred to as
autocorrelation function (acf). The higher the autocorrelation, the more variance inflation
one has and the longer the number of steps before two draws are treated as independent.
Figure 5.4 shows the effect of the proposal variance on the correlation for the three chains.
Practitioners designing very inefficient Markov chain Monte Carlo algorithms often thin
their series: that is, they keep only every k iteration. This is not recommended practice
unless storage is an issue and usually points towards inefficient sampling algorithms.

Remark (Independence Metropolis–Hastings). If the proposal density q(·) does not depend
on the current state θt−1, the algorithm is termed independence. To maximize acceptance,
we could design a candidate distribution whose mode is at the maximum a posteriori value.
To efficiently explore the state space, we need to place enough density in all regions, for
example by taking a heavy-tailed distributions, so that we explore the full support. Such
proposals can be however inefficient and fail when the distribution of interest is multimodal.
The independence Metropolis–Hastings algorithm then resembles accept-reject. If the
ratio p(θ)/q(θ) is bounded above by C ≥ 1, then we can make comparisons with rejection
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Figure 5.4: Correlogram for the three Markov chains.

sampling. Lemma 7.9 of Robert and Casella (2004) shows that the probability of acceptance
of a move for the Markov chain is at least 1/C, which is larger than the accept-reject.

In models with multiple parameter, we can use Metropolis–Hastings algorithm to update
every parameter in turn, fixing the value of the others, rather than update them in block.
The reason behind this pragmatic choice is that, as for ordinary Monte Carlo sampling, the
acceptance rate goes down sharply with the dimension of the vector. Updating parameters
one at a time can lead to higher acceptance rates, but slower exploration as a result of the
correlation between parameters.

If we can factorize the log posterior, then some updates may not depend on all parameters:
in a hierarchical model, hyperpriors parameter only appear through priors, etc. This can
reduce computational costs.

Proposition 5.3 (Parameter transformation). If a parameter is bounded in the interval (a, b),
where −∞ ≤ a < b ≤ ∞, we can consider a bijective transformation ϑ ≡ t(θ) : (a, b) → R
with differentiable inverse. The log density of the transformed variable, assuming it exists, is

fϑ(ϑ) = fθ{t−1(ϑ)}
∣∣∣∣ d
dϑt

−1(ϑ)
∣∣∣∣

For example, we can use of the following transformations for finite a, b in the software:

• if θ ∈ (a,∞) (lower bound only), then ϑ = log(θ−a) and fϑ(ϑ) = fθ{exp(ϑ)+a}·exp(ϑ)
• if θ ∈ (−∞, b) (upper bound only), thenϑ = log(b−θ) and fϑ(ϑ) = fθ{b−exp(ϑ)}·exp(ϑ)
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• if θ ∈ (a, b) (both lower and upper bound), then ϑ = logit{(θ − a)/(b− a)} and

fϑ(ϑ) = fθ{a+ (b− a)expit(ϑ)}(b− a)
× expit(ϑ){1− expit(ϑ)}

To guarantee that our proposals fall in the support of θ,we can thus run a symmetric random
walk proposal on the transformed scale by drawing ϑ⋆

t ∼ ϑt−1 + τZ where Z ∼ Gauss(0, 1).
Due to the transformation, the kernel ratio now contains the Jacobian.

Proposition 5.4 (Truncated proposals). As an alternative, if we are dealing with param-
eters that are restricted in [a, b], we can simulate using a random walk but with truncated
Gaussian steps, taking θ⋆

t ∼ trunc.Gauss(ϑt−1, τ
2, a, b). The benefits of using the truncated

proposal becomes more apparent when we move to more advanced proposals whose mean
and variance depends on the gradient and or the hessian of the underlying unnormalized
log posterior, as the mean can be lower than a or larger than b: this would garantee zero
acceptance with regular Gaussian random walk. The TruncatedNormal package can be used
to efficiently evaluate such instances using results from Botev and L’Écuyer (2017) even when
the truncation bounds are far from the mode. the normalizing constant of the truncated
Gaussian in the denominator of the density is a function of the location and scale parameters:
if these depend on the current value of θt−1, as is the case for a random walk, we need to keep
these terms as part of the Metropolis ratio. The mean and standard deviation of the trun-
cated Gaussian are not equal to the parameters µ (which corresponds to the mode, provided
a < µ < b) and σ.

Proposition 5.5 (Efficient proposals). Rather than simply build a random walk, we can
exploit the geometry of the posterior using the gradient, via Metropolis-ajusted Langevin
algorithm (MALA), or using local quadratic approximations of the target.

Let p(θ) denote the conditional (unnormalized) log posterior for a scalar parameter θ ∈ (a, b).
We considering a Taylor series expansion of p(·) around the current parameter value θt−1,

p(θ) ≈ p(θt−1) + p′(θt−1)(θ − θt−1) + 1
2p

′′(θt−1)(θ − θt−1)2

plus remainder, which suggests a Gaussian approximation with mean µt−1 =
θt−1 − f ′(θt−1)/f ′′(θt−1) and precision τ−2 = −f ′′(θt−1). We can use truncated Gaussian
distribution on (a, b) with mean µ and standard deviation τ, denoted trunc.Gauss(µ, τ, a, b)
with corresponding density function q(·;µ, τ, a, b). The Metropolis acceptance ratio for a
proposal θ⋆

t ∼ trunc.Gauss(µt−1, τt−1, a, b) is

α = p(θ⋆
t )

p(θt−1)
q(θt−1 | µ⋆

t , τ
⋆
t , a, b)

q(θ⋆
t | µt−1, τt−1, a, b)
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and we set θ(t+1) = θ⋆
t with probability min{1, r} and θ(t+1) = θt−1 otherwise. To evaluate the

ratio of truncated Gaussian densities q(·;µ, τ, a, b), we need to compute the Taylor approxi-
mation from the current parameter value, but also the reverse move from the proposal θ⋆

t .
Another option is to modify the move dictated by the rescaled gradient by taking instead

µt−1 = θt−1 − ηf ′(θt−1)/f ′′(θt−1).

The proposal includes an additional learning rate parameter, η ≤ 1, whose role is to prevent
oscillations of the quadratic approximation, as in a Newton–Raphson algorithm. Relative
to a random walk Metropolis–Hastings, the proposal automatically adjusts to the local
geometry of the target, which guarantees a higher acceptance rate and lower autocorrelation
for the Markov chain despite the higher evaluation costs. The proposal requires that both
f ′′(θt−1) and f ′′(θ⋆

t ) be negative since the variance is−1/f ′′(θ): this shouldn’t be problematic
in the vicinity of the mode. Otherwise, one could use a global scaling derived from the hessian
at the mode (H. Rue and Held 2005).

The simpler Metropolis-adjusted Langevin algorithm (MALA) is equivalent to using a Gaus-
sian random walk where the proposal has mean θt−1 +Aη∇ log p(θt−1;y) and variance τ2A,
for some mass matrix A and learning rate η < 1. Taking A as the identity matrix, which
assumes the parameters are isotropic (same variance, uncorrelated) is the default choice
although seldom far from optimal.

For MALA to work well, we need both to start near stationarity, to ensure that the gradient is
relatively small and to prevent oscillations. One can dampen the size of the step initially if
needed to avoid overshooting. The proposal variance, the other tuning parameter, is critical to
the success of the algorithm. The usual target for the variance is one that gives an acceptance
rate of roughly 0.574. These more efficient methods require additional calculations of the
gradient and Hessian, either numerically or analytically. Depending on the situation and the
computational costs of such calculations, the additional overhead may not be worth it.

Example 5.2. We revisit the Upworthy data, this time modelling each individual headline
as a separate observation. We view n =nimpression as the sample size of a binomial
distribution and nclick as the number of successes. Since the number of trials is large, the
sample average nclick/nimpression, denoted y in the sequel, is approximately Gaussian.
We assume that each story has a similar population rate and capture the heterogeneity
inherent to each news story by treating each mean as a sample. The variance of the sample
average or click rate is proportional to n−1, where n is the number of impressions. To
allow for underdispersion or overdispersion, we thus consider a Gaussian likelihood Yi ∼
Gauss(µ, σ2/ni).We perform Bayesian inference for µ, σ after assigning a truncated Gaussian
prior for µ ∼ trunc.Gauss(0.01, 0.12) over [0, 1] and an penalized complexity prior for σ ∼
Exp(0.7).
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data(upworthy_question, package = "hecbayes")
# Select data for a single question
qdata <- upworthy_question |>

dplyr::filter(question == "yes") |>
dplyr::mutate(y = clicks/impressions,

no = impressions)
# Create functions with the same signature (...) for the algorithm
logpost <- function(par, data, ...){

mu <- par[1]; sigma <- par[2]
no <- data$no
y <- data$y
if(isTRUE(any(sigma <= 0, mu < 0, mu > 1))){

return(-Inf)
}
dnorm(x = mu, mean = 0.01, sd = 0.1, log = TRUE) +
dexp(sigma, rate = 0.7, log = TRUE) +
sum(dnorm(x = y, mean = mu, sd = sigma/sqrt(no), log = TRUE))

}

logpost_grad <- function(par, data, ...){
no <- data$no

y <- data$y
mu <- par[1]; sigma <- par[2]
c(sum(no*(y-mu))/sigmaˆ2 -(mu - 0.01)/0.01,

-length(y)/sigma + sum(no*(y-mu)ˆ2)/sigmaˆ3 -0.7
)

}

# Starting values - MAP
map <- optim(

par = c(mean(qdata$y), 0.5),
fn = function(x){-logpost(x, data = qdata)},
gr = function(x){-logpost_grad(x, data = qdata)},
hessian = TRUE,
method = "BFGS")

# Set initial parameter values
curr <- map$par
# Check convergence
logpost_grad(curr, data = qdata)
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[1] 7.650733e-03 5.575424e-05

# Compute a mass matrix
Amat <- solve(map$hessian)
# Cholesky root - for random number generation
cholA <- chol(Amat)

# Create containers for MCMC
B <- 1e4L # number of iterations
warmup <- 1e3L # adaptation period
npar <- 2L # number of parameters
prop_sd <- rep(1, npar) #updating both parameters jointly
chains <- matrix(nrow = B, ncol = npar)
damping <- 0.8 # learning rate
acceptance <- attempts <- 0
colnames(chains) <- names(curr) <- c("mu","sigma")
prop_var <- diag(prop_sd) %*% Amat %*% diag(prop_sd)
for(i in seq_len(B + warmup)){

ind <- pmax(1, i - warmup)
# Compute the proposal mean for the Newton step
prop_mean <- c(curr + damping *

Amat %*% logpost_grad(curr, data = qdata))
# prop <- prop_sd * c(rnorm(npar) %*% cholA) + prop_mean
prop <- c(mvtnorm::rmvnorm(

n = 1,
mean = prop_mean,
sigma = prop_var))

# Compute the reverse step
curr_mean <- c(prop + damping *

Amat %*% logpost_grad(prop, data = qdata))
# log of ratio of bivariate Gaussian densities
logmh <- mvtnorm::dmvnorm(

x = curr, mean = prop_mean,
sigma = prop_var,
log = TRUE) -
mvtnorm::dmvnorm(

x = prop,
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mean = curr_mean,
sigma = prop_var,
log = TRUE) +

logpost(prop, data = qdata) -
logpost(curr, data = qdata)

if(logmh > log(runif(1))){
curr <- prop
acceptance <- acceptance + 1L

}
attempts <- attempts + 1L
# Save current value
chains[ind,] <- curr
if(i %% 100 & i < warmup){

out <- hecbayes::adaptive(
attempts = attempts,
acceptance = acceptance,
sd.p = prop_sd,
target = 0.574)

prop_sd <- out$sd
acceptance <- out$acc
attempts <- out$att
prop_var <- diag(prop_sd) %*% Amat %*% diag(prop_sd)

}
}

MALA requires critically a good mass matrix, especially if the gradient is very large at the
starting values (often the case when the starting value is far from the mode). Given the
precision of the original observations, we did not need to modify anything to deal with the
parameter constraints 0 ≤ µ ≤ 1 and σ > 0, outside of encoding them in the log posterior
function.

The posterior mean for the standard deviation is 0.64, which suggests overdispersion.

5.1 Convergence diagnostics

There are several visual checks that are run to validate the output of models based on
Markov chain Monte Carlo. Indeed, unlike with exact sampling algorithms, one needs to
worry both about the convergence to the posterior and the quality of the mixing, which
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determines the effective sample size available for inference. Many visual diagnostics can be
used to diagnose lack of convergence, or inefficiency: we review key notions that appear in
the literature.

Definition 5.2 (Trace plots). A trace plot is a line plot of the Markov chain as a function of
the number of iterations. It should be stable around some values if the posterior is unimodal
and the chain has reached stationarity. The ideal shape is that of a ‘fat hairy catterpilar’.

It is useful to inspect visually the Markov chain, as it may indicate several problems. If the
chain drifts around without stabilizing around the posterior mode, then we can suspect
that it hasn’t reached it’s stationary distribution (likely due to poor starting values). In such
cases, we need to disregard the dubious draws from the chain by discarding the so-called
warm up or burn in period. While there are some guarantees of convergence in the long
term, silly starting values may translate into tens of thousands of iterations lost wandering
around in regions with low posterior mass. Preliminary optimization and plausible starting
values help alleviate these problems. Figure 5.5 shows the effect of bad starting values on
a toy problem where convergence to the mode is relatively fast. If the proposal is in a flat
region of the space, it can wander around for a very long time before converging to the
stationary distribution.

Definition 5.3 (Trace rank plot). If we run several chains, as in Figure 5.5, with different
starting values, we can monitor convergence by checking whether these chains converge to
the same target. A trace rank plot compares the rank of the values of the different chain at
a given iteration: with good mixing, the ranks should switch frequently and be distributed
uniformly across integers.

A trace rank plot is shown on right panel of Figure 5.5.

Definition 5.4 (Burn in period). We term “burn in” the initial steps of the MCMC algorithm
that are discarded because the chain has not reached it’s stationary distribution, due to
poor starting values. , but visual inspection using a trace plot may show that it is necessary
to remove additional observations.

Most software will remove the first N initial values (typically one thousand). Good starting
values can reduce the need for a long burn in period. If visual inspection of the chains
reveal that some of the chains for one or more parameters are not stationary until some
iteration, we will discard all of these in addition. Geweke (1992)’s test measure whether
the distribution of the resulting Markov chain is the same at the beginning and at the end
through a test of equality of means.
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Figure 5.5: Traceplots of three Markov chains for the same target with different initial values
for the first 500 iterations (left) and trace rank plot after discarding these (right).

Definition 5.5 (Warmup). Warmup period refers to the initial sampling phase (potentially
overlapping with burn in period) during which proposals are tuned (for example, by chang-
ing the variance proposal to ensure good acceptance rate or for Hamiltonian Monte Carlo
(HMC) to tune the size of the leapfrog. These initial steps should be disregarded.

Definition 5.6 (Thinning). MCMC algorithms are often run thinning the chain (i.e., keeping
only a fraction of the samples drawn, typically every k iteration). This is wasteful as we can
of course get more precise estimates by keeping all posterior draws, whether correlated or
not. The only argument in favor of thinning is limited storage capacity: if we run very long
chains in a model with hundreds of parameters, we may run out of memory.

Remark 5.2 (Multiple short chains or longer runs?). Many diagnostics rely on running
multiple Markov chains for the same problem, with different starting values. In principle,
it is more efficient to run a single Markov chain to draw samples for longer than multiple
(shorter chains) for a fixed computational budget. Indeed, a single run means warmup
needs to be achieve once. The benefits of running multiple chains comes from different
considerations: we can monitor convergence to the stationary distribution (or to different
modes for multimodal posteriors), and run diagnostics that rely on between-chain variance.
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Multiple chains can also be run in parallel and the results combined, a situation more in
line with modern computer architecture.

, Summary:

• Metropolis–Hastings generalizes rejection sampling by building a Markov chain
and providing a mechanism for sampling.

• Small proposal variance leads to high acceptance rate, but small step sizes. Large
variance proposals leads to many rejections, in which case the previous value is
carried forward. Both extreme scenarios lead to large autocorrelation.

• The proposal density can be anything, but must ideally account for the support
and allow for exploration of the state.

• Good initial starting values can be obtained by computing maximum a posteriori
estimates.

• Initializing multiple chains at different starting values can be used to check
convergence to the stationary distribution.

• Mixing will improve if strongly correlated parameters are sampled together.
• The optimal acceptance rate depends on the dimension, but guidelines for

random walk Metropolis are to have 0.44 for a single parameter model and 0.234
for multivariate targets; see Neal (2011) for a heuristic derivation.

• To obtain the target acceptance rate, users must tune the variance of the proposal
kernel. This is typically achieved by running the chain for some period, comput-
ing the empirical acceptance rate and increasing (respectively decreasing) the
variance if the acceptance rate is too high (too low).

• Metropolis-adjusted Langevin algorithm (MALA) uses the gradient information
to inform the proposal; it is akin to a Newton step.

• The detailed balance requires a function g such that g(r) = rg(1/r). Taking
g(r) = min(1, r) as in Metropolis–Hasting rule leads to the lowest asymptotic
variance (Peskun 1973).
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, Learning objectives:

At the end of the chapter, students should be able to

• implement Gibbs sampling.
• derive the conditional distributions of a model for Gibbs sampling.
• use data augmentation to emulate Gibbs sampling.

The Gibbs sampling algorithm builds a Markov chain by iterating through a sequence of
conditional distributions. Consider a model with θ ∈ Θ ⊆ Rp. We consider a single (or
m ≤ p blocks of parameters), say θ[j], such that, conditional on the remaining components
of the parameter vector θ−[j], the conditional posterior p(θ[j] | θ−[j],y) is from a known
distribution from which we can simulate draws

At iteration t, we can update each block in turn: note that the kth block uses the partially
updated state

θ−[k]⋆ = (θ[1]
t , . . . ,θ

[k−1]
t ,θ

[k+1]
t−1 ,θ

[m]
t−1)

which corresponds to the current value of the parameter vector after the updates. To check
the validity of the Gibbs sampler, see the methods proposed in Geweke (2004).

The Gibbs sampling can be viewed as a special case of Metropolis–Hastings where the
proposal distribution q is p(θ[j] | θ−[j]⋆,y).The particularity is that all proposals get accepted
because the log posterior of the partial update, equals the proposal distribution, so

R = p(θ⋆
t | y)

p(θt−1 | y)
p(θ[j]

t−1 | θ−[j]⋆,y)
p(θ[j]⋆

t | θ−[j]⋆,y)

= p(θ[j]⋆
t | θ−[j]⋆,y)p(θ−[j]⋆ | y)

p(θ[j]
t−1 | θ−[j]⋆,y)p(| θ−[j]⋆ | y)

p(θ[j]
t−1 | θ−[j]⋆,y)

p(θ[j]⋆
t | θ−[j]⋆,y)

= 1.

Regardless of the order (systematic scan or random scan), the procedure remains valid. The
Gibbs sampling is thus an automatic algorithm: we only need to derive the conditional
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6 Gibbs sampling

posterior distributions of the parameters and run the sampler, and there are no tuning
parameter involved. If the parameters are strongly correlated, the changes for each parame-
ter will be incremental and this will lead to slow mixing and large autocorrelation, even if
the values drawn are all different. Figure 6.1 shows 25 steps from a Gibbs algorithm for a
bivariate target.

Figure 6.1: Sampling trajectory for a bivariate target using Gibbs sampling.

As a toy illustration, we use Gibbs sampling to simulate data from a d-dimensional multi-
variate Gaussian target with mean µ and equicorrelation covariance matrix Σ = (1− ρ)Id +
ρ1d1⊤

d with inverse

Q = Σ−1 = (1− ρ)−1 {Id − ρ1d1d/(1 + (d− 1)ρ)} ,

for known correlation coefficient ρ. While we can easily sample independent observations,
the exercise is insightful to see how well the methods works as the dimension increases,
and when the correlation between pairs becomes stronger.

Consider Y ∼ Gaussd(µ,Σ) and a partition (Y ⊤
1 ,Y

⊤
2 )⊤: the conditional distribution of the

k subvector Y 1 given the d− k other components Y 2 is, in terms of either the covariance
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(first line) or the precision (second line), Gaussian where

Y 1 | Y 2 = y2 ∼ Gaussk

{
µ1 + Σ12Σ−1

22 (y2 − µ2),Σ11 −Σ12Σ−1
22 Σ21

}
∼ Gaussk

{
µ1 −Q−1

11 Q12(y2 − µ2),Q−1
11

}
.

# Create a 20 dimensional equicorrelation
d <- 20
Q <- hecbayes::equicorrelation(d = d, rho = 0.9, precision = TRUE)
B <- 1e4
chains <- matrix(0, nrow = B, ncol = d)
mu <- rep(2, d)
# Start far from mode
curr <- rep(-3, d)
for(i in seq_len(B)){

# Random scan, updating one variable at a time
for(j in sample(1:d, size = d)){

# sample from conditional Gaussian given curr
curr[j] <- hecbayes::rcondmvnorm(

n = 1,
value = curr,
ind = j,
mean = mu,
precision = Q)

}
chains[i,] <- curr # save values after full round of update

}

As the dimension of the parameter space increases, and as the correlation between compo-
nents becomes larger, the efficiency of the Gibbs sampler degrades: Figure 6.2 shows the
first component for updating one-parameter at a time for a multivariate Gaussian target
in dimensions d = 20 and d = 3, started at four deviation away from the mode. The chain
makes smaller steps when there is strong correlation, resulting in an inefficient sampler.

The main bottleneck in Gibbs sampling is determining all of the relevant conditional
distributions, which often relies on setting conditionally conjugate priors. In large models
with multiple layers, full conditionals may only depend on a handful of parameters.

Example 6.1. Consider a Gaussian model Yi ∼ Gauss(µ, τ) (i = 1, . . . , n) are independent,
and where we assign priors µ ∼ Gauss(ν, ω) and τ ∼ inv.gamma(α, β).
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Figure 6.2: Trace plots (top) and correlograms (bottom) for the first component of a Gibbs
sampler with d = 20 equicorrelated Gaussian variates with correlation ρ = 0.9
(left) and d = 3 with equicorrelation ρ = 0.5 (right).

The joint posterior is not available in closed form, but the independent priors for the mean
and variance of the observations are conditionally conjugate, since the joint posterior

p(µ, τ | y) ∝τ−n/2 exp
{
− 1

2τ

(
n∑

i=1
y2

i − 2µ
n∑

i=1
yi + nµ2

)}

× exp
{
−(µ− ν)2

2ω

}
× τ−α−1 exp(−β/τ)

gives us

p(µ | τ,y) ∝ exp
{
−1

2

(
µ2 − 2µy
τ/n

+ µ2 − 2νµ
ω

)}

p(τ | µ,y) ∝ τ−n/2−α−1 exp
[
−1
τ

{∑n
i=1(yi − µ)2

2 + β

}]
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6.1 Data augmentation and auxiliary variables

so we can simulate in turn

µt | τt−1,y ∼ Gauss
(
nyω + τν

τ + nω
,

ωτ

τ + nω

)
τt | µt,y ∼ inv.gamma

{
n

2 + α,

∑n
i=1(yi − µ)2

2 + β

}
.

Remark (Gibbs sampler and proper posterior). Gibbs sampling cannot be used to determine
if the posterior is improper. If the posterior is not well defined, the Markov chains may
seem to stabilize even though there is no proper target.

6.1 Data augmentation and auxiliary variables

In many problems, the likelihood p(y;θ) is intractable or costly to evaluate and auxiliary
variables are introduced to simplify calculations, as in the expectation-maximization al-
gorithm. The Bayesian analog is data augmentation (Tanner and Wong 1987), which we
present succinctly: let θ ∈ Θ be a vector of parameters and consider auxiliary variables
u ∈ Rk such that

∫
Rk p(u,θ;y)du = p(θ;y), i.e., the marginal distribution is that of inter-

est, but evaluation of p(u,θ;y) is cheaper. The data augmentation algorithm consists in
running a Markov chain on the augmented state space (Θ,Rk), simulating in turn from the
conditionals p(u;θ,y) and p(θ;u,y) with new variables chosen to simplify the likelihood.
If simulation from the conditionals is straightforward, we can also use data augmentation
to speed up calculations or improve mixing. For more details and examples, see Dyk and
Meng (2001) and Hobert (2011).

Example 6.2 (Probit regression). Consider binary responses Y i, for which we postulate a
probit regression model,

pi = Pr(Yi = 1) = Φ(β0 + β1Xi1 + · · ·+ βpXip),

where Φ is the distribution function of the standard Gaussian distribution. The likelihood
of the probit model for a sample of n independent observations is

L(β;y) =
n∏

i=1
pyi

i (1− pi)1−yi ,

and this prevents easy simulation. We can consider a data augmentation scheme where
Yi = I(Zi > 0), where Zi ∼ Gauss(xiβ, 1), with xi denoting the ith row of the design matrix.
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The augmented data likelihood is

p(z,y | β) ∝ exp
{
−1

2(z −Xβ)⊤(z −Xβ)
}
×

n∏
i=1

I(zi > 0)yiI(zi ≤ 0)1−yi

Given Zi, the coefficients β are simply the results of ordinary linear regression with unit
variance, so

β | z,y ∼ Gauss
{
β̂, (X⊤X)−1

}
with β̂ = (X⊤X)−1X⊤z is the ordinary least square estimator from the regression with
model matrix X and response vector z. The augmented variables Zi are conditionally
independent and truncated Gaussian with

Zi | yi,β ∼
{

trunc.Gauss(xiβ, 1,−∞, 0) yi = 0
trunc.Gauss(xiβ, 1, 0,∞) yi = 1.

and we can use the algorithms of Example 4.2 to simulate these.

probit_regression <- function(y, x, B = 1e4L, burnin = 100){
y <- as.numeric(y)
n <- length(y)
# Add intercept
x <- cbind(1, as.matrix(x))
xtxinv <- solve(crossprod(x))
# Use MLE as initial values
beta.curr <- coef(glm(y ~ x - 1, family=binomial(link = "probit")))
# Containers
Z <- rep(0, n)
chains <- matrix(0, nrow = B, ncol = length(beta.curr))
for(b in seq_len(B + burnin)){

ind <- max(1, b - burnin)
Z <- TruncatedNormal::rtnorm(

n = 1,
mu = as.numeric(x %*% beta.curr),
lb = ifelse(y == 0, -Inf, 0),
ub = ifelse(y == 1, Inf, 0),
sd = 1)

beta.curr <- chains[ind,] <- as.numeric(
mvtnorm::rmvnorm(
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6.1 Data augmentation and auxiliary variables

n = 1,
mean = coef(lm(Z ~ x - 1)),
sigma = xtxinv))

}
return(chains)
}

Example 6.3 (Bayesian LASSO). The Laplace distribution with location µ and scale σ, has
density

f(x;µ, σ) = 1
2σ exp

(
−|x− µ|

σ

)
.

It can be expressed as a scale mixture of Gaussians, where Yi ∼ Laplace(µ, σ) is equivalent
to Zi | τ ∼ Gauss(µ, λi) and Λi ∼ expo{(2σ2)−1}. To see this, we first look at the Wald (or
inverse Gaussian) distribution Wald(ν, ω) with location ν > 0 and shape ω > 0,, whose
density is

f(y; ν, ω) =
(

ω

2πy3

)1/2
exp

{
−ω(y − ν)2

2ν2y

}
, y > 0

y∝ y−3/2 exp
{
−ω2

(
y

ν2 + 1
y

)}
To show that the marginal (unconditionally) is Laplace, we write the joint density and
integrate out the variance term λ, make the change of variable to get the result in terms of
the precision ξ = 1/λ, whence

p(z) =
∫ ∞

0
p(z | λ)p(λ)dλ

=
∫ ∞

0

1
(2πλ)1/2 exp

{
− 1

2λ(z − µ)2
} 1

2σ2 exp
(
− λ

2σ2

)
dλ

= 1
2σ2

∫ ∞

0

1
(2πλ)1/2 exp

[
−1

2

{
(z − µ)2

λ
+ λ

σ2

}]
dλ

= 1
2σ2

∫ ∞

0

1
ξ2

ξ1/2

(2π)1/2 exp
[
− 1

2σ2

{
ξσ2(z − µ)2 + 1

ξ

}]
dξ

= 1
2σ2

∫ ∞

0

1
(2πξ3)1/2 exp

[
−ω2

{
ξ

ν2 + 1
ξ

}]
dξ

= 1
2σ2ω1/2 exp

(
−ω
ν

)
= 1

2σ exp
(
−|z − µ|

σ

)
.
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upon recovering the conditional density of Ξ | Z ∼Wald(ν, ω) with parameters ν = (σ|z −
µ|)−1 and ω = σ−2.

Park and Casella (2008) use this hierarchical construction to define the Bayesian LASSO.
With a model matrix X whose columns are standardized to have mean zero and unit
standard deviation, we may write

Y | µ,β, σ2 ∼ Gaussn(µ1n + Xβ, σ2In)
βj | σ2, τj ∼ Gauss(0, σ2τj)

τj ∼ expo(λ/2)

With the improper prior p(µ, σ2) ∝ 1/σ2 and with n independent and identically distributed
Laplace variates, written as a scale mixture, the model is amenable to Gibbs sampling. With
D−1

τ = diag(τ−1
1 , . . . , τ−1

p ) and ỹ = y − y1n the centered response vector, we can simulate
in turn (Park and Casella 2008)

µ | σ2,y ∼ Gauss(y, σ2/n)

β | σ2, τ ,y ∼ Gaussp

{(
X⊤X + D−1

τ

)−1
Xỹ, σ2

(
X⊤X + D−1

τ

)−1
}

σ2 | β, τ ,y ∼ inv.gamma
{
n− 1 + p

2 ,
(ỹ −Xβ)⊤(ỹ −Xβ) + β⊤D−1

τ β

2

}
,

τ−1
j | β, σ2 ∼Wald

(
λ1/2σ

|βj |
, λ

)
where the last three conditional distributions follow from marginalizing out µ.

The Bayesian LASSO places a Laplace penalty on the regression coefficients, with lower
values of λ yielding more shrinkage. Figure 6.3 shows a replication of Figure 1 of Park and
Casella (2008), fitted to the diabetes data. Note that, contrary to the frequentist setting,
none of the posterior draws of β are exactly zero.

Many elliptical distributions can be cast as scale mixture models of spherical or Gaussian
variables; see, e.g., Section 10.2 of Albert (2009) for a similar derivation with a Student-t
distribution.

Example 6.4 (Mixture models). In clustering problems, we can specify that observations
arise from a mixture model with a fixed or unknown number of coefficients: the interest
lies then in estimating the relative weights of the components, and their location and scale.

A K-mixture model is a weighted combination of models frequently used in clustering or to
model subpopulations with respective densities fk, with density

f(x;θ,ω) =
K∑

k=1
ωkfk(x;θk), ω1 + · · ·ωK = 1.
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Figure 6.3: Traceplot of β coefficients (penalized maximum likelihood estimates and me-
dian aposteriori as a function of the l1 norm of the coefficients, with lower values
of the latter corresponding to higher values of the penalty λ.

Since the density involves a sum, numerical optimization is challenging. Let Ci denote the
cluster index for observation i: if we knew the value of Ci = j, the density would involve
only fj . We can thus use latent variables representing the group allocation to simplify the
problem and run an EM algorithm or use the data augmentation. In an iterative framework,
we can consider the complete data as the tuples (Xi,Zi), where Zik = I(Ci = k).

With the augmented data, the likelihood becomes

n∏
i=1

K∏
k=1
{ωkfk(x;θk)}Zik ,

so the conditional distribution ofZi | Xi,ω,θ ∼ multinom(1,γi) where

γik = ωkfk(Xiθk)∑K
j=1 ωjfj(Xiθk)

, k = 1, . . . .K.

Given suitable priors for the probabilities ω and θ ≡ {θ1, . . . ,θk}, we can use Gibbs sam-
pling updatingZ, ω and θ in turn, assigning a conjugate Dirichlet prior for ω.
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6 Gibbs sampling

Example 6.5 (Mixture model for geyser). We consider a Gaussian mixture model for waiting
time between two eruptions of the Old Faithful geyser in Yellowstone. The distribution is of
the form

fi(x) = piϕ1(xi;µ1, τ
−1
1 ) + (1− pi)ϕ2(xi;µ2, τ

−1
2 ).

where ϕ(·;µ, τ−1) is the density function of a Gaussian with mean µ and precision τ. We
assign conjugate priors with pi ∼ beta(a1, a2), µj ∼ Gauss(c, d−1) and τj ∼ gamma(b1, b2).
For the hyperpriors, we use a1 = a2 = 1, b1 = 1, b2 = 0.1, c = 60, and d = 1/40.

data(faithful)
n <- nrow(faithful)
y <- faithful$waiting
# Fix hyperpriors
a1 <- 2; a2 <- 2; c <- 60; d <- 1/40; b1 <- 1; b2 <- 0.01
# Assign observations at random to groups
set.seed(80601)
cut <- runif(1, 0.1, 0.9)*diff(range(y)) + min(y)
group <- as.integer(y > cut)
p <- sum(group == 0L)/n
mu <- c(mean(y[group == 0]), mean(y[group == 1]))
prec <- 1/c(var(y[group == 0]), var(y[group == 1]))
# Storage and number of replications
B <- 1e4L
theta <- matrix(nrow = B, ncol = 5L)
# Step 1: assign variables to clusters
for(b in 1:B){

d1 <- dnorm(y, mean = mu[1], sd = 1/sqrt(prec[1])) # group 0
d2 <- dnorm(y, mean = mu[2], sd = 1/sqrt(prec[2])) # group 1
# Data augmentation: group labels
group <- rbinom(n = n, size = rep(1, n), prob = (1-p)*d2/(p*d1 + (1-p)*d2))
# Step 2: update probability of cluster
p <- rbeta(n = 1, shape1 = n - sum(group) + a1, sum(group) + a2)
for(j in 1:2){

yg <- y[group == (j-1L)]
ng <- length(yg)
prec_mu <- prec[j] * ng + d
mean_mu <- (sum(yg)*prec[j] + c*d)/prec_mu
mu[j] <- rnorm(n = 1, mean = mean_mu, sd = 1/sqrt(prec_mu))
prec[j] <- rgamma(n = 1,
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shape = b1 + ng/2,
rate = b2 + 0.5*sum((yg-mu[j])ˆ2))

}
theta[b, ] <- c(p, mu, prec)

}
# Discard initial observations (burn in)
theta <- theta[-(1:100),]
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Figure 6.4: One-dimensional density mixture for the Old Faithful data, with histogram of
data (left) and posterior density draws (right).

Remark 6.1 (Label switching in mixture models). If we run a MCMC algorithm to sample
from a mixture models, the likelihood is invariant to permutation of the group labels, lead-
ing to identifiability issues when the chain swaps modes, when running multiple Markov
chains with symmetric priors or using tempering algorithms. Two chains may thus reach
the same stationary distribution, with group labels swapped. It is sometimes necessary to
impose ordering constraints on the mean parameters µ, although this isn’t necessarily easy
to generalize beyond the univariate setting. See Jasra, Holmes, and Stephens (2005) and
Stephens (2002) for more details.
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, Summary:

• Gibbs sampling is a special case of Metropolis–Hastings algorithm, where we
sample from the conditional distributions given other parameters.

• Use of (conditionally) conjugate priors enables Gibbs sampling.
• The fact that any Gibbs step is accepted with probability one does not mean the

sampler is efficient: there can be significant autocorrelation in the chains.
• We can sometimes update parameters jointly, or reduce the dependence by

integrating out some of the conditioning variables (marginalization).
• We can use Gibbs step for some updates within a more general algorithm.
• Even if there is no closed-form expression, we can use Monte Carlo methods to

simulate parameters in a Gibbs sampler.
• In many scenarios, the likelihood is costly to evaluate or not amenable to Gibbs

sampling. Data augmentation introduces additional parameters to the model in
exchange for simplifying the likelihood.

• Data augmentation leads to a trade-off between complexity and efficiency (more
parameters, slower mixing).

• Data augmentation is commonly used for expectation-maximisation (EM) algo-
rithm for maximum likelihood estimation in frequentist setting.

• Special classes of models (Bayesian linear regression, mixtures, etc.) are typically
fitted using Gibbs sampling.

• Probabilistic programming languages (Bugs, JAGS) rely on Gibbs sampling.
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7 Computational strategies and diagnostics

The Bayesian workflow is a coherent framework for model formulation construction, infer-
ence and validation. It typically involves trying and comparing different models, adapting
and modifying these models (Gelman et al. 2020); see also Michael Betancourt for excellent
visualizations. In this chapter, we focus on three aspects of the workflow: model validation,
evaluation and comparison.

, Learning objectives:

At the end of the chapter, students should be able to

• use output of MCMC to obtain estimates and standard errors.
• choose suitable test statistics to evaluate model adequacy.
• assess convergence using graphical tools and effective sample size.
• perform model comparisons using Bayes factor or predictive measures.
• diagnose performance of MCMC algorithms (in terms of mixing and effective

sample size).
• implement strategies to improve sampling performance, including block up-

dates, reparametrization and marginalization.

We begin with a running example that will be used to illustrate the concepts.

Example 7.1 (Poisson random effect models). We consider data from an experimental study
conducted at Tech3Lab on road safety. In Brodeur et al. (2021), 31 participants were asked
to drive in a virtual environment; the number of road violation was measured for different
type of distractions (phone notification, phone on speaker, texting and smartwatch). The
data are balanced, with each participant exposed to each task exactly once.

We model the data using a Poisson mixed model to measure the number of violations,
nviolation, with a fixed effect for task, which captures the type of distraction, and a
random effect for participant id. The hierarchical model fitted for individual i (i = 1, . . . , 34)
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7 Computational strategies and diagnostics

and distraction type j (j = 1, . . . , 4) is

Yij ∼ Poisson{µij = exp(βj + αi)},
βj ∼ Gauss(0, 100),
αi ∼ Gauss(0, κ2),
κ ∼ Student+(0, 1, 3).

so observations are conditionally independent given hyperparametersα and β.

We can look at some of posterior distribution of the 31 random effects (here the first five
individuals) and the fixed effect parameters β, plus the variance of the random effect κ:
there is strong evidence that the latter is non-zero, suggesting strong heterogeneity between
individuals. The distraction which results in the largest number of violation is texting, while
the other conditions all seem equally distracting on average (note that there is no control
group with no distraction to compare with, so it is hard to draw conclusions).

α1

α2

α3

α4

α5

−1.0 −0.5 0.0 0.5

β1: phone

β2: watch

β3: speaker

β4: texting

κ

1 2

Figure 7.1: Posterior density plots with 50% credible intervals and median value for the
random effects of the first five individuals (left) and the fixed effects and random
effect variance (right).

Remark 7.1 (Bayesian random effect models). In frequentist statistics, there is a distinction
made in mixed-effect models between parameters that are treated as constants, termed
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fixed effects and corresponding in this example to β, and random effects, equivalent toα.
There is no such distinction in the Bayesian paradigm, except perhaps for the choice of
prior and the informativeness of the latter.

7.1 Sensitivity analysis

Do priors matter? The answer to that question depends strongly on the model, and how
much information the data provides about hyperparameters. While this question is easily
answered in conjugate models (the relative weight of hyperparameters relative to data can
be derived from the posterior parameters), it is not so simple in hierarchical models, where
the interplay between prior distributions is often more intricate. To see the impact, one
often has to rely on doing several analyses with different values fr the prior and see the
sensitivity of the conclusions to these changes, for example by considering a vague prior or
modifying the parameters values (say halving or doubling). If the changes are immaterial,
then this provides reassurance that our analyses are robust.

Example 7.2. To check the sensitivity of the conclusion, we revisit the modelling of the
smartwatch experiment data using a Poisson regression and compare four priors: a uniform
prior truncated to [0, 10], an inverse gamma InvGamma(0.01, 0.01) prior, a penalized com-
plexity prior such that the 0.95 percentile of the scale is 5, corresponding to Exp(0.6). Since
each distraction type appears 31 times, there is plenty of information to reliably estimate
the dispersion κ of the random effects α: the different density plots in Figure 7.2 are virtually
indistinguishable from one another. This is perhaps unsurprising given the large number
of replicates, and the significant variability between groups.

Example 7.3 (Extreme rainfall in Abisko, Sweden). As illustrating example, consider max-
imum daily cumulated rainfall in Abisko, Sweden. The time series spans from 1913 until
December 2014; we compute the 102 yearly maximum, which range from 11mm to 62mm,
and fit a generalized extreme value distribution to these.

For the priors, suppose an expert elicits quantiles of the 10, 50 and 100 years return levels;
say 30mm, 45mm and 70mm, respectively, for the median and likewise 40mm, 70mm and
120mm for the 90% percentile of the return levels. We can compute the differences and
calculate the parameters of the gamma distribution through moment-matching: this gives
roughly a shape of α1 = 18.27 and β1 = 0.6, etc. Figure 7.3 shows the transfer from the prior
predictive to the posterior distribution. The prior is much more dispersed and concentrated
on the tail, which translates in a less peaked posterior than using a weakly informative prior
(dotted line): the mode of the latter is slightly to the left and with lower density in the tail.
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Figure 7.2: Posterior density of the scale of the random effects with uniform, inverse gamma,
penalized complexity and folded Student-t with three degrees of freedom. The
circle denotes the median and the bars the 50% and 95% percentile credible
intervals.

For a given problem, there are many different Markov chain Monte Carlo algorithms that
one can implement: they will typically be distinguished based on the running time per
iteration and the efficiency of the samplers, with algorithms providing realizations of
Markov chains with lower autocorrelation being preferred. The purpose of this section is to
review these in turn, and to go over tricks that can improve mixing.

–>

The target of inference is a functional (i.e., one-dimensional summaries of the chain): we
need to have convergence of the latter, but also sufficient effective sample size for our
averages to be accurate (at least to two significant digits).

To illustrate these, we revisit the model from Example 7.1 with a penalized complexity prior
for the individual effect αi and vague normal priors. We also fit a simple Poisson model
with only the fixed effect, taking Yij ∼ Poisson{exp(βj)}with βj ∼ Gauss(0, 100). This model
has too little variability relative to the observations and fits poorly as is.

For the Poisson example, the effective sample size for the β for the multilevel model is a
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Figure 7.3: Kernel density estimates of draws from the posterior distribution of 100 year re-
turn levels with a Coles–Tawn quantile prior (full line) and from the correspond-
ing prior predictive (dashed). The dotted line gives the posterior distribution for
a maximum domain information prior on the shape with improper priors on
location and scale.

bit higher than 1000 with B = 5000 iterations, whereas we have for the simple naive model
is 1.028 × 104 for B = 10000 draws, suggesting superefficient sampling. The dependency
betweenα and β is responsible for the drop in accuracy.

The coda (convergence diagnosis and output analysis) R package (Plummer et al. 2006)
contains many tests. For example, the Geweke Z-score compares the averages for the
beginning and the end of the chain: rejection of the null implies lack of convergence, or
poor mixing.

Proposition 7.1 (Gelman–Rubin diagnostic). The Gelman–Rubin diagnostic R̂, introduced
in Gelman and Rubin (1992) and also called potential scale reduction statistic, is obtained by
considering the difference between within-chains and between-chains variance. Suppose we
run M chains for B iterations, post burn in. Denoting by θbm the bth draw of the mth chain,
we compute the global average θ = B−1M−1∑B

b=1
∑m

m=1 θbm and similarly the chain sample
average and variances, respectively θm and σ̂2

m (m = 1, . . . ,M ). The between-chain variance
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and within-chain variance estimator are

Vabetween = B

M − 1

M∑
m=1

(θm − θ)2

Vawithin = 1
M

M∑
m=1

σ̂2
m

and we can compute

R̂ =
(Vawithin(B − 1) + Vabetween

BVawithin

)1/2

The potential scale reduction statistic must be, by construction, larger than 1 in large sample.
Any value larger than this is indicative of problems of convergence. While the Gelman–Rubin
diagnostic is frequently reported, and any value larger than 1 deemed problematic, it is not
enough to have approximately R̂ = 1 to guarantee convergence, but large values are usually
indication of something being amiss. Figure 7.4 shows two instances where the chains are
visually very far from having the same average and this is reflected by the large values of R̂.

Generally, it is preferable to run a single chain for a longer period than run multiple chains
sequentially, as there is a cost to initializing multiple times with different starting values
since we must discard initial draws. With parallel computations, multiple chains are more
frequent nowadays.

7.1.1 Posterior predictive checks

Posterior predictive checks can be used to compare models of varying complexity. One of
the visual diagnostics, outlined in Gabry et al. (2019), consists in computing a summary
statistic of interest from the posterior predictive (whether mean, median, quantile, skew-
ness, etc.) which is relevant for the problem at hand and which we hope our model can
adequately capture. These should be salient features of the data, and may reveal inadequate
likelihood or prior information.

Suppose we have B draws from the posterior and simulate for each n observations from
the posterior predictive p(ỹ | y): we can benchmark summary statistics from our original
data y with the posterior predictive copies ỹb. Figure 7.5 shows this for the two competing
models and highlight the fact that the simpler model is not dispersed enough. Even the
more complex model struggles to capture this additional heterogeneity with the additional
variables. One could go back to the drawing board and consider a negative binomial
model.
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Figure 7.4: Two pairs of Markov chains: the top ones seem stationary, but with different
modes. This makes the between chain variance substantial, with a value of
R̂ ≈ 3.4, whereas the chains on the right hover around the same values of zero,
but do not appear stable with R̂ ≈ 1.6.

7.2 Information criteria

The widely applicable information criterion (Watanabe 2010) is a measure of predictive
performance that approximates the cross-validation loss. Consider first the log pointwise
predictive density, defined as the expected value over the posterior distribution p(θ | y),

LPPDi = Eθ|y {log p(yi | θ)} .

The higher the value of the predictive density LPPDi, the better the fit for that observation.

As in general information criteria, we sum over all observations, adding a penalization
factor that approximates the effective number of parameters in the model, with

nWAIC = −
n∑

i=1
LPPDi +

n∑
i=1

Vaθ|y{log p(yi | θ)}

where we use again the empirical variance to compute the rightmost term. When comparing
competing models, we can rely on their values of WAIC to discriminate about the predictive
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Figure 7.5: Posterior predictive checks for the standard deviation (top) and density of poste-
rior draws (bottom) for hierarchical Poisson model with individual effects (left)
and simpler model with only conditions (right).

performance. To compute WAIC, we need to store the values of the log density of each
observation, or at least minimally compute the running mean and variance accurately
pointwise at storage cost O(n).Note that Section 7.2 of Gelman et al. (2013) define the widely
applicable information criterion as 2n×WAIC to make on par with other information criteria,
which are defined typically on the deviance scale and so that lower values correspond to
higher predictive performance.

An older criterion which has somewhat fallen out of fashion is the deviance information
criterion of Spiegelhalter et al. (2002). It is defined as

DIC = −2ℓ(θ̃) + 2pD

where pD is the posterior expectation of the deviance relative to the point estimator of the
parameter θ̃ (e.g., the maximum a posteriori or the posterior mean)

pD = E{D(θ, θ̃) | y} =
∫

2{ℓ(θ̃)− ℓ(θ)}f(θ | y)dθ

The DIC can be easily evaluated by keeping track of the log likelihood evaluated at each
posterior draw from a Markov chain Monte Carlo algorithm. The penalty term pD is however
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not invariant to reparametrizations. Assuming we can derive a multivariate Gaussian
approximation to the MLE under suitable regularity conditions, the DIC is equivalent in
large samples to AIC. The DIC is considered by many authors as not being a Bayesian
procedure; see Spiegelhalter et al. (2014) and the discussion therein.

Criteria such as LPPD and therefore WAIC require some form of exchangeability, and don’t
apply to cases where leave-one-out cross validation isn’t adequate, for example in spatio-
temporal models.

Example 7.4 (Information criteria for smartwatch and Bayesian LASSO). For the smart-
watch model, we get a value of 3.07 for the complex model and 4.5: this suggests an
improvement in using individual-specific effects.

# posterior: B x K matrix of posterior draws for the K coefficients
data(smartwatch, package = "hecbayes")
data(posterior_smartwatch, package = "hecbayes")
# Match coefficients to column of posterior
coef_beta <- paste0("beta[",as.integer(smartwatch$task),"]")
id_beta <- match(coef_beta, colnames(posterior_smartwatch))
coef_alpha <- paste0("alpha[",as.integer(smartwatch$id),"]")
id_alpha <- match(coef_alpha, colnames(posterior_smartwatch))
# Create containers for pointwise log likelihood and posterior predictive
B <- nrow(posterior_smartwatch)
y <- smartwatch$nviolation
n <- length(y)
loglik_pt <- matrix(nrow = B, ncol = n)
postpred <- matrix(nrow = B, ncol = n)
# Sample from posterior predictive / evaluate log likelihood
for(b in seq_len(B)){
loglik_pt[b,] <- dpois(

x = smartwatch$nviolation,
lambda = exp(posterior_smartwatch[b,id_alpha] + posterior_smartwatch[b,id_beta]),
log = TRUE)

postpred[b,] <- rpois(
n = n,
lambda = exp(posterior_smartwatch[b,id_alpha] + posterior_smartwatch[b,id_beta]))

}
# Watanabe's widely available information criterion
WAIC <- function(loglik_pt){

-mean(apply(loglik_pt, 2, mean)) + mean(apply(loglik_pt, 2, var))
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}
WAIC(loglik_pt)

We can also look at the predictive performance. For the diabetes data application with the
Bayesian LASSO with fixed λ, the predictive performance is a trade-off between the effective
number of parameter (with larger penalties translating into smaller number of parameters)
and the goodness-of-fit. Figure 7.6 shows that the decrease in predictive performance is
severe when estimates are shrunk towards 0, but the model performs equally well for small
penalties.

4800

4900

5000

5100

−2 −1 0 1 2 3

log(λ)

scaled WAIC

Figure 7.6: Widely applicable information criterion for the Bayesian LASSO problem fitted
to the diabetes data, as a function of the penalty λ.

Ideally, one would measure the predictive performance using the leave-one-out predictive
distribution for observation i given all the rest, p(yi | y−i), to avoid double dipping — the
latter is computationally intensive to obtain because it would require running n Markov
chains with n−1 observations each, but we can get a good approximation using importance
sampling, as proposed in eq. 25 of Section 7 of A. E. Gelfand and Dey (1994).
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Proposition 7.2 (Marginal predictive check). To check the goodness-of-fit, we turn to the
posterior predictive distribution. For each posterior draw and each observation, we generate
a sample from the posterior predictive, resulting in an n×B matrix. We can then for each
observation yi compare the latter with the simulated samples yrep

i,b for posterior sample θb.We
compute Pr(yi ≥ yrep

i ) by Monte Carlo, by looking at the sample proportion that are more
extreme. Values close to zero or one may indicate outliers.

To avoid double dipping, we can check model adequacy by comparing the leave-one-cross
validation predictive draws with the observation.

Proposition 7.3 (Cross-validation predictive density). Consider estimation of the leave-
one predictive density under the hypothesis that the likelihood factorizes as L(θ;y) =∏n

i=1 fi(yi;θ); where fi is the density or mass function of the ith observation. Then, with
weights

wi(θ) =
p(θ | y−i)
p(θ | y)

θ∝ 1
fi(yi;θ)

we can write the leave-one-out posterior predictive as

p(yi | y−i) =
∫

Θ
fi(yi;θ)p(θ | y−i)dθ

=
∫

Θ
f(yi;θ)wi(θ)p(θ | y)dθ.

This formula suggests the importance sampling estimator (cf. Proposition 4.4) for a sample
of size B from the posterior p(θ | y)

p̂(yi | y−i) =
∑B

b=1 fi(yi;θb)wi(θb)∑B
b=1wi(θb)

= B

{
B∑

b=1

1
fi(yi;θb)

}−1

.

This estimator takes the form of an harmonic mean, which can have very large variance
due to some weights dominating the fit. Vehtari, Gelman, and Gabry (2017) proposed using
Pareto smoothed importance sampling (Vehtari et al. 2024) to avoid overly large weights; this
method is implemented in the loo R package.

Suppose we have matrices of size n×B containing the posterior predictive draws yrep
i,b associ-

ated with each posterior vector θb and the weights wi,b = 1/fi(yi | θb) from the importance
sampling estimator. We can then compute the probability integral transform with importance
sampling

p̂loo
i = Pr(yrep

i ≤ yi | y−i) ≈
∑B

b=1 I(yrep
i ≤ yi)wi,b∑B

b=1wi,b

, i = 1, . . . , n
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We can then create a probability-probability plot with these values by comparing the n with
ordered quantiles with uniform plotting positions. The values p̂loo

i should be approximately
uniform if the model was perfectly calibrated. Figure 7.7 shows two examples of these.

is_wgt <- exp(-loglik_pt) # log weights
# importance sampling estimator
ploo <- numeric(n)
for(i in seq_along(y)){
ploo[i] <- weighted.mean(x = I(postpred[,i] <= y[i]), w = is_wgt[,i])

}
ggplot(data = data.frame(ploo = sort(ploo), punif = ppoints(n)),

mapping = aes(x = punif, y = ploo)) +
geom_abline(slope = 1, intercept = 0) +
geom_point() +
labs(x = "uniform", y = "LOO-PIT")
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Figure 7.7: Probability-probability plots based on leave-one-out cross validation for model
for the Poisson hierarchical model with the individual random effects (left) and
without (right).
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7.3 Computational strategies

The data augmentation strategies considered in Section 6.1 helps to simplify the likelihood
and thereby reduce the cost of each iteration. However, latent variables are imputed
conditional on current parameter values θa: the higher the number of variables, the more
the model will concentrate around current values of θa, which leads to slow mixing.

There are two main strategies to deal with this problem: blocking the random effects
together and simulating them jointly to improve mixing, and marginalizing out over some
of the latent variables.

Example 7.5 (Marginalization in Gaussian models). To illustrate this fact, consider a hierar-
chical Gaussian model of the form

Y = Xβ + ZB + ε

where X is an n × p design matrix with centered inputs, β ∼ Gauss(0p, σ
2Ip),

B ∼ Gaussq(0q,Ω) are random effects and ε ∼ Gaussn(0n, κ
2In) are independent

white noise.

We can write

Y | β,B ∼ Gaussn(Xβ + ZB, σ2Ip)
Y | β ∼ Gaussn(Xβ,Q−1),

where the second line corresponds to marginalizing out the random effectsB. This reduces
the number of parameters to draw, but the likelihood evaluation is more costly due to
Q−1. If, as is often the case, Ω−1 and Z are sparse matrices, the full precision matrix can be
efficiently computed using Shermann–Morisson–Woodbury identity as

Q−1 = ZΩ−1Z⊤ + κ2In,

κ2Q = In − ZG−1Z⊤,

G = Z⊤Z + κ2Ω−1

Section 3.1 of Nychka et al. (2015) details efficient ways of calculating the quadratic form
involving Q and it’s determinant.

Proposition 7.4 (Pseudo marginal). Another option proposed by Andrieu and Roberts (2009)
based on an original idea from Beaumont (2003) relies on pseudo marginalization, where
integration is done via Monte Carlo sampling. Specifically, suppose that we are ultimately
interested in

p(θ) =
∫
p(θ, z)dz,
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but that for this purpose we normally sample from both parameters. Given a proposal θ and
q1(θ) and subsequently L draws once from q2(z | θ) for the nuisance, we can approximate
the marginal using, e.g., importance sampling as

p̂(θ; z) = 1
L

L∑
l=1

p(θ, zl)
q2(zl,θ) .

We then run a Markov chain on an augmented state space Θ×ZL, with Metropolis–Hastings
acceptance ratio of

p̂(θ⋆; z⋆
1,t, z

⋆
L,t)

p̂(θt; z1,t−1, . . . ,zL,t−1)
q1(θt−1 | θ⋆

t )
q1(θ⋆

t | θt−1) .

Note that the terms involving
∏L

l=1 q2(zl;θ) do not appear because they cancel out, as they
are also part of the augmented state space likelihood.

The remarkable feature of the pseudo marginal approach is that even if our average approxi-
mation p̂ to the marginal is noisy, the marginal posterior of this Markov chain is the same as
the original target.

Compared to regular data augmentation, we must store the full vector z⋆
1, . . . ,z

⋆
L and perform

L evaluations of the augmented likelihood. The values of z, if accepted, are stored for the
next evaluation of the ratio.

The idea of pseudo-marginal extends beyond the user case presented above, as as long as
we have an unbiased non-negative estimator of the likelihood E{p̂(θ)} = p(θ), even when
the likelihood itself is intractable. This is useful for models where we can approximate the
likelihood by simulation, like for particle filters. Pseudo marginal MCMC algorithms are
notorious for yielding sticky chains.

Proposition 7.5 (Blocking). When parameters of the vector θ that we wish to sample are
strongly correlated, it is advisable when possible to simulate them jointly. Because the
unnormalized posterior is evaluated at each step conditional on all values, the Markov chain
will be making incremental moves and mix slowly if we sample them one step at a time.

Before showcasing the effect of blocking and joint updates, we present another example of
data augmentation using Example 6.2.

Example 7.6 (Tokyo rainfall). We consider data from Kitagawa (1987) that provide a bino-
mial time series giving the number of days in years 1983 and 1984 (a leap year) in which
there was more than 1mm of rain in Tokyo. These data and the model we consider are
discussed in in section 4.3.4 of H. Rue and Held (2005). We thus have T = 366 days and
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nt ∈ {1, 2} (t = 1, . . . , T ) the number of observations in day t and yt = {0, . . . , nt} the
number of days with rain. The objective is to obtain a smoothed probability of rain. The
underlying probit model considered takes Yt | nt, pt ∼ binom(nt, pt) and pt = Φ(βt).

We specify the random effects β ∼ GaussT (0, τ−1Q−1), where Q is a T × T precision matrix
that encodes the local dependence. A circular random walk structure of order 2 is used
to model the smooth curves by smoothing over neighbors, and enforces small second
derivative. This is a suitable prior because it enforces no constraint on the mean structure.
This amounts to specifying the process with

∆2βt = (βt+1 − βt)− (βt − βt−1)
= −βt−1 + 2βt − βt+1 ∼ Gauss(0, τ−1), t ∈ N mod 366.

This yields an intrinsic Gaussian Markov random field with a circulant precision matrix
τQ = τGG⊤ of rank T − 1, where

G =



2 −1 0 0 · · · −1

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

. . . . . . . . . . . .
...

−1 0 0 0 · · · 2


,

Q =



6 −4 1 0 · · · 1 −4

−4 6 −4 1 . . . 0 1

1 −4 6 −4 . . . 0 0
...

. . . . . . . . . . . . . . .
...

−4 1 0 0 · · · −4 6


.

Because of the linear dependency, the determinant of Q is zero. The contribution from
the latent mean parameters is multivariate Gaussian and we exploit for computations the
sparsity of the precision matrix Q. Figure 7.8 shows five draws from the prior model, which
loops back between December 31st and January 1st, and is rather smooth.

We can perform data augmentation by imputing Gaussian variables, say {zt,i} following
Example 6.2 from truncated Gaussian, where zt,i = βt + εt,i and εt,i ∼ Gauss(0, 1) are
independent standard Gaussian and

zt,i | yt,i, βt ∼
{

trunc.Gauss(βt, 1,−∞, 0) yt,i = 0
trunc.Gauss(βt, 1, 0,∞) yt,i = 1
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Figure 7.8: Five realizations from the cyclical random walk Gaussian prior of order 2.

The posterior is proportional to

p(β | τ)p(τ)
T∏

t=1

nt∏
i=1

p(yt,i | zt,i)p(zt,i | βt)

and once we have imputed the Gaussian latent vectors, we can work directly with the values
of zt =

∑nt
i=1 zi,t. The posterior then becomes

p(β, τ) ∝ τ (n−1)/2 exp
(
−τ2β

⊤Qβ
)
τa−1 exp(−τb)

× exp
{
−1

2(z/n− β)⊤diag(n)(z/n− β)
}

where z = (z1, . . . , zT ). Completing the quadratic form shows that

β | z, τ ∼ GaussT

[
{τQ + diag(n)}−1 z, {τQ + diag(n)}−1

]
τ | β ∼ gamma

(
n− 1

2 + a,
β⊤Qβ

2 + b

)
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library(Matrix)
library(TruncatedNormal)
data(tokyorain, package = "hecbayes")
# Aggregate data
tokyo <- tokyorain |>

dplyr::group_by(day) |>
dplyr::summarize(y = sum(y), n = dplyr::n())

nt <- 366L
# Circulant random walk of order two precision matrix
Q <- hecbayes::crw_Q(d = nt, type = "rw2", sparse = TRUE)
# Sparse Cholesky root
cholQ <- Matrix::chol(Q)
N <- Matrix::Diagonal(n = nt, x = tokyo$n)
# Create containers
B <- 1e4L # number of draws
beta_s <- matrix(nrow = B, ncol = nt)
x_s <- matrix(nrow = B, ncol = nt)
tau_s <- numeric(B)
# Initial values
beta <- rep(0, nt)
tau <- 1000
# Hyperprior parameter values
tau_a <- 1
tau_b <- 0.0001
# Gibbs sampling
for(b in seq_len(B)){

# Step 1: data augmentation
x <- TruncatedNormal::rtnorm(

n = 1, mu = beta[tokyorain$day], sd = 1,
lb = ifelse(tokyorain$y == 0, -Inf, 0),
ub = ifelse(tokyorain$y == 0, 0, Inf))

tx <- aggregate(x = x, by = list(tokyorain$day), FUN = sum)$x
x_s[b,] <- tx
# Step 2: Simulate random effects in block
beta <- beta_s[b,] <- c(hecbayes::rGaussQ(

n = 1,
b = tx,
Q = tau * Q + N))

# Simulate precision
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tau <- tau_s[b] <- rgamma(
n = 1,
shape = (nt-1)/2 + tau_a,
rate = 0.5*as.numeric(crossprod(cholQ %*% beta)) + tau_b)

# if beta is VERY smooth, then precision is large
}
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Figure 7.9: Trace plots (top) and correlograms (bottom) for two parameters of the Gibbs
sampler for the Tokyo rainfall data, with block updates.

Example 7.7 (Blocking). We revisit Example 7.6 with two modifications: imputing one
parameter βt at a time using random scan Gibbs step, which leads to slower mixing but
univariate updates, and a joint update that first draws τ⋆ from some proposal distribution,
then sample conditional on that value generates the β vector and proposes acceptance
using a Metropolis step.

A different (less efficient) strategy would be to simulate the βt terms one at a time using
a random scan Gibbs, i.e., picking t0 ∈ {1, . . . , 366} and looping over indices. This yields
higher autocorrelation between components than sampling by block.
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Figure 7.10: Tokyo rainfall fitted median probability with 50% and 89% pointwise credible
intervals as a function of time of the year, with the proportion of days of rain
(points).

# Compute mean vector for betas
mbeta <- Matrix::solve(a = tau*Q + N, b = tx)
# weights of precision for neighbours
nw <- c(1, -4, -4, 1)
# Sample an index at random
st <- sample.int(nt, 1)
for(i in (st + seq_len(nt)) %% nt + 1L){
# Indices of the non-zero entries for row Q[i,]

nh <- c(i-3, i-2, i, i+1) %% 366 + 1
prec <- tau * 6 + tokyo$n[i]
condmean <- mbeta[i] - sum(nw*(beta[nh] - mbeta[nh])) * tau / prec

beta[i] <- rnorm(n = 1, mean = condmean, sd = 1/sqrt(prec))
}
beta_s[b,] <- beta

Instead of making things worst, we can try to improve upon our initial sampler by simulating
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Figure 7.11: Trace plots (top) and correlograms (bottom) for two parameters of the Gibbs
sampler for the Tokyo rainfall data, with individual updates for βt.

first a proposal τ⋆ using a random walk Metropolis (on the log scale) or some other pro-
posal q(τ⋆; τ), then drawing from the full conditional β | z, τ⋆ and accepting/rejecting
the whole move. In doing this, all terms that depend on β cancel out, and the term
p(τ⋆,β⋆ | τ)/{q(τ⋆; τ)p(β⋆ | τ⋆)} in the acceptance ratio becomes

τ
⋆(n−1)/2
t p(τ⋆

t ) exp
{
−1

2z
⊤(z/n)

}
q(τ⋆; τ) |τ⋆Q + diag(n)| exp

[
−1

2z
⊤ {τ⋆Q + diag(n)}−1 z

]

A second alternative is to ditch altogether the data augmentation step and write the unnor-
malized log posterior for β as

log p(β | y) β∝ −τ2β
⊤Qβ +

366∑
t=1

yt log Φ(βt) + (nt − yt) log{1− Φ(βt)}

and do a quadratic approximation to the posterior by doing a Taylor expansion of the
terms log p(yt | βt) around the current value of the draw for β. Given that observations are
conditionally independent, we have a sum of independent terms ℓ(y;β) =

∑366
t=1 log p(yt |
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βt) and this yields, expanding around β0, the Gaussian Markov field proposal

q(β | τ,β0) ∼ Gauss366
[
ℓ′(β0), τQ + diag{ℓ′′(β0)}

]
.

Indeed, because of conditional independence, the jth element of ℓ′ and ℓ′′ are

ℓ′(β0)j = ∂ℓ(yj ;βj)
∂βj

∣∣∣∣∣
βj=β0

j

, ℓ′′(β0)j = ∂2ℓ(yj ;βj)
∂β2

j

∣∣∣∣∣
βj=β0

j

.

We can then simulate τ using an random walk step, then propose β conditional on this
value using the Gaussian approximation above and accept/reject the pair (τ,β) using a
Metropolis step. As for the Metropolis-adjusted Langevin algorithm, we need to compute
the backward move for the acceptance ratio. We refer to Section 4.4.1 of H. Rue and Held
(2005) for more details.

Strong dependence can be fixed by blocking (often via forward sampling), but perhaps
conterintuitively also be adding additional redundant parameters. Gelman et al. (2013)
consider a simple hierarchical random effect model in which the range of the random
effects is severely constrained by the variance.

Example 7.8 (Parameter expansion). Consider a one-way ANOVA with a single observation
per group, where for i = 1, . . . , n, we have

Yi ∼ Gauss(µ+ αi, s
2
i )

αi ∼ Gauss(0, σ2
α)

and an improper prior for the mean p(µ) ∝ 1. If there are K groups, then the group-specific
mean is µ+αk, and there is a redundant parameter. In the Bayesian setting, the parameters
are weakly identifiable because of the prior onα, but the geometry is such that αk → 0 as
σ2

α → 0. See Section 5.5 on p. 119 of Gelman et al. (2013) for more details.

We can improve mixing by adding the redundant parameter ν (Gelman et al. 2008) common
to each observation

Yi ∼ Gauss(µ+ νξi, s
2
i )

ξi ∼ Gauss(0, σ2
ξ )

so that αj = νξj and σα = |ν|σξ. The common parameter ν controls both the variance and
the amplitude of the coefficients.

Consider the eight school data from Educational Testing Service (ETS), featured prominently
in Gelman et al. (2013). The data shows results of randomized experiments in eight different
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7 Computational strategies and diagnostics

schools to estimate the effect of coaching on SAT-V scores. The data consist of estimated
treatment mean difference y1, . . . , y8 and their standard errors σ1, . . . , s8. The data size are
large, so the average treatment effect (ATE) can be considered Gaussian and the school-
specific standard errors sj are treated as a known quantity.

We can devise different Gibbs sampling from this problem. The naive Gibbs sampler,
which iterates between conditionals of p(α | y, s2, µ, σ2

α) and p(µ | y, s2,α) leads to strong
autocorrelation. A better strategy is to marginalize over the global mean µ and simulate
from p(α | y, s2, σ2

α) instead. We get then the conditionals

αi | yi, s
2
i , σ

2
α ∼ Gauss

{(
s−2

i + σ−2
α

)−1 yi

s2
j

,
(
s−2

i + σ−2
α

)−1
}

µ | y, s2,α ∼ Gauss

s2
µ

8∑
j=1

yi − αi

s2
j

, s2
µ


σ2

α | α ∼ inv.gamma
(
n− 1

2 ,

∑8
j=1 α

2
j

2

)

where s−2
µ =

∑8
j=1 s

−2
j .

The parameter expansion sampler proceeds in exactly the same way with the same condi-
tionals for σ2

ξ and ξ as above; the only additional step is

ν | y, s2, ξ ∼ Gauss


 8∑

j=1
ξ2

j /s
2
j

−1 8∑
j=1

ξj(yj − µ)/s2
j ,

 8∑
j=1

ξ2
j /s

2
j

−1
 .

After each update, we then save the progress of αj = νξj and σα = |ν|σξ, as the other
parameters are not identifiable on their own. The redundant parametrization allows one to
more efficiently explore the space. Figure 7.12 shows that many regions with small variance
are not explored after 1000 iterations of the Gibbs sampler. The geometry exhibited by
Figure 7.12 is typical of hierarchical construction and complicated for more complex solvers
like Hamiltonian Monte Carlo, which will report warnings.
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Figure 7.12: Dependence between random effect and it’s variance, showing a funnel pattern.
The block Gibbs sample (left) does not explore the whole posterior, whereas
the parameter-expansion algorithm (right) does.
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8 Regression models

This chapter is dedicated to the study of regression models from a Bayesian standpoint.
Starting with Gaussian data, we investigate the link between frequentist approaches to
regularization and shrinkage priors. We also look at hierarchical models with mixed effects
and variable selection using reversible jump MCMC and conditional Bayes factor.

Throughout, we consider regression models with model (or design) matrix X ∈ Rn×p

with centered inputs, so 1⊤
n X = 0p. We are interested in the associated vector of regression

coefficientsβ = (β1, . . . , βp)⊤ which describe the mean and act as weights for each covariate
vector. In the ordinary linear regression model

Y | X,β, ω ∼ Gaussn(β01n + Xβ, ω−1In),

so that observations are independent and homoscedastic. Inference is performed condi-
tional on the observed covariate vectors Xi; we omit this dependence hereafter, but note
that this can be relaxed. The intercept β0,which is added to capture the mean response and
make it mean-zero, receives special treatment and is typically assigned an improper prior.
We largely follow the exposition of Villani (2023).

8.1 Gaussian linear model

Before we proceed with analysis of the Gaussian linear model, we derive a useful formula
for completion of quadratic forms that arise in Gaussian models.

Proposition 8.1 (Decomposition of quadratic forms). For quadratic forms (in x) with

(x− a)⊤A(x− a) + (x− b)⊤B(x− b)
= (x− c)⊤C(x− c) + (c− a)⊤A(c− a) + (c− b)⊤B(c− b)
x∝ (x− c)⊤C(x− c)

where C = A + B and c = C−1(Aa+ Bb).
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8 Regression models

Proposition 8.2 (Gaussian ordinary linear regression with conjugate priors). The conjugate
prior for the Gaussian regression model for the mean and precision parameters β and ω,
respectively, is a Gaussian-gamma and is defined hierarchically as

Y i ∼ Gauss(xiβ, ω
−1)

β | ω ∼ Gauss
{
µ0, (ωΩ0)−1

}
ω ∼ gamma(ν0/2, τ0/2).

Using properties of the Gaussian distribution, the sampling distribution of the ordinary least
squares estimator is β̂ ∼ Gaussp{β, (ωX⊤X)−1}.

The conditional and marginal posterior distributions for the mean coefficients β and for the
precision ω are

β | ω,y ∼ Gaussp

{
µn, (ωΩn)−1

}
ω | y ∼ gamma

{
(ν0 + n)/2, τ2

n/2
}
,

β | y ∼ Studentp(µn, τn/(ν0 + n)×Ω−1
n , ν0 + n)

where

Ωn = X⊤X + Ω0

µn = Ω−1
n (X⊤Xβ̂ + Ω0µ0) = Ω−1

n (X⊤y + Ω0µ0)
τn = τ0 + (y −Xβ̂)⊤(y −Xβ̂) + (µn − β̂)⊤X⊤X(µn − β̂)

+ (µn − µ0)⊤Ω0(µn − µ0)

Proof. Write the posterior as

p(β, ω | y) ∝ p(y | β, ω)p(ω)

∝ ωn/2 exp
{
−ω2 (y −Xβ)⊤(y −Xβ)

}
× |ωΩ0|1/2 exp

{
−ω2 (β − µ0)⊤Ω0(β − µ0)

}
× ων0/2−1 exp (−τ0ω/2) .

We rewrite the first quadratic form in y −Xβ using the orthogonal decomposition

(y −Xβ̂) + (Xβ̂ −Xβ)

146



8.1 Gaussian linear model

since (y −Xβ̂)⊤(Xβ̂ −Xβ) = 0. We can pull terms together and separate the conditional
posterior p(β | y, ω) and p(ω | y) as

p(β, ω | y) ∝ ω(n+p+ν0)/2−1 exp
[
−ω2

{
τ0 + (y −Xβ̂)⊤(y −Xβ̂)

}]
× exp

[
−ω2

{
(β̂ − β)⊤X⊤X(β̂ − β) + (β − µ0)⊤Ω0(β − µ0)

}]
and using Proposition 8.1 for the terms in the exponent with a = β̂,A = X⊤X, b = µ0 and
B = Ω0, we find

p(β, ω | y) ∝ ω(n+ν0)/2−1 exp
(
−ωτn

2

)
× ωp/2 exp

{
−1

2(β − µn)⊤(ωΩn)(β − µn)
}

whence the decomposition of the posterior as a Gaussian conditional on the precision, and
a gamma for the latter. The marginal of β is obtained by regrouping all terms that depend
on ω and integrating over the latter, recognizing the integral as an unnormalized gamma
density, and thus

p(β, | y) β∝
∫ ∞

0
ω(ν0+n+p)/2−1 exp

{
−ωτn + (β − µn)⊤Ωn(β − µn)

2

}
dω

β∝
{
τn + (β − µn)⊤Ωn(β − µn)

2

}−(ν0+n+p)/2

β∝
{

1 +
(β − µn)⊤ ν0+n

τn
Ωn(β − µn)

ν0 + n

}−(ν0+n+p)/2

so must be a Student-t distribution with location µn, scale matrix τn/(ν0 + n)×Ω−1
n and

ν0 + n degrees of freedom.

The improper prior p(β0,β, ω) ∝ ω−1 can be viewed as a special case of the conjugate prior
when the variance of the Gaussian is infinite and the gamma(a, b) when both a, b→ 0.

The choice of prior precision Ω0 is left to the user, but typically the components of the
vector β are left apriori independent, with Ω0 ∝ λIn.

Example 8.1. Study 4 of Lin et al. (2024) focuses on cultural appropriation using a fictional
scenario focusing on soul food recipe cookbook from Chef Dax. The chef was identified
as being African-American or not, and the authors manipulated the description of the
way he obtained the recipes (either by peeking without permission in kitchens, by asking
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8 Regression models

permission or without them mentioning altogether for the control category). Authors
postulated that the perception of appropriation would vary by political ideology (liberal or
conservative). The study results in a 3 by 2 by 2 three-way between-subject ANOVA.

We use the multivariate regression model to draw samples from β and use these to recon-
struct the subgroup sample means for each of the 12 categories. Then, we consider the
difference in perception of cultural appropriation for participants when Chef Dax is black
(no cultural appropriation) versus when he is not, separately for liberals and conservatives,
by pooling data across all different descriptions. Figure 8.1 shows the posterior distribution
of those contrasts, which indicate that on average liberal perceive cultural appropriation
more strongly (with nearly 2 points more), than conservatives (0.7 points on average).

data(LKUK24_S4, package = "hecedsm")
options(contrasts = c("contr.sum", "contr.poly"))
model <- lm(appropriation ~ politideo * chefdax * brandaction,

data = LKUK24_S4)
# Model matrix, response and dimensions
y <- LKUK24_S4$appropriation
X <- model.matrix(model)
n <- nrow(X)
p <- ncol(X)
# Priors
# We set zero for contrasts and a small value
# for the global mean (since response is on [1,7] Likert scale)
# with lower values indicating more cultural appropriation)
mu_0 <- c(2.5, rep(0, p-1))
Omega_0 <- diag(p)
# Prior precision of 0.25 (variance of 4)
nu_0 <- 0.25
tau_0 <- 1
Omega_n_inv <- solve(crossprod(X) + Omega_0)
mu_n <- Omega_n_inv %*% (crossprod(X, y) + crossprod(Omega_0, mu_0))
tau_n <- tau_0 + sum(resid(model)ˆ2) + c(crossprod(X %*% (mu_n-coef(model)))) + sum((mu_n-mu_0)ˆ2)
# Posterior draws from the model
omega <- rgamma(n = 1e3L,

shape = (nu_0 + n)/2,
tau_nˆ2/2)

beta <- matrix(rnorm(n = 1e3L*p), ncol = p) %*%
chol(Omega_n_inv)

beta <- sweep(beta, 1, sqrt(omega), "/")
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8.1 Gaussian linear model

beta <- sweep(beta, 2, mu_n, "+")
# Posterior quartiles for beta
beta_qu <- t(apply(beta, 2, quantile, probs = c(0.25,0.5,0.75)))
# Standard dev. for beta (from Student-t)
beta_se <- sqrt((nu_0 + n)/(nu_0 + n - 2) *diag(tau_n/(nu_0 + n) * Omega_n_inv))

beta <- TruncatedNormal::rtmvt(
n = 1e3L,
mu = mu_n,
sigma = tau_n/(nu_0 + n) * Omega_n_inv,
df = nu_0 + n)

dfg <- expand.grid(politideo =c("conservative", "liberal"),
chefdax = c("not black", "black"),
brandaction = c("peeking","permission", "control"))

mm <- model.matrix( ~ politideo * chefdax * brandaction,
data = dfg)

# Subgroup means for each of the 12 categories
mu <- tcrossprod(beta, mm)
# Contrast weights, averaging over brandaction
w1 <- rep(c(1, 0, -1, 0), length.out = nrow(dfg))/3
w2 <- rep(c(0, 1, 0, -1), length.out = nrow(dfg))/3
# Posterior distribution of contrasts
tc <- mu %*% cbind(w1, w2)

The coefficients and standard errors from the linear regression are very nearly similar to the
posterior mean and standard deviations for β from the marginal Student-t, owing to the
large sample size and uninformative priors.

In multivariate regression, it sometimes is useful to specify correlated coefficients (e.g., for
random effects). This leads to the necessity to set a prior on a covariance matrix.

Proposition 8.3 (Wishart distribution). LetQ by a random p× p symmetric positive definite
matrix with Wishart distribution, denoted Q ∼ Wishartp(ν,S) for ν > 0 degrees of freedom
and scale S. It’s density is proportional to

f(Q) Q∝ |Q|(ν−p−1)/2 exp{−tr(S−1Q)/2}, ν > p− 1.

where | · | denotes the determinant of the matrix and tr the trace operator. The Wishart also
arises from considering n ≥ p independent and identically distributed mean zero Gaussian
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conservative
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difference in cultural appropriation score

Comparison when Chef Dax is black (vs not)

Figure 8.1: Difference in appropriation rating for black vs non-black Chef Dax, average
accross different levels of brand action.

vectors Y i ∼ Gaussp(0p,S), where

ν∑
i=1
Y iY

⊤
i ∼Wishartp(ν,S).

For prior elicitation, ν is thus a prior sample size, whereas we can specify S using the fact that
the mean of the Wishart is νS; taking an identity matrix is standard. For more mathematical
properties, consult Chapter 8 of Eaton (2007).

Definition 8.1 (Inverse Wishart). Analogous to the relationship between gamma prior for
the precision and inverse gamma for the variance, we can also similarly consider a prior for
the covariance matrix Σ = Q−1. Applying the change of variable formula, we get Jacobian
|Σ|p+1, and so Σ is inverse Wishart inv.Wishart(ν,S−1), with density proportional to

p(Σ) ∝ |Σ|−(ν+p+1)/2 exp
{
−1

2tr
(
S−1Σ−1

)}
with expectation S−1(ν − p− 1) for ν > p+ 1.
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8.2 Shrinkage priors

Proposition 8.4 (Wishart as conjugate prior in Gaussian model). Consider µ ∼
Gaussp(µ0,Q

−1) andQ ∼Wishartp(ν,S) for ν ≥ p. Then, the conditional density ofQ | µ,µ0
is proportional to

|Q|1/2 exp
{
−1

2(µ− µ0)⊤Q(µ− µ0)
}
|Q|(ν−p−1)/2 exp{−tr(S−1Q)/2}

and thus Wishartp{ν + 1/2,S + (µ− µ0)(µ− µ0)⊤}. To see this, note that a 1× 1 matrix is
equal to it’s trace, and the trace operator is invariant to cyclic of it’s argument, meaning that

(µ− µ0)⊤Q(µ− µ0) = tr
{
Q(µ− µ0)(µ− µ0)⊤

}
.

We then combine elements to get the parameters. This extends naturally to the case of n
independent observations, for example linear regression model.

Proposition 8.5 (Priors for variance matrices). The marginal precision for the Wishart
variate are gamma distributed with the same degrees of freedom ν. The problem with using
this prior is that it has a single parameter governing all scale parameters (i.e., the marginal
variance) and the absolute value of the correlation and marginal variance parameters are
negatively related (Gelman et al. 2013), as seen in Figure 8.2. Large variance thus correspond
to small correlations shrunk towards zero when the degrees of freedom increase. There
exists alternative distributions, such as the scaled-inverse Wishart, that add redundant scale
parameters to decouple diag(ξ)×Σ× diag(ξ), but we refrain from pursuing these here.

A better alternative is to specify different prior for each marginal scale σj and a prior on the
correlation matrix R. For the latter, the onion peel or LKJ prior, named after the authors of
Lewandowski, Kurowicka, and Joe (2009), is p(R) ∝ |R|η−1 for a scale η > 0. The case η = 1
leads to uniform over the space of correlation matrices, and η > 1 favours the identity matrix.

8.2 Shrinkage priors

In contexts where the number of regressors p is considerable relative to the sample size n, it
may be useful to constrain the parameter vector if we assume that the signal is sparse, with
a large proportion of coefficients that should be zero. This is notably important when the
ratio p/n→ c for c > 0, meaning that the number of coefficients and covariates increases
proportional to the sample size. Shrinkage priors can regularize and typically consist of
distributions that have a mode at zero, and another that allows for larger signals.

In the Bayesian paradigm, regularization is achieved via priors that have mass at or towards
zero, pushing coefficients of the regression model towards zero unless there is strong ev-
idence from the likelihood against this. We however want to allow non-zero coefficients,
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Figure 8.2: Prior draws from a bivariate inverse Wishart with identity scale matrix and
ν ∈ {3, 20} degrees of freedom.

typically by setting coefficient-specific parameters with a heavy tailed distribution to pre-
vent overshrinking. Most if not all parameter can be viewed as scale mixtures of Gaussian.

We make a distinction between global shrinkage priors those that consider a common
shrinkage parameter for all regression coefficients, to be compared with local scale mixtures
that have coefficient-specific parameters.

The scale parameters and hyperparameters can be estimated jointly with the model, and
uncertainty diagnostics follow naturally. We assume that coefficients βj are independent
apriori, although it is possible to specify group structures (e.g., for handling coefficients
associated to a common categorical covariate with K levels, represented by K − 1 columns
of dummy group indicators).

Definition 8.2 (Discrete spike-and-slab prior). The spike-and-slab prior is a two-
component mixture with that assigns a positive probability to zero via a point mass
I(βj = 0) or a vary narrow distribution centered at the origin (the spike) and the balance to
the slab, a diffuse distribution. The discrete spike-and-slab prior was originally proposed
by Mitchell and Beauchamp (1988) with a uniform on a large interval and a point mass at
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8.2 Shrinkage priors

zero. More generally, people consider the formulation

βj | γj , σ
2 ∼ γjI(βj = 0) + (1− γj)Gauss(0, σ2)

where a prior p(σ2) give rise to a Gaussian scale mixtures for the slab. If we set independent
and identically distributed conjugate prior for γj ∼ binom(1, ω), we get

p(γ | ω) =
n∏

j=1
ωγj (1− ω)1−γj

Apriori, the shared hyperparameters ω ∈ (0, 1) corresponds to the proportion of the p
coefficients β that are zero (so p(1− ω) nonzero coefficients). Alternative priors focus on
precentage of explained variance in the regression (via the coefficient of determination R2)
and the number of covariates. The prior has typically a strong impact on the posterior, by
design.

Example 8.2 (Spike-and-slab and variable selection). Discrete spike-and-slab priors are
not easy to fit because the component γj ∈ {0, 1} is discrete (so cannot be simulated via
Hamiltonian Monte Carlo as is). Removal of a covariate changes the dimension and requires
dedicated algorithms; see George and McCulloch (1997), Chipman et al. (2001) and Ghosh
and Clyde (2011) for references. Some of these are implemented in the BoomSpikeSlab R
package.

We fit the discrete spike-and-slab to the diabetes data, which contains a model matrix
of n = 442 observations with p = 64 covariates, with an expected number of non-zero
component of 1. The result of the MCMC procedure is a matrix of coefficients for β plus
other model parameters. From the former, we can estimate the probability of an active
component by simply counting the number of non-zero entries in β over all replications.
We can likewise compute the posterior probability of the number of non-zero components
by simply counting the number of non-zero coefficients for each posterior draw. Figure 8.3
shows the result

Definition 8.3 (Continuous spike-and-slab prior). The term was also used in George and
McCulloch (1993), which replaced the prior by a mixture of Gaussians, one of which diffuse
and the other with near infinite precision and centered at the origin. The latter is known
under the vocable stochastic search variable selection prior after George and McCulloch
(1997), or more commonly as an instance of continuous spike-and-slab prior. Letting
γj ∈ [0, 1] denote the probability of the slab or inclusion of the variable, the independent
priors for the regression coefficients are

βj | γj , σ
2
j , ϕ

2 ∼ γj Gauss(0, ϕ2)
spike

+(1− γj) Gauss(0, σ2
jϕ

2)
slab
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Figure 8.3: Probability of inclusion of variables (left) and posterior distribution of the num-
ber of non-zero components (right) for the discrete spike-and-slab fitted to the
diabetes data, including 56 covariates with quadratic terms and interactions.

where ϕ2 is very nearly zero, e.g., ϕ2 = 0.001. The construction allows for variable augmen-
tation with mixture indicators and Gibbs sampling, analogous to the Gaussian mixture
models but with the variance and mean of one of the cluster for the spike fixed. However,
mixing of the Gibbs sampler Markov chain tends to be poor.

Proposition 8.6 (Horseshoe prior). The horseshoe prior of Carvalho, Polson, and Scott (2010)
is a hierarchical prior of the form

βj | σ2
j ∼ Gauss(0, σ2

j ), σj | λ ∼ Student+(0, λ, 1), λ ∼ Student+(0, ω, 1)

where Student+(0, a, 1) denotes a half-Cauchy distribution with scale a > 0, truncated on
R+. Carvalho, Polson, and Scott (2010) use an improper prior for the scale p(ω2) ∝ 1/ω2 in
the context of linear regression model when Yi ∼ Gauss(xiβ, ω

2); in other generalized linear
models in which the variance is fully determined by the mean parameters, a proper vague
prior for ω may be needed for the posterior to be well-defined.

This prior has no explicit density, but is continuous and can be simulated. It is useful to
consider the behaviour of the random variance σ2

j term, which leads to an unconditional
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scale mixture of Gaussian for βj .More useful to understanding is looking at κ = 1−1/(1+σ2),
which gives a weight in [0, 1].We can see what happens to the shrunk components close to zero
by looking at the density of κ→ 0, and similarly at the large signals when κ→ 1. The Cauchy
prior does not shrink towards zero, and lets large signals pass, whereas the Bayesian LASSO
double exponential shrinkage leads to attenuation of strong signals. The horseshoe prior
name comes from the shape of the prior, which leads to a shrinkage analog to beta(1/2, 1/2)
and thus penalizes, forcing components to be either large or small.

Figure 8.4 shows the weighting implied by the mixture density for a Cauchy prior on the
variance, the double exponential of the Laplace from Bayesian LASSO and the horseshoe.

Cauchy horseshoe LASSO
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Figure 8.4: Density of penalization weights κ of spike (near zero) and slab (near one) for
three shrinkage priors.

While the horseshoe prior guarantees that large coefficients are not regularized, this feature
of the shrinkage prior is harmful in certain instances, for example separation of variables
for logistic regression. Markov chain Monte Carlo simulations are hampered by these
parameters whose posterior mean does not exist, leading to poor mixing. Some very
weak regularization for these big components can thus help. Piironen and Vehtari (2017)
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Figure 8.5: Marginal density for a regression coefficient β with horseshoe prior (full), Laplace
(dashed) and a Student-t (thick dotted). The plot on the right shows the tail
behaviour. The density of the horseshoe is unbounded at the origin. Inspired
from Figure 1 of Carvalho, Polson, and Scott (2010).

proposed the regularized horseshoe, nicknamed Finnish horseshoe, where

βj | λ, τj , c
2 ∼ Gauss

(
0, λ

c2τ2
j

c2 + τ2
j λ

2

)
,

τj ∼ Student+(0, 1, 1)
c2 | s2, ν ∼ inv.gamma(ν/2, νs2/2).

When τ2λ2
j is much greater than c2, this amounts to having a Student slab with ν degrees

of freedom for large coefficients; taking a small value of ν allows for large, but not extreme
components, and the authors use s2 = 2, ν = 4. The above specification does not specify
the prior for the global scale λ, for which Piironen and Vehtari (2017) recommend using an
empirical Bayes prior, with

λ ∼ Student+

{
0, p0

(p− p0)
σ

n1/2 , 1
}
,

where p0 is a prior guess for the number of non-zero components out of p, n is the sample
size and σ is some level of the noise.
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8.2 Shrinkage priors

Example 8.3 (Comparison of shrinkage priors). We revisit the diabetes data from the R
package lars, which was used in Park and Casella (2008) to illustrate the Bayesian LASSO.
We consider three methods: the default Gaussian prior, which gives a ridge penalty, the
Bayesian LASSO and finally the horseshoe. Models are fitted using the bayesreg package.

Figure 8.6 shows the ordered coefficients for each method. We can see that the ridge has
the widest intervals of all methods, providing some shrinkage only for large values of β. The
horseshoe has typically narrower intervals, with more mass in a neighborhood of zero for
smaller coefficients, and asymmetric intervals.
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coefficient
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β

Figure 8.6: Density estimates for regression coefficients with Gaussian (ridge), double expo-
nential (Laplace) and horseshoe priors for the diabetes data.

One aspect worth mentioning is that the horseshoe prior impacts strongly the geometry
and leads to slower mixing than the conjugate or Student-t priors: the effective sample size
fraction relative to the number of samples ranges from 20% to 100%, compared to 52% to
100% for the Bayesian LASSO and near-independent draws with the conjugate ridge.
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8.3 Bayesian model averaging

Variable selection refers to selection of covariates from a set of p candidates from a design
matrix which is orthogonal to the intercept; these could include higher order terms or
interactions. From the Bayesian perspective, all of these 2p− 1 submodels must be assigned
a prior. We can also rule out models without lower order interactions through the prior, but
exploring or fitting all possible models is too costly. The goal of the analysis is to account
for the uncertainty associated with variable selection. The target of inference is often the
weight of the combinations, and the probability that a predictor is included aposteriori.

There are different methods for doing this: one is through spike and slab priors. Software
for Hamiltonian Monte Carlo like Stan cannot handle discrete variables. Other methods
for Bayesian model averaging includes use of reversible jump Markov chain Monte Carlo
(Green 1995), an extension that allows for arbitrary measures and through this varying
dimensions, which occurs not only with variable selection, but also changepoint analysis
and mixture models with varying number of components (Green 2001). Reversible jump
requires a form of data augmentation to have dimension-balancing and defining different
types of moves for jumping between dimensions. These are integrated in the Metropolis–
Hastings step through a Jacobian term added to R. with different types of moves giving
termed padding andone to pad the dimensions to match and define. In regression models,
we will consider moves that adds or removes one parameter/regressor at a time.

Consider the setup of Proposition 8.2, where we consider models M1, . . . ,Mm with for
simplicity p(Mi) ∝ 1 for all models that include an intercept, so all models are apriori
equally likely with probability 1/m. We define X(m) and β(m) as the model matrix and the
associated vector of non-zero coefficients associated with it. Let the response vector

Y |Mm,β,∼ Gauss(X(m)β(m),Σ)

where β(m) |Mm, is assigned a Gaussian prior, and likewise the covariance parameters are
given suitable priors. We write |M | for the cardinality of the set of non-zero coefficients β in
model M.

Write θ for all parameters other than the response, model and vector of coefficients. We
can consider a joint update of the regression parameters β,M by sampling from their joint
distribution via p(β |M,θ)p(M | θ). The update for the coefficients p(β |M,θ) is as usual,
while for p(M | θ), we get the conditional Bayes factor,

p(M | Y ,θ) M∝ p(M)p(Y |M,θ)

= p(M)
∫
R|M|

p(Y |M,β,θ)p(β |M,θ)dβ
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8.3 Bayesian model averaging

We can marginalize out β and show (demonstration omitted) that

p(M | Y ,θ) ∝ p(M)|Qβ|−1/2 exp
(1

2µ
⊤
βQβµβ

)
where µβ andQβ are the mean and precision of p(β | Y ,M,θ).

We then consider different types of move for the kmax potential covariates (including inter-
actions, etc.) (Holmes, Denison, and Mallick 2002)

• expansion: adding an unused covariate chosen at random from the remaining ones
• shrinkage: removing one covariate at random from the current matrix
• swapping an active covariate for an unused one.

Only the last type of move preserves the dimension, whereas the shrinkage and expansion
moves lead to a decrease or increase of the model matrix dimension. The probability of
rejection for Metropolis becomes

R = J
p(θ⋆

t )
p(θt−1)

q(θt−1 | θ⋆
t )

q(θ⋆
t | θt−1)

where for most moves J = 1 in this case, except in four cases where the dimension |M | ∈
{1, 2, kmax − 1, kmax} and

• J = 2/3 if |M | = 1 and we try to add a covariate
• J = 2/3 if |M | = kmax and we try to remove a covariate
• J = 3/2 if |M | = 2 and we try to remove a covariate
• J = 3/2 if |M | = kmax − 1 and we try to add the last covariate.

The move for M is accepted as usual if the drawn uniform U ∼ unif(0, 1) satisfies U < R.
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9 Deterministic approximations

So far, we have focused on stochastic approximations of integral. In very large models,
Markov chain Monte Carlo suffer from the curse of dimensionality and it is sometimes useful
to resort to cheaper approximations. We begin this review by looking at the asymptotic
Gaussian limiting distribution of the maximum aposteriori, the Laplace approximations for
integrals (Tierney and Kadane 1986), and their applications for model comparison (Raftery
1995) and evaluation of the marginal likelihood. We also discuss integrated nested Laplace
approximations (Håvard Rue, Martino, and Chopin 2009; Wood 2019), used in hierarchical
models with Gaussian components to obtain approximations to the marginal distribution.
This material also borrows from Section 8.2 and appendix C.2.2 of Held and Bové (2020).

We make use of Landau’s notation to describe the growth rate of some functions: we write
x = O(n) (big-O) to indicate that the ratio x/n→ c ∈ R and x = o(n) when x/n→ 0, both
when n→∞.

9.1 Laplace approximation and it’s applications

Proposition 9.1 (Laplace approximation for integrals). The Laplace approximation uses a
Gaussian approximation to evaluate integrals of the form

In =
∫ b

a
g(x)dx =

∫ b

a
exp{nh(x)}dx.

Assume that g(x) and thus h(x), is concave and and twice differentiable, with a maximum at
x0 ∈ [a, b]. We can Taylor expand h(x) to get,

h(x) = h(x0) + h′(x0)(x− x0) + h′′(x0)(x− x0)2/2 +R

where the remainder R = O{(x − x0)3}. If x0 is a maximizer and solves h′(x0) = 0, then
letting τ = −nh′′(x0), we can write ignoring the remainder term the approximation

In ≈ exp{nh(x0)}
∫ b

a
exp

{
−1

2(x− x0)2
}

= exp{nh(x0)}
(2π
τ

)1/2
[Φ {τ(b− x0)} − Φ {τ(a− x0)}]
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9 Deterministic approximations

upon recovering the unnormalized kernel of a Gaussian random variable centered at x0 with

precision τ. The approximation error is O(n−1). This quantity reduces to exp{nh(x0)}
(

2π
τ

)1/2

when evaluated over the real line.

The multivariate analog is similar, where now for an integral of the form exp{nh(x)} over
Rd, we consider the Taylor series expansion

h(x) = h(x0) + (x− x0)⊤h′(x0) + 1
2(x− x0)⊤h′′(x0)(x− x0) +R.

We obtain the Laplace approximation at the mode x0 satisfying h′(x0) = 0d,

In ≈
(2π
n

)d/2
|H(x0)|−1/2 exp{nh(x0)},

where |H(x0)| is the determinant of the Hessian matrix of−h(x) evaluated at the mode x0.

Laplace approximation uses a Taylor series approximation to approximate the density, but
since the latter must be non-negative, it performs the approximation on the log scale and
back-transform the result. It is important to understand that we can replace nh(x) by any
O(n) term.

Corollary 9.1 (Laplace approximation for marginal likelihood). Consider a simple random
sample Y of size n from a distribution with parameter vector θ ∈ Rp. We are interested in
approximating the marginal likelihood. Write (Raftery 1995)

p(y) =
∫
Rp
p(y | θ)p(θ)dθ

and take

nh(θ) = log p(y | θ) + log p(θ)

in Proposition 9.1. Then, evaluating at the maximum a posteriori θ̂MAP, we get

p(y) = p(θ̂MAP)p(y | θ̂MAP)(2π)d/2|H(θ̂MAP)|−1/2 + O(n−1)

where−H is the Hessian matrix of second partial derivatives of the unnormalized log poste-
rior. We get the same relationship on the log scale, whence (Tierney and Kadane 1986)

log p(y) = log p(θ̂MAP) + log p(y | θ̂MAP) + p

2 log(2π)− 1
2 log |H(θ̂MAP)|+ O(n−1)

If p(θ) = O(1) and p(y | θ) = O(n) and provided the prior does not impose unnecessary
support constraints, we get the same limiting approximation if we replace the maximum a
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9.1 Laplace approximation and it’s applications

posteriori point estimator θ̂MAP by the maximum likelihood estimator, and−H(θ̂MAP) by
nı, where ı denotes the Fisher information matrix for a sample of size one. We can write the
determinant of the n-sample Fisher information as np|ı|.

If we use this approximation instead, we get

log p(y) = log p(y | θ̂MLE)− p

2 logn+

log p(θ̂MLE)− 1
2 log |ı|+ p

2 log(2π) + O(n−1/2)

where the error is now O(n−1/2) due to replacing the true information by the evaluation at
the MLE. The likelihood is O(n), the second is O(logn) and the other three are O(1). If we
take the prior to be a multivariate Gaussian with mean θMLE and with variance ı, then the
approximation error is O(n−1/2), whereas the marginal likelihood has error O(1) if we only
keep the first two terms. This gives the approximation

−2 log p(y) ≈ BIC = −2 log p(y | θ) + p logn

If the likelihood contribution dominates the posterior, the BIC approximation will improve
with increasing sample size, so exp(−BIC/2) is an approximation fo the marginal likelihood
sometimes used for model comparison in Bayes factor, although this derivation shows that
the latter neglects the impact of the prior.

Example 9.1 (Bayesian model averaging approximation). Consider the diabetes model
from Park and Casella (2008). We fit various linear regression models, considering all best
models of a certain type with at most the 10 predictors plus the intercept. In practice, we
typically restrict attention to models within some distance of the lowest BIC value, as the
weights otherwise will be negligible.

Most of the weight is on a handful of complex models, where the best fitting model only has
around 30% of the posterior mass.

Remark 9.1 (Parametrization for Laplace). Compare to sampling-based methods, the
Laplace approximation requires optimization to find the maximum of the function. The
Laplace approximation is not invariant to reparametrization: in practice, it is best to per-
form it on a scale where the likelihood is as close to quadratic as possible in g(θ) and
back-transform using a change of variable.

We can also use Laplace approximation to obtain a crude second-order approximation to
the posterior. We suppose that the prior is proper.

We can Taylor expand the log prior and log density around their respective mode, say θ̂0 and
θ̂MLE, with ȷ0(θ̂0) and ȷ(θ̂MLE) denoting negative of the corresponding Hessian matrices
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Figure 9.1: BIC as a function of the linear model covariates (left) and Bayesian model aver-

aging approximate weights (in percentage) for the 10 models with the highest
posterior weights according to the BIC approximation.

evaluated at their mode, meaning the observed information matrix for the likelihood
component. Together, these yield

log p(θ) ≈ log p(θ̂0)− 1
2(θ − θ̂0)⊤ȷ0(θ̂0)(θ − θ̂0)

log p(y | θ) ≈ log p(y | θ̂MLE)− 1
2(θ − θ̂MLE)⊤ȷ(θ̂MLE)(θ − θ̂MLE)

In the case of flat prior, the curvature is zero and the prior contribution vanishes altogether.
If we apply now Proposition 8.1 to this unnormalized kernel, we get that the approximate
posterior must be Gaussian with precision ȷ−1

n and mean θ̂n, where

ȷn = ȷ0(θ̂0) + ȷ(θ̂MLE)

θ̂n = ȷ−1
n

{
ȷ0(θ̂0)θ̂0 + ȷ(θ̂MLE)θ̂MLE

}
and note that ȷ0(θ̂0) = O(1), whereas ȷn is O(n).

164



9.1 Laplace approximation and it’s applications

Theorem 9.1 (Bernstein-von Mises theorem). Consider any estimator asymptotically equiv-
alent to the maximum likelihood estimator and suppose that the prior is continuous and
positive in a neighborhood of the maximum. Assume further that the regularity conditions
for maximum likelihood estimator holds. Then, in the limit as n→∞

θ | y ·∼ Gauss{θ̂MLE, ȷ
−1(θ̂MLE)}

The conclusions from this result is that, in large samples, the inference obtained from using
likelihood-based inference and Bayesian methods will be equivalent: credible intervals will
also have guaranteed frequentist coverage.

We can use the statement by replacing the maximum likelihood estimator and the observed
information matrix with variants thereof (θn and ȷn, or the Fisher information, or any Monte
Carlo estimate of the posterior mean and covariance). The differences will be noticeable for
small samples, but will vanish as n grows.

Example 9.2 (Gaussian approximations to the posterior). To assess the performance of
Laplace approximation, we consider an exponential likelihood Yi | λ ∼ expo(λ) with
conjugate gamma prior λ ∼ gamma(a, b). The exponential model has information i(λ) =
n/λ2 and the mode of the posterior is

λ̂MAP = n+ a− 1∑n
i=1 yi + b

.

Let us now use Laplace approximation to obtain an estimate of the marginal likelihood:
because the model is conjugate, the true log marginal likelihood equals

p(y) = Γ(n+ a)
Γ(a)

ba

(b+
∑n

i=1 yi)n+a .

Recall that while p(y) is a function of y, we only evaluate it at the observed data so it
becomes a normalizing constant for the problem at hand.

n <- length(waiting); s <- sum(waiting)
log_marg_lik <- lgamma(n+a) - lgamma(a) + a*log(b) - (n+a) * log(b+s)
# Laplace approximation
map <- (n + a - 1)/(s + b)
logpost <- function(x){

sum(dexp(waiting, rate = x, log = TRUE)) +
dgamma(x, a, b, log = TRUE)
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Figure 9.2: Gaussian approximation (dashed) to the posterior density (full line) of the ex-
ponential rate λ for the waiting dataset with an exponential likelihood and a
gamma prior with a = 0.01 and b = 0.01. The plots are based on the first 10
observations (left) and the whole sample of size n = 62 (right).

}
# Hessian evaluated at MAP
H <- -numDeriv::hessian(logpost, x = map)
log_marg_laplace <- 1/2*log(2*pi) - c(determinant(H)$modulus) + logpost(map)

For the sample of size 62, the exponential model marginal likelihood is−276.5, whereas the
Laplace approximation gives−281.9.

Proposition 9.2 (Posterior expectation using Laplace method). If we are interested in com-
puting the posterior expectation of a positive real-valued functional g(θ) : Rd → R+, we may
write

EΘ|Y (g(θ) | y) =
∫
g(θ)p(y | θ)p(θ)dθ∫
p(y | θ)p(θ)dθ
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9.2 Integrated nested Laplace approximation

We can apply Laplace’s method to both numerator and denominator. Let θ̂g and θ̂MAP of the
integrand of the numerator and denominator, respectively, and the negative of the Hessian
matrix of the log integrands

ȷg = − ∂2

∂θ∂θ⊤ {log g(θ) + log p(y | θ) + log p(θ)} ,

ȷ = − ∂2

∂θ∂θ⊤ {log p(y | θ) + log p(θ)} .

Putting these together

EΘ|Y (g(θ) | y) = |ȷ(θ̂MAP)|1/2

|ȷg(θ̂g)|1/2
g(θ̂g)p(y | θ̂g)p(θ̂g)
p(y | θ̂MAP)p(θ̂MAP)

+ O(n−2)

While the Laplace method has an error O(n−1), the leading order term of the expansion
cancel out from the ratio.

Example 9.3 (Posterior mean for the exponential likelihood). Consider the posterior mean
EΛ|Y (λ) for the model of Example 9.2. Let s =

∑n
i=1 yi. Then,

λ̂g = (n+ a)
s+ b

|ȷg(λ̂g)|1/2 =
(
n+ a

λ̂2
g

)1/2

= s+ b

(n+ a)1/2

Simplification gives the approximation

ÊΛ|Y (Λ) ≈ exp(−1)
s+ b

(n+ a)n+a+1/2

(n+ a− 1)n+a−1/2

which gives 0.03457, whereas the true posterior mean is (n + a)/(s + b) = 0.03457. The
Laplace approximation is equal to the true value up to five significant digits.

9.2 Integrated nested Laplace approximation

In many high dimensional models, use of MCMC is prohibitively expensive and fast, yet
accurate calculations are important. One class of models whose special structure is particu-
larly amenable to deterministic approximations.

Consider a model with response y which depends on covariates x through a latent Gaussian
process; typically the priors on the coefficients β ∈ Rp. In applications with splines, or
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9 Deterministic approximations

space time processes, the prior precision matrix for β will be sparse with a Gaussian Markov
random field structure. The dimension p can be substantial (several thousands) with a
comparably low-dimensional hyperparameter vector θ ∈ Rm. Interest typically then lies in
marginal parameters

p(βi | y) =
∫
p(βi | θ,y)p(θ | y)dθ

p(θi | y) =
∫
p(θ | y)dθ−i

where θ−i denotes the vector of hyperparameters excluding the ith element θi. The INLA
method builds Laplace approximations to the integrands p(βi | θ,y) and p(θ | y), and
evaluates the integral using quadrature rules over a coarse grid of values of θ.

Write the marginal posterior p(θ | y) as p(β,θ | y) = p(β | θ,y)p(θ | y) and perform a
Laplace approximation for fixed value of θ for the term p(β | θ,y), whose mode we denote
by β̂. This yields

p̃(θ | y) ∝ p(β̂,θ | y)
pG(β̂ | y,θ)

= p(β̂,θ | y)
|H(β̂)|1/2

and the Laplace approximation has kernel

pG(β | y,θ) ∝ |H(β̂)|1/2 exp{−(β − β̂)⊤H(β̂)(β − β̂)/2};

since it is evaluated at β̂, we retrieve only the determinant of the negative Hessian of
p(β | θ,y), namely H(β̂). Note that the latter is a function of θ.

To obtain p(θi | y), we then proceed with

1. finding the mode of p̃(θ | y) using a Newton’s method, approximating the gradient
and Hessian via finite differences.

2. Compute the negative Hessian at the mode to get an approximation to the covariance
of θ. Use an eigendecomposition to get the principal directions z.

3. In each direction of z, consider drops in p̃(θ | y) as we move away from the mode and
define a coarse grid based on these, keeping points where the difference in p̃(θ | y)
relative to the mode is less than some numerical tolerance δ.

4. Retrieve the marginal by numerical integration using the central composition design
outline above. We can also use directly avoid the integration and use the approxima-
tion at the posterior mode of p̃(θ | y).

To approximate p(βi | y), Håvard Rue, Martino, and Chopin (2009) proceed instead by
building an approximation of it based on maximizing β−i | βi,θ,y to yield β̂(i) whose ith
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9.2 Integrated nested Laplace approximation

element is βi, yielding

p̃(βi | θ,y) ∝
p(β̂(i),θ | y)

p̃(β̂(i),−i | βi,θ,y)
,

with a suitable renormalization of p̃(β̂(i),−i | βi,θ,y). Such approximations are reminiscent
of profile likelihood.

While we could use the Laplace approximation pG(β̂ | y,θ) and marginalize the latter
directly, this leads to evaluation of the Laplace approximation to the density far from the
mode, which is often inaccurate. One challenge is that p is often very large, so calculation of
the Hessian H is costly to evaluate. Having to evaluate it repeatedly for each marginal βi for
i = 1, . . . , p is prohibitive since it involves factorizations of p× p matrices.

To reduce the computational costs, Håvard Rue, Martino, and Chopin (2009) propose to
use the approximate mean to avoid optimizing and consider the conditional based on the
conditional of the Gaussian approximation with mean β̂ and covariance Σ = H−1(β̂),

β−i | βi,θ,y ≈ Gaussp−1
{
β̃(i) = β̂−i + Σ−1

i,i Σi,−i(βi − β̂i,M−1
−i,−i

}
;

cf. Proposition 1.6. This only requires a rank-one update. Wood (2019) suggest to use a
Newton step to correct β̃(i), starting from the conditional mean. The second step is to
exploit the local dependence on β using the Markov structure to build an improvement
to the Hessian. Further improvements are proposed in Håvard Rue, Martino, and Chopin
(2009), who used a simplified Laplace approximation to correct the Gaussian approximation
for location and skewness, a necessary step when the likelihood itself is not Gaussian. This
leads to a Taylor series approximation to correct the log determinant of the Hessian matrix.
Wood (2019) consider a BFGS update to M−1

−i,−i directly, which works less well than the

Taylor expansion near β̂i, but improves upon when we move far from this value. Nowadays,
the INLA software uses a low-rank variational correction to Laplace method, proposed in
van Niekerk and Rue (2024).

The INLA R package provides an interface to fit models with Gaussian latent random ef-
fects. While the software is particularly popular for spatio-temporal applications using the
SPDE approach, we revisit two examples in the sequel where we can exploit the Markov
structure.

Example 9.4 (Stochastic volatility model with INLA). Financial returns Yt typically exhibit
time-varying variability. The stochastic volatility model is a parameter-driven model that
specifies

Yt = exp(ht/2)Zt

ht = γ + ϕ(ht−1 − γ) + σUt
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9 Deterministic approximations

where Ut
iid∼ Gauss(0, 1) and Zt ∼

iid∼ Gauss(0, 1). The INLA documentation provides informa-
tion about which default prior and hyperparameters are specified. We use a gamma(1, 0.001)
prior for the precision.

library(INLA)
# Stochastic volatility model
data(exchangerate, package = "hecbayes")
# Compute response from raw spot exchange rates at noon
y <- 100*diff(log(exchangerate$dexrate))
# 'y' is now a series of percentage of log daily differences
time <- seq_along(y)
data <- data.frame(y = y, time = time)
# Stochastic volatility model
# https://inla.r-inla-download.org/r-inla.org/doc/likelihood/stochvolgaussian.pdf
# The model uses a log link, and a (log)-gamma prior for the precision
f_stochvol <- formula(y ~ f(time, model = "ar1", param = list(prec = c(1, 0.001))))
mod_stochvol <- inla(f_stochvol, family = "stochvol", data = data)
# Obtain summary
summary <- summary(mod_stochvol)
# plot(mod_stochvol)
marg_prec <- mod_stochvol$marginals.hyperpar[[1]]
marg_phi <- mod_stochvol$marginals.hyperpar[[2]]

Figure 9.3 shows that the correlation ϕ is nearly one, leading to random walk behaviour
and high persistence over time (this is also due to the frequency of observations). This
strong serial dependence in the variance is in part responsible for the difficulty in fitting
this model using MCMC.

We can use the marginal density approximations to obtain quantiles for summary of interest.
The software also includes utilities to transform the parameters using the change of variable
formula.

# Compute density, quantiles, etc. via inla.*marginal
## approximate 95% credible interval and marginal post median
INLA::inla.qmarginal(marg_phi, p = c(0.025, 0.5, 0.975))

[1] 0.9706630 0.9847944 0.9929106
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Figure 9.3: Marginal densities of precision and autocorrelation parameters from the Gaus-
sian stochastic volatility model.

# Change of variable to get variance from precision
marg_var <- INLA::inla.tmarginal(

fun = function(x) { 1 / x },
marginal = marg_prec)

INLA::inla.qmarginal(marg_var, p = c(0.025, 0.975))

[1] 0.2864909 0.7396801

# Posterior marginal mean and variance of phi
mom1 <- INLA::inla.emarginal(

fun = function(x){x},
marginal = marg_phi)

mom2 <- INLA::inla.emarginal(
fun = function(x){xˆ2},
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marginal = marg_phi)
c(mean = mom1, sd = sqrt(mom2 - mom1ˆ2))

mean sd
0.984052716 0.005762504

Example 9.5 (Tokyo binomial time series). We revisit Example 7.6, but this time fit the
model with INLA. We specify the mean model without intercept and fit a logistic regression,
with a second-order cyclic random walk prior for the coefficients, and the default priors for
the other parameters.

data(Tokyo, package = "INLA")
# Formula (removing intercept)
formula <- y ~ f(time, model = "rw2", cyclic = TRUE) - 1
mod <- INLA::inla(

formula = formula,
family = "binomial",
Ntrials = n,
data = Tokyo)

Figure 9.4 shows posterior summaries for the β, which align with the results for the probit
model.

If we wanted to obtain predictions, we need to augment the model matrix and set miss-
ing values for the response variable. These then get imputed alongside with the other
parameters.
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Figure 9.4: Posterior probability per day of the year with posterior median and 95% credible
interval for the Tokyo rainfall binomial time series.
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10 Variational inference

Variational inference, whose name comes from calculus of variation, considers approxima-
tions to the posterior p(θ | y) by a member from a family of distributions whose density or
mass function is g(·;ψ) with parametersψ. The objective of inference is thus to find the pa-
rameters that minimize some metric that measure discrepancy between the true postulated
posterior and the approximation: doing so leads to optimization problems. Variational
inference is widespread in machine learning and in large problems where Markov chain
Monte Carlo might be infeasible.

This chapter is organized as follows: we first review notions of model misspecification
and the Kullback–Leibler divergence. We then consider approximation schemes and some
examples involving mixtures and model selection where analytical derivations are possible:
these show how variational inference differs from Laplace approximation and she light
on some practical aspects. Good references include Chapter 10 of Bishop (2006); most
modern application use automatic differentiation variational inference (ADVI, Kucukelbir
et al. (2017)) or stochastic optimization via black-box variational inference.

10.1 Kullback–Leibler divergence and evidence lower bound

Consider g(θ;ψ) withψ ∈ RJ an approximating density function whose integral is one over
Θ ⊆ Rp and whose support includes that of p(y,θ) over Θ. Suppose data were generated
from a model with true density ft and we consider instead the family of distributions g(·;ψ),
the latter may or not contain ft as special case. Intuitively, if we were to estimate the model
by maximum likelihood, we expect that the model returned will be the one closest to ft

among those considered in some sense.

Definition 10.1 (Kullback–Leibler divergence). The Kullback–Leibler divergence between
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densities ft(·) and g(·;ψ), is

KL(ft ∥ g) =
∫

log
(
ft(x)
g(x;ψ)

)
ft(x)dx

=
∫

log ft(x)ft(x)dx−
∫

log g(x;ψ)ft(x)dx

= Eft{log ft(X)} − Eft{log g(X;ψ)}

where the subscript of the expectation indicates which distribution we integrate over. The
term −Eft{log ft(X)} is called the entropy of the distribution. The divergence is strictly
positive unless g(·;ψ) ≡ ft(·). Note that, by construction, it is not symmetric.

The Kullback–Leibler divergence is central to study of model misspecification: if we fit g(·)
when data arise from ft, the maximum likelihood estimator of the parameters ψ̂ will be
the value of the parameter that minimizes the Kullback–Leibler divergence KL(ft ∥ g); this
value will be positive unless the model is correctly specified and g(·; ψ̂) = ft(·). See Davison
(2003), pp. 122–125 for a discussion.

In the Bayesian setting, interest lies in approximating ft ≡ p(θ | y). The problem of course
is that we cannot compute expectations with respect to the posterior since these requires
knowledge of the marginal likelihood, which acts as a normalizing constant, in most settings
of interest. What we can do instead is to consider the model that minimizes the reverse
Kullback–Leibler divergence

g(θ; ψ̂) = argminψKL{g(θ;ψ) ∥ p(θ | y)}.

We will show soon that this is a sensible objective function.

Remark 10.1 (Lack of symmetry of Kullback–Leibler divergence). Consider an approxi-
mation of a bivariate Gaussian vector with correlated components X ∼ Gauss2(µ,Σ). If
we approximate each margin independently with a univariate Gaussian, then the density
which minimizes $

KL{ϕ2(µ,Σ) ∥ ϕ(µ1g, σ
2
1g)ϕ(µ2g, σ

2
2g)},

the forward Kullback–Leibler divergence will have the same marginal mean µ̂ig = µi and
variance σ2

ig = Σii, whereas the best approximation that minimizes the reverse Kullback–
Leibler

KL{ϕ(µ1g, σ
2
1g)ϕ(µ2g, σ

2
2g) ∥ ϕ2(µ,Σ)},

will have the same mean, but a variance equal to the conditional variance of one component
given the other, e.g., σ̂1g = Σ11−Σ12Σ−1

22 Σ21. Figure 10.1 shows the two approximations: the
reverse Kullback–Leibler approximation is much too narrow and only gives mass where both
variables have positive density, whereas the approximation that minimizes Kullback–Leibler
divergence puts mass everywhere the target is supported.
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Figure 10.1: Illustration of an approximation of a correlated bivariate Gaussian density
(dashed contour lines) with an uncorrelated Gaussian, obtained by minimizing
the reverse Kullback–Leibler divergence (variational approximation, left) and
the Kullback–Leibler divergence (right).

Before proceeding with variational inference objective function, we recall basic definitions
on convexity, which underly Jensen’s inequality.

Definition 10.2 (Convex function). A real-valued function h : R → R is convex if for any
x1, x2 ∈ R if any linear combination of x1 and x2 satisfies

h(tx1 + (1− t)x2) ≤ th(x1) + (1− t)h(x2), 0 ≤ t ≤ 1

The left panel of Figure 10.2 shows an illustration of the fact that the chord between any two
points lies above the function. Examples include the exponential function, or a quadratic
ax2 + bx+ c with a > 0.

Consider now the problem of approximating the marginal likelihood, sometimes called the
evidence,

p(y) =
∫

Θ
p(y,θ)dθ.
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Figure 10.2: Left panel: the convex function h(x) = − log(x), with a straight line between
any two points falls above the function. Right panel: a skewed density with
the Laplace Gaussian approximation (dashed orange), the Gaussian variational
approximation (reverse Kullback–Leibler divergence, dotted yellow) and the
Gaussian that minimizes the Kullback–Leibler divergence (dot-dashed blue).

where we only have the joint p(y,θ) is the product of the likelihood times the prior. The
marginal likelihood is typically intractable, or very expensive to compute, but it is necessary
to calculate probability and various expectations with respect to the posterior unless we
draw samples from it.

We can rewrite the marginal likelihood as

p(y) =
∫

Θ

p(y,θ)
g(θ;ψ)g(θ;ψ)dθ.

With convex functions, Jensen’s inequality implies that h{E(X)} ≤ E{h(X)}, and applying
this with h(x) = − log(x), we get

− log p(y) = − log
{∫

Θ
p(y,θ)dθ

}
≤ − log

∫
Θ

(
p(y,θ)
g(θ;ψ)

)
g(θ;ψ)dθ.

We can get a slightly different take if we consider the reformulation

KL{g(θ;ψ) ∥ p(θ | y)} = Eg{log g(θ)} − Eg{log p(y,θ)}+ log p(y).
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10.1 Kullback–Leibler divergence and evidence lower bound

Instead of minimizing the Kullback–Leibler divergence, we can thus equivalently maximize
the so-called evidence lower bound (ELBO)

ELBO(g) = Eg{log p(y,θ)} − Eg{log g(θ)}

The ELBO as an objective function balances between two terms: the first term is the
expected value of the joint posterior under the approximating density g, which will be
maximized by taking a distribution placing all mass at the maximum of p(y,θ), whereas the
second term can be viewed as a penalty for the entropy of the approximating family, which
rewards distributions which are diffuse. We thus try to maximize the evidence, subject to a
regularization term.

The ELBO is a lower bound for the marginal likelihood because the Kullback–Leibler diver-
gence is non-negative and

log p(y) = ELBO(g) + KL{g(θ;ψ) ∥ p(θ | y)}.

If we could estimate the marginal likelihood of a (typically simpler) competing alternative
and the lower bound on the evidence in favour of the more complex model was very much
larger, then we could use this but generally there is no theoretical guarantee for model
comparison if we compare two lower evidence lower bounds. The purpose of variational
inference is that approximations to expectations, credible intervals, etc. are obtained from
g(·;ψ) instead of p(·).

Example 10.1 (Variational inference vs Laplace approximation). The Laplace approxima-
tion differs from the Gaussian variational approximation; The right panel of Figure 10.2
shows a skew-Gaussian distribution with location zero, unit scale and a skewness parameter
of α = 10; it’s density is 2ϕ(x)Φ(αx).

The Laplace approximation is easily obtained by numerical maximization; the mode is the
mean of the resulting approximation, with a std. deviation that matches the square root of
the reciprocal Hessian of the negative log density.

Consider an approximation with g the density of Gauss(m, s2); we obtain the parameters by
maximizing the ELBO. The entropy term for a Gaussian approximating density is

−Eg(log g) = 1
2 log(2πσ2) + 1

2s2 Eg

{
(X −m)2

}
= 1

2
{

1 + log(2πs2)
}

given Eg{(x−m)2} = s2 by definition of the variance. Ignoring constants terms that do not

179



10 Variational inference

depend on the parameters of g, optimization of the ELBO amounts to maximization of

argmaxm,s2

[
−1

2Eg

{
(X − µ)2

σ2

}
+ Eg {log Φ(αX)}+ log(s2)

]

= argmaxm,s2

[
−1

2Eg

{
(X − µ)2

σ2

}
+ Eg {log Φ(αX)}+ log(s2)

]

= argmaxm,s2

[
−s

2 +m2 − 2µm
2σ2 + log(s2) + EZ {log Φ(αsX +m)}

]

where Z ∼ Gauss(0, 1). We can approximate the last term by Monte Carlo with a single
sample (recycled at every iteration) and use this to find the optimal parameters. The right
panel of Figure 10.2 shows that the resulting approximation aligns with the bulk. It of course
fails to capture the asymmetry, since the approximating function is symmetric.

10.2 Coordinate-ascent variational inference

Variational inference in itself does not determine the choice of approximating density
g(·;ψ); the quality of the approximation depends strongly on the latter. The user has
ample choice to decide whether to use the fully correlated, factorized, or the mean-field
approximation, along with the parametric family for each block. Note that the latter must
be support dependent, as the Kullback–Leibler divergence will be infinite if the support of g
does not include that of p(θ | y) (although we work with the reverse Kullback–Leibler).

There are two main approaches: the first is to start off with the model with a factorization of
the density, and deduce the form of the most suitable parametric family for the approxima-
tion that will maximize the ELBO. This requires bespoke derivation of the form of the density
and the conditionals for each model, and does not lead itself easily to generalizations. The
second approach alternative is to rely on a generic family for the approximation, and an
omnibus procedure for the optimization using a reformulation via stochastic optimization
that approximates the integrals appearing in the ELBO formula.

Proposition 10.1 (Factorization). Factorizations of g(;ψ) into blocks with parameters
ψ1, . . . ,ψM , where

g(θ;ψ) =
M∏

j=1
gj(θj ;ψj)

If we assume that each of the J parameters θ1, . . . , θJ are independent, then we obtain a
mean-field approximation. The latter will be poor if parameters are strongly correlated, as
we will demonstrate later.
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10.2 Coordinate-ascent variational inference

We use a factorization of g, and denote the components gj(·) for simplicity, omitting depen-
dence on the parametersψ. We can write the ELBO as

ELBO(g) =
∫

log p(y,θ)
M∏

j=1
gj(θj)dθ −

M∑
j=1

∫
log{gj(θj)}gj(θj)dθj

=
∫
· · ·
∫ log p(y,θ)

M∏
i̸=j
j=1

gj(θj)dθ−i

 gi(θi)dθi

−
M∑

j=1

∫
log{gj(θj)}gj(θj)dθj

θi∝
∫

E−i {log p(y,θ)} gi(θi)dθi −
∫

log{gi(θi)}gi(θi)dθi

where the last line is a negative Kullback–Leibler divergence between gi and

E−i {log p(y,θ)} =
∫

log p(y,θ)
M∏
i̸=j
j=1

gj(θj)dθ−i

and the subscript−i indicates that we consider all but the ith component of the J vector.

In some cases, maximization of the ELBO is implicit. Indeed, since the Kullback–Leibler
divergence is strictly non-negative and minimized if we take the same density, this reveals
that the form of approximating density gi that maximizes the ELBO occurs when both sides
are equal, so is of the form

g⋆
i (θi) ∝ exp [E−i {log p(y,θ)}] .

This expression is specified up to proportionality, but we can often look at the kernel of
g⋆

i and deduce from it the normalizing constant, which is defined as the integral of the
above. The posterior approximation will have a closed form expression if we consider cases of
conditionally conjugate distributions in the exponential family: we can see that the optimal

g⋆
j relates to the conditional since p(θ,y) θi∝ p(θi | θ−i,y). The connection to Gibbs sampling,

which instead draws parameters from the conditional, reveals that problems that can be
tackled by the latter method will be amenable to factorizations with approximating densities
from known families.

If we consider maximization of the ELBO for gi, we can see from the law of iterated expecta-
tion that the latter is proportional to

ELBO(gi) ∝ Ei [E−i{log p(θ,y)}]− Ei{log gi(θi)}
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10 Variational inference

Due to the nature of this conditional expectation, we can devise an algorithm to maximize
the ELBO of the factorized approximation. Each parameter update depends on the other
components, but the ELBO(gi) is concave. We can maximize g⋆

i in turn for each i = 1, . . . ,M
treating the other parameters as fixed, and iterate this scheme. The resulting approximation,
termed coordinate ascent variational inference (CAVI), is guaranteed to monotonically
increase the evidence lower bound until convergence to a local maximum; see Sections
3.1.5 and 3.2.4–3.2.5 of Boyd and Vandenberghe (2004). The scheme is a valid coordinate
ascent algorithm. At each cycle, we compute the ELBO and stop the algorithm when the
change is lower then some present numerical tolerance. Since the approximation may have
multiple local optima, we can perform random initialization and keep the run with the
highest ELBO value.

Example 10.2 (Variational approximation to Gaussian conjugate model). We consider Ex-
ample 10.1.3 from Bishop (2006) for a variational approximation of a Gaussian distribution
with conjugate priors parametrized in terms of precision, with

Yi ∼ Gauss(µ, τ−1), i = 1, . . . , n;
µ ∼ Gauss{µ0, (ττ0)−1}
τ ∼ gamma(a0, b0).

This is an example where the marginal posteriors are available in closed-form,

τ | y ∼ gamma
{
a0 + n− 1

2 , b0 +
∑n

i=1 y
2
i + (n+ τ0)−1(ny + τ0)2

2

}

µ | y ∼ Student
{
ny + τ0µ0
n+ τ0

,
2b0 + (n− 1)s2 + τ0n(y − µ0)2/(τ0 + n)

(n+ 2a0)(τ0 + n) , 2a0 + n

}
so we can compare our approximation with the truth. We assume a factorization of the
variational approximation gµ(µ)gτ (τ); the factor for gµ is proportional to

log g⋆
µ(µ) ∝ −Eτ (τ)

2

{
n∑

i=1
(yi − µ)2 + τ0(µ− µ0)2

}
,

which is quadratic in µ and thus must be Gaussian with precision τn = Eτ (τ)(n+ τ0) and
mean (n+ τ0)−1{τ0µ0 + ny} using Proposition 8.1, where ny =

∑n
i=1 yi. We could also note

that this corresponds (up to expectation) to p(µ | τ,y). As the sample size increase, the
approximation converges to a Dirac delta (point mass at the sample mean. The optimal
precision factor satisfies

ln g⋆
τ (τ) ∝ log τ

(
n+ 1

2 + a0 − 1
)

− τ
[
b0 + Eµ

{∑n
i=1(yi − µ)2}

2 + τ0Eµ
{
(µ− µ0)2}

2

]
.
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10.2 Coordinate-ascent variational inference

This is the form as p(τ | µ,y), namely a gamma with shape an = (n+ 1)/2 + a0 and rate bn

given by the term in the square brackets. It is helpful to rewrite the expected value as

Eµ

{
n∑

i=1
(yi − µ)2

}
=

n∑
i=1
{yi − Eµ(µ)}2 + nVarµ(µ),

so that it depends on the parameters of the distribution of µ directly. We can then apply the
coordinate ascent algorithm. Derivation of the ELBO, even in this toy setting, is tedious.

ELBO(g) = a0 log(b0)− log Γ(a0) + (a0 − 1)Eτ (log τ)− b0Eτ (τ)

− n+ 1
2 log(2π) + log(τ0) + (n+ 1)Eτ (log τ)

2

− Eτ (τ)τ0
2

[
{µ0 − Eµ(µ)}2 + Vaµ(µ)

]
− Eτ (τ)

2

[
n∑

i=1
{yi − Eµ(µ)}2 + nVaµ(µ)

]
− an log(bn) + log Γ(an)− (an − 1)Eτ (log τ) + bnEτ (τ)

+ 1 + log(2πVaµ(µ))
2

= a0 log(b0)− log Γ(a0)− an log bn + log Γ(an)

− n

2 log(2π) + 1 + log(τ0/τn)
2

The expected value of Eτ (τ) = an/bn and the mean and variance of the Gaussian are given
by it’s parameters. The terms involving Eτ (log τ) = ψ(an)− log bn cancel out.

Figure 10.3 shows the contour plots of the true posterior (since the prior is conjugate) and
the coordinate-ascent variational mean-field approximation. We can see that both are
centered around the same values, but the independence assumption does not reflect the
dependence and the CAVI approximation is slightly less dispersed.

Remark 10.2 (Approximation of latent variables). While we have focused on exposition with
only parameters θ, this can be generalized by including latent variablesU as in Section 6.1
in addition to the model parameters θ as part of the variational modelling.

Example 10.3 (CAVI for probit regression). A probit regression is a generalized linear model
with probability of success Φ(xiβ), where Φ(·) is the cumulative distribution function of a
standard Gaussian variable. If we assign a Gaussian prior on the β, we can write the model
as

p(y | β) = Φ(Xβ)yΦ(−Xβ)1n−y

183



10 Variational inference

0.02

0.04

0.06

0.08

147 148 149 150 151
µ

τ

0.02

0.04

0.06

147 148 149 150 151
µ

τ
probs 10% 25% 50% 75% 90%

Figure 10.3: Bivariate density posterior for the conjugate Gaussian-gamma model (left) and
CAVI approximation (right).

since 1 − Φ(x) = Φ(−x). Consider the data augmentation of Example 6.2, with auxiliary
variables Zi | β ∼ Gauss(xiβ, 1).

With β ∼ Gaussp(µ0,Q−1
0 ), the model admits conditionals

β | z ∼ Gaussp

{
(X⊤X + Q0)−1(Xz + Q0µ0), (X⊤X + Q0)−1

}
Zi | yi,β ∼ trunc.Gauss(xiβ, 1, li, ui)

where [li, ui] is (−∞, 0) if yi = 0 and (0,∞) if yi = 1. If we consider a factorization of the
form gZ(z)gβ(β), then we exploit the conditionals in the same way as for Gibbs sampling,
but substituting unknown parameter functionals by their expectations. Furthermore, the
optimal form of the density further factorizes as gZ(z) =

∏n
i=1 gZi(zi).

The model depends on the mean parameter ofZ, say µZ , and that of β, say µβ. To see this,
consider the terms in the posterior proportional to Zi, where

p(zi | β, yi) ∝ −
z2

i − 2zixiβ

2 × I(zi > 0)yiI(zi < 0)1−yi
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Figure 10.4: Marginal posterior density of the mean and precision of the Gaussian (full line),
with CAVI approximation (dashed).

which is linear in β. The expectation of a univariate truncated Gaussian Z ∼
trunc.Gauss(µ, σ2, l, u) is

E(Z) = µ− σ ϕ{(u− µ/σ)} − ϕ{(l − µ/σ)}
Φ{(u− µ/σ)} − Φ{(l − µ/σ)} .

If we replace µ = xiµβ in this expression, we get the update

µZi(zi) =

xiµβ −
ϕ(xiµβ)

1−Φ(xiµβ) yi = 0;
xiµβ + ϕ(xiµβ)

Φ(xiµβ) yi = 1,

since ϕ(x) = ϕ(−x).

The optimal form for β is Gaussian and the only unknown parameter is µβ; the log density
only involves a linear form forZ, so follows from the same principle. We get regrouping the
vector of means for the latent variables

µβ = (X⊤X + Q0)−1(XµZ + Q0µ0)
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10 Variational inference

Starting with an initial vector for either parameters, the CAVI algorithm alternatives between
updates of µβ and µZ until the value of the evidence lower bound stabilizes.

# Data augmentation: "z" is latent Gaussian,
# truncated to be negative for failures
# and positive for successes
cavi_probit <- function(

y, # response vector (0/1)
X, # model matrix
prior_beta_prec = diag(rep(0.01, ncol(X))),
prior_beta_mean = rep(0, ncol(X)),
maxiter = 1000L,
tol = 1e-4

) {
# Precompute fixed quantity
sc <- solve(crossprod(X) + prior_beta_prec)
pmu_prior <- prior_beta_prec %*% prior_beta_mean
n <- length(y) # number of observations
stopifnot(nrow(X) == n)
mu_z <- rep(0, n)
y <- as.logical(y)
ELBO <- numeric(maxiter)
lcst <- -0.5 *

log(det(solve(prior_beta_prec) %*% crossprod(X) + diag(ncol(X))))
for (b in seq_len(maxiter)) {

mu_b <- c(sc %*% (t(X) %*% mu_z + pmu_prior))
lp <- c(X %*% mu_b)
mu_z <- lp + dnorm(lp) / (pnorm(lp) - ifelse(y, 0, 1))
ELBO[b] <- sum(pnorm(lp, lower.tail = y, log.p = TRUE)) -

lcst - 0.5 *
c(t(mu_b - prior_beta_mean) %*%

prior_beta_prec %*%
(mu_b - prior_beta_mean))

if (b > 2 && (ELBO[b] - ELBO[b - 1]) < tol) {
break

}
}
list(mu_z = mu_z, mu_beta = mu_b, elbo = ELBO[1:b])

}
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10.2 Coordinate-ascent variational inference

We consider for illustration purposes data from Experiment 2 of Duke and Amir (2023) on
the effect of sequential decisions and purchasing formats. We fit a model with age of the
participant and the binary variable format, which indicate the experimental condition. The
model is fitted with a sum-to-zero constraint for the dummy variable.

With vague priors, the coefficients for the mean µβ = (β0, β1, β2)⊤ matches the frequentist
point estimates of the probit regression to four significant digits. Convergence is very fast, as
shown by the ELBO plot in the left panel of Figure 10.5. The posterior density approximation
implied by variational inference, shown on the right panel of Figure 10.5, is once again
underdispersed relative to the true marginal posterior.
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Figure 10.5: Probit regression with CAVI for the Duke and Amir (2023) data. Left: ELBO as a
function of the number of iterations until convergence. Right: marginal density
approximation for a regression coefficient with kernel density estimation of the
true density (full line) versus variational approximation (dashed).

Given the strong requirements for getting tractable conditionals, coordinate-ascent vari-
ational inference is mostly useful in ultra high-dimensional settings where Markov chain
Monte Carlo algorithms are not viable. This is the case notable for regression models
with the discrete spike-and-slab of Definition 8.2, models for image processing or topic
modelling using latent Dirichlet allocations.
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10.3 Automatic differentiation variational inference

We consider alternative numeric schemes which rely on stochastic optimization. The key
idea behind these methods is that we can use gradient-based algorithms, and approximate
the expectations with respect to g by drawing samples from the approximating densities.
This gives rises to a general omnibus procedure for optimization, although some schemes
capitalize on the structure of the approximating family. Hoffman et al. (2013) consider
stochastic gradient for exponential families mean-field approximations, using natural
gradients to device an algorithm. While efficient within this context, it is not a generic
algorithm.

Ranganath, Gerrish, and Blei (2014) extend this to more general distributions by noting that
the gradient of the ELBO, interchanging the derivative and the integral using the dominated
convergence theorem, is

∂

∂ψ
ELBO(g) =

∫
g(θ;ψ) ∂

∂ψ
log

(
p(θ,y)
g(θ;ψ)

)
dθ +

∫
∂g(θ;ψ)
∂ψ

× log
(
p(θ,y)
g(θ;ψ)

)
dθ

=
∫
∂ log g(θ;ψ)

∂ψ
× log

(
p(θ,y)
g(θ;ψ)

)
g(θ;ψ)dθ

where p(θ,y) does not depend onψ, and∫
∂ log g(θ;ψ)

∂ψ
g(θ;ψ)dθ =

∫
∂g(θ;ψ)
∂ψ

dθ

= ∂

∂ψ

∫
g(θ;ψ)dθ = 0.

The integral of a density is one regardless of the value ofψ, so it’s derivative vanishes. We
are left with the expected value

Eg

{
∂ log g(θ;ψ)

∂ψ
× log

(
p(θ,y)
g(θ;ψ)

)}

which we can approximate via Monte Carlo by drawing samples from g. Ranganath, Gerrish,
and Blei (2014) provide two methods to reduce the variance of this expression using control
variates and Rao–Blackwellization, as excessive variance hinders the convergence and
requires larger Monte Carlo sample sizes to be reliable. In the context of large samples of
independent observations, we can also resort to mini-batching, by randomly selecting a
subset of observations.

We can use the Monte Carlo approximation to derive a stochastic gradient algorithm.
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10.3 Automatic differentiation variational inference

Proposition 10.2 (Stochastic gradient descent). Consider f(θ) a differentiable function with
gradient∇f(θ) and ρt a Robbins–Munro sequence of step sizes satisfying

∑∞
t=1 ρt =∞ and∑∞

t=1 ρ
2
t <∞.

To maximize f(θ), we construct a series of first-order approximations starting from θ(0) with

θ(t) = θ(t−1) + ρtE
{
∇f(θ(t−1))

}
.

where the expected value is evaluated via Monte Carlo, until changes in ∥θt − θt−1∥ is less
than some tolerance value.

The speed of convergence of the stochastic gradient descent depends on multiple factors:

• the properties of the function (here the ELBO) under evaluation. Good performance
is obtained for log concave distributions.

• the level of noise of the gradient estimator. Less noisy gradient estimators are prefer-
able.

• good starting values, as the algorithm converges to a local maximum and may struggle
if we are in a region where the objective function is flat.

• the Robbins–Munro sequence used for the step size, as the steps may lead to diver-
gences unless we have a global concave objective function.

The second point is worth some further discussion. Some families of distributions, notably
location-scale (cf. Definition 1.12) and exponential families (Definition 1.13) are particularly
convenient, because we can get expressions for the ELBO that are simpler and lead to less
noisy gradient estimators. For exponential families approximating distributions, we have
sufficient statistics Sk ≡ tk(θ) and the gradient of log g becomes Sk under mean-field.

Kucukelbir et al. (2017) proposes a stochastic gradient algorithm, but with two main
innovations. The first is the general use of Gaussian approximating densities for factorized
density, with parameter transformations to map from the support of T : Θ 7→ Rp via T (θ) =
ζ. We then consider an approximation g(ζ;ψ) whereψ consists of mean parameters µ and
covariance Σ, parametrized in terms of independent components via Σ = diag{exp(ω)} or
through a decomposition of the covariance Σ = LL⊤. The full approximation is of course
more flexible when the transformed parameters ζ are correlated, but is more expensive to
compute than the mean-field approximation. The change of variable introduces a Jacobian
term for the approximation to the density p(θ,y). Another benefit is that the Gaussian
entropy admits a closed-form solution that depends only on the covariance, so is not
random.
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10 Variational inference

Proposition 10.3 (Entropy of Gaussian). Write the entropy of the multivariate Gaussian for
g the density of Gaussp(µ,Σ) as

−Eg(log g) = D log(2π) + log |Σ|
2 − 1

2Eg

{
(X − µ)⊤Σ−1(X − µ)

}
= D log(2π) + log |Σ|

2 − 1
2Eg

[
tr
{

(X − µ)⊤Σ−1(X − µ)
}]

= D log(2π) + log |Σ|
2 − 1

2 tr
[
Σ−1Eg

{
(X − µ)(X − µ)⊤

}]
= D +D log(2π) + log |Σ|

2 .

This follows from taking the trace of a 1 × 1 matrix, and applying a cyclic permutation to
which the trace is invariant. Since the trace is a linear operator, we can interchange the trace
with the expected value. Finally, we have Eg

{
(X − µ)(X − µ)⊤

}
= Σ, and the trace of a

D ×D identity matrix is simply D.

The transformation to Rp is not unique and different choices may yield to differences, but
the choice of optimal transformation requires knowledge of the true posterior, which is
thus intractable.

We give next some details about derivation of the full-rank approximation. We work with
the matrix-log of the covariance matrix, defined through it’s eigendecomposition (or sin-
gular value decomposition) Σ = Vdiag(λ)V⊤, where V is a p × p orthogonal matrix of
eigenvectors, whose inverse is equal to it’s transpose. Most operations on the matrix only
affect the eigenvalues λ1, . . . , λp: the matrix-log is

M = Vdiag
{1

2 log(λ)
}

V⊤.

Other operations on matrices are defined analogously: we write exp(Σ) = Vdiag{exp(λ)}V⊤

and we write log(Σ) = Vdiag{log(λ)}V⊤. and Σ = exp(2M).

We focus on the case of full transformation; the derivation for independent components is
analogous. Since the Gaussian is a location-scale family, we can rewrite the model in terms
of a standardized Gaussian variableZ ∼ Gaussp(0p, Ip) where ζ = µ+ exp(M)Z. The ELBO
with the transformation is

ELBO(g) = EZ
[
log p

{
y, T−1(ζ)

}
+ log |JT −1(ζ)|

]
+ D

2 {1 + log(2π)}+ trace(M).
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10.3 Automatic differentiation variational inference

where we have the logarithm of the absolute value of the determinant of the Jacobian of the
transformation due to the change of variable. If we apply the chain rule

∂

∂ψ
log p{y, T−1(µ+ exp(M)Z)} = ∂ log p(y,θ)

∂θ

∂T−1(ζ)
∂ζ

∂µ+ exp(M)Z
∂ψ

and we retrieve the gradients of the ELBO with respect to the mean and variance, which
are

∂ELBO(g)
∂µ

= EZ {∇p(y,θ)}

∂ELBO(g)
∂M = symm

(
EZ
{
∇p(y,θ)Z⊤ exp(M)

})
+ Ip.

where symm(X) = (X + X⊤)/2 is the symmetrization operator and

∇p(y,θ) = ∂ log p(y,θ)
∂θ

∂T−1(ζ)
∂ζ

+ ∂ log |JT −1(ζ)|
∂ζ

.

Assume for simplicity that we have T (ζ) = ζ is the identity. We can rewrite the expression
for the gradient with respect to the matrix-log as

∂ELBO(g)
∂M = symm

[
EZ
{
∂ log p{y,θ = µ+ exp(M)Z}

∂θ
Z⊤ exp(M)

}]
+ Ip.

= symm
(

EZ
[
∂ log p{y,θ = µ+ exp(M)Z}

∂θ∂θ⊤ exp(2M)
])

+ Ip.

The first expression typically leads to a more noisy gradient estimator, but the second
requires derivation of the Hessian matrix. The equivalence follows from Stein’s lemma,
which can be proved by integration by part.

Proposition 10.4 (Stein’s lemma). Consider h : Rd → R a differentiable function and
integration with respect toX ∼ Gaussd(µ,Σ) such that the gradient is absolutely integrable,
EX{|∇ih(X)|} <∞ for i = 1, . . . , d. Then (Liu 1994),

EX {h(X)(X − µ)} = ΣEX {∇h(X)}

We can replace expectations by Monte Carlo estimation and apply stochastic gradient
descent: for example, an estimator of the ELBO for the case with θ = η ∈ Rp is

1
B

B∑
b=1

p{y,θ = µ+ exp(M)Zi}+ p

2{log(2π) + 1}+ trace(M)
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10 Variational inference

forZ1, . . . ,Zb ∼ Gaussp(0p, Ip).

Compared to the black-box variational inference algorithm, this requires calculating the
gradient of the log posterior with respect to θ. This step can be done using automatic
differentiation (hence the terminology ADVI), and moreover this gradient estimator is
several orders less noisy than the black-box counterpart. The ELBO can be approximated
via Monte Carlo integration.

We can thus build a stochastic gradient algorithm with a Robins–Monro sequence of updates.
Kucukelbir et al. (2017) use an adaptive step-size sequence ρt for the stochastic gradient
descent, which we explicit: consider the kth entry of the gradient evaluate at step t by gk,t,
with

ρk,t = η
t−1/2+10−15

τ + αsk,t

s2
k,t = αg2

k,t + (1− α)s2
k,t−1 = αg2

k,t + (1− α)
t−1∑
i=1

αt−ig2
k,i

with s2
k,1 = g2

k,1 where the delay τ > 0 is some positive constant (typically 1) to prevent
division by zero and η > 0 controls the step size (smaller values may be required to avoid
divergence) and 0 < α < 1 controls the mixture. This parameter-specific scaling helps
with updates of parameters on very different scales. For matrix parameters, updates from
vectorization of the matrix entries and application of the diagonal sequence to each element
separately.

The ADVI algorithm is implemented in Carpenter et al. (2017); see the manual for more
details.
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11 Expectation propagation

11.1 Newton smoothing

This section revisits Newton method for calculation of the maximum a posteriori and sheds
a new light on the technique by viewing it as a sequence of Gaussian approximations to the
target. For simplicity, write the Gaussian distribution in terms of canonical parameters

q(θ) ∝ exp
(
−1

2θ
⊤Qθ + θ⊤r

)
where Q is the precision matrix and r = Qµ, the linear shift.

Let p(θ | y) = exp{−ψ(θ)} denote the posterior density. Since logarithm is a monotonic
transform, we can equivalent minimizeψ(θ) to find the posterior mode. Denote the gradient
∇θψ(θ) = ∂ψ/∂θ and the Hessian matrix H(θ) = ∂2ψ/(∂θ∂θ⊤). Starting from an initial
value θ(0), we consider at step i, a second order Taylor series expansion of ψ(θ) around θ(i),
which gives

ψ(θ) ≈ ψ(θ(i)) +∇θψ(θ(i))(θ − θ(i)) + (θ − θ(i))⊤H(θ(i))(θ − θ(i))

The term ψ(θ(i)) is constant, so if we plug-in this inside the exponential, we obtain

q(i+1)(θ) ∝ exp
{
−1

2θ
⊤H(θ(i))θ + θ⊤

(i+1)H(θ(i))θ
}

where the mean of the approximation is

θ(i+1) = θ(i) −H−1(θ(i))∇θψ(θ(i)).

The iterations perform gradient descent, with a correction that adjusts for the curvature
locally. This scheme works provided that H(θ(i)) is positive definite (all of it’s eigenval-
ues are positive); this may fail for non-convex targets, in which case we could perturb
the scheme by adding a ridge-penalty (large diagonal matrix of positive terms) to ensure
convergence until we reach a neighborhood of the mode. The new mean vector θ(i+1)
corresponds to a Newton update, and at the same time we have defined a sequence of
Gaussian updating approximations. The fixed point to which the algorithm converges is
the Laplace approximation.
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11 Expectation propagation

Suppose for simplicity that the domain Θ = Rp, so that no prior transformation is necessary.
For location-scale family, we have seen in the section on ADVI that the variational Bayes with
a Gaussian approximation on the target θ = µ+ LZ with LL⊤ = Σ andZ ∼ Gaussp(0p, Ip)
that the gradient satisfies

∇µELBO(q) = −EZ{∇θψ(θ)}
∇LELBO(q) = −EZ{∇θψ(θ)Z⊤}+ L−⊤

If we apply integration by parts (Stein’s lemma, see Proposition 10.4) using the fact that the
integral is with respect to a standard Gaussian density ϕp(z), we can rewrite the second
term as

∇LELBO(q) = −EZ

{
∂2ψ(θ)
∂θ∂θ⊤

}
L + L−⊤.

At a critical point, both of these derivatives must be zero, whence

EZ{∇θψ(θ)} = 0p.

EZ

{
∂2ψ(θ)
∂θ∂θ⊤

}
= Σ−1.

Compared to the Laplace approximation, the variational Gaussian approximation returns a
vector µ around which the expected value of the gradient is zero and similarly Σ for which
the expected value of the curvature (Hessian) is equal to the precision. The averaging step
is what distinguishes the Laplace and variational approximations.

11.2 Expectation propagation

Variational inference minimizes the reverse Kullback–Leibler divergence between some
approximation q and the target p(θ | y); it thus places significant mass in areas of the
Θ where p(θ | y) is small or near zero (due to the log term) unless the approximation
vanishes there. Qualitatively, the approximation will be very different from minimizing the
Kullback–Leibler divergence KL{p(θ | y) ∥ q}

argminψ
∫

Θ
log

(
p(θ | y)
q(θ;ψ)

)
p(θ | y)dθ.

One can show that, if we approximate the posterior p(θ | y) by a Gaussian approximation
q(;ψ), the parameters that minimize the Kullback–Leibler divergence are the posterior
mean and posterior variance of the p(θ | y). Solving this problem exactly typically won’t be
feasible, as this is the main reason to consider approximations in the first place.
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11.2 Expectation propagation

Expectation propagation is an approximation algorithm proposed by Minka (2001) that tries
to tackle the problem of minimizing the Kullback–Leibler divergence with distributions from
exponential family; we will restrict attention here to Gaussian approximating functions.
Expectation propagation is more accurate, but generally slower than variational Bayes,
although it is quite fast when implemented properly and it is parallelizable. EP builds
on a decomposition of the posterior as a product of terms; typically, we have likelihood
contributionsLi(θ) (called “factors” or “sites” in the EP lingo) for independent data, where

p(θ | y) ∝ p(θ)
n∏

i=1
Li(θ) =

n∏
i=0

Li(θ)

with the convention that L0(θ) equals the prior density. Such factorization is also feasible
in graphical models (e.g., autoregressive processes, Markov fields), but needs not be unique.
Note that it is not equivalent to the factorization of the posterior (mean-field approximation)
for variational Bayes; every term in the EP approximation is a function of the whole vector
θ.

The expectation propagation considers a factor structure approximation, in which each qi

is Gaussian with precision Qi and linear shift ri,

q(θ) ∝
n∏

i=0
qi(θ)

∝
n∏

i=0
exp

(
−1

2θ
⊤Qiθ + θ⊤ri

)

= exp
(
−1

2θ
⊤

n∑
i=0

Qiθ + θ⊤
n∑

i=0
ri

)

and so the global approximation is also Gaussian; the last line also holds for distributions in
the exponential family, where−0.5Σ−1 and Σ−1µ = r are the canonical parameters of the
Gaussian distribution.

Expectation propagation works by starting with the joint approximation and removing one
site to get the cavity

q−j(θ) =
n∏

i=0
i̸=j

qi(θ);

in practice, this is most easily done by subtracting the term from the approximation of the
canonical parameters. We replace then the missing term by Lj(θ) to construct the so-called
hybrid density hj(θ) = Lj(θ)q−j(θ). The resulting density is unnormalized, but closer to a
sense to the target posterior than is q(θ). We can start from this and compute a Gaussian
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11 Expectation propagation

approximation to minimize the Kullback–Leibler distance with KL(hj ∥ q∗
j ) by matching

moments, where

cj =
∫
hj(θ)dθ

µj = c−1
j

∫
θhj(θ)dθ

Σj = c−1
j

∫
(θ − µj)(θ − µj)⊤hj(θ)dθ

The normalizing constant, mean and variance in the above are written in terms of p-
dimensional integrals but could be easily obtained by Monte Carlo by drawing from the
cavity prior. We then go back from moments to canonical parameters Qj and rj and update
the global approximation q. These updates can be performed sequentially or in parallel,
which can lead to massive gains in efficiency.

The EP algorithm is particularly well suited to latent Gaussian models (Cseke and Heskes
2011) and generalized linear models with Gaussian priors for the coefficients.

The EP algorithm iterates the steps until convergence:

1. Initialize the site-specific parameters
2. Loop over each observation of the likelihood factorization: 2.1 form the cavity and the

hybrid distribution 2.2 compute the moments of the hybrid µ and Σ 2.3 transform
back to canonical parameters Q and r 2.3 update the global approximation

3. Declare convergence when change in parameters is less than tolerance.

We can monitor convergence of EP by looking at changes in the parameters: it is a fixed point
algorithm. However, the EP does not have guarantees of convergence and may diverge;
Dehaene and Barthelmé (2018) explain some heuristics for these by making analogies
with Newton’s method, which only converges in the neighbourhood of fixed points and
can diverge. The idea is to update the global approximation with a damping term for
the canonical parameters. It is also useful to perform updates using suitable numerical
linear algebra routines, for example by competing the Cholesky root of the covariance and
back-solving to get the precision.

The expensive steps are related to the inversion of the moments to get the canonical
parameters from the moments; the matrix inversion has complexity O(np3) for a single
pass, but the algorithm typically converges quickly. The other bottleneck is calculation of
the moments.

Example 11.1 (Logistic regression). Consider a logistic regression model where we code
successes Y = 1 and failures Y = −1; for a given row vector x of length p and the vector
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11.2 Expectation propagation

β ∈ Rp of coefficients, the probability of success is

Pr(Y = 1 | x,β) = {1 + exp(−xβ)}−1 = expit(xβ).

The term on the right is the logistic function. This reparametrization makes it easier to
write the likelihood contribution of observation i as

Li(β) = expit(yixiβ).

Since this is a generalized linear model, we will have the approximation of the factor will
have parameters (ax⊤

i , bx⊤
i xi), which only depend on two scalars. Indeed, if we have the

approximation for β ∼ Gaussp(µ,Σ), then the integrals for the normalizing constant, etc.
depend only on the linear combination x⊤

i β ∼ Gauss(yix⊤
i µ, yix⊤

i Σxi). This means all
integrals for the tilting problem are unidimensional and can be obtained by Gaussian
quadrature or similar numerical integration schemes.

The dynamics of the expectation propagation given vectors of individual contributions a(t)

and b(t) at iteration t and the canonical parameters

r(t) =
n∑

i=1
a

(t)
i x⊤

i , Q(t) =
n∑

i=1
b

(t)
i x⊤

i xi,

initialized to t = 0, are as follows for step t:

1. Compute the natural parameters of the cavity distribution r−i = r − a(t−1)
i x⊤

i and

Q−i = Q− b(t−1)
i x⊤

i xi.
2. Transform the canonical parameters to moments, with Σ−i = Q−1

−i andµ−i = Q−1
−i r−i.

3. Obtain the mean and variance of the conditional distribution with variance vi =
xiΣ−ix⊤

i and mean ui = xiµ.
4. Define the marginal hybrid as

hi(z) ∝ expit(yiz) exp
{
−(z − u)2

2v

}
.

5. Compute the normalizing constant, the mean Ehi
(Z) and the variance Vahi

(Z) by
numerical integration.

#' @param mu_lc mean of the linear combination
#' @param sd_lc std. dev of the linear combination
ep_update <- function(y, mu_lc, sd_lc){

# Calculate outside of the loop the cavity
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11 Expectation propagation

fn <- function(x){ dnorm(x, mean = mu_lc, sd = sd_lc)*plogis(y*x)}
# Compute normalizing constant
cst <- integrate(f = fn, lower = -Inf, upper = Inf)$value
mu <- integrate(f = function(x){fn(x)*x}, -Inf, Inf)$value/cst
va <- integrate(f = function(x){fn(x)*(x-mu)ˆ2}, -Inf, Inf)$value/cst

}

6. Back-transform the parameters to get the parameters for a(t)
i = Ehi

(Z)/Vahi
(Z)− u/v

and b(t)
i = 1/Vahi

(Z).
7. Update the parameters r ← r−i + a

(t)
i x⊤

i and Q← Q−i + b
(t)
i x⊤

i xi.

In generalized linear models, the linear predictor will always be one-dimensional, and more
generally, in exponential families, we can get a similar dimension reduction. The updates
to the parameters for more general exponential families are found in page 23 of Cseke and
Heskes (2011).
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