Density, distribution function and random generation for the multivariate truncated normal distribution
with mean vector mu
, covariance matrix sigma
, lower truncation limit lb
and upper truncation limit ub
.
The truncation limits can include infinite values. The Monte Carlo (type = "mc"
) uses a sample of size B
, while the
quasi Monte Carlo (type = "qmc"
) uses a pointset of size ceiling(n/12)
and estimates the relative error using 12 independent randomized QMC estimators.
n | number of observations |
---|---|
x, q | vector of quantiles |
B | number of replications for the (quasi)-Monte Carlo scheme |
log | logical; if |
mu | vector of location parameters |
sigma | covariance matrix |
lb | vector of lower truncation limits |
ub | vector of upper truncation limits |
type | string, either of |
dtmvnorm
gives the density, ptmvnorm
and pmvnorm
give the distribution function of respectively the truncated and multivariate Gaussian distribution and rtmvnorm
generate random deviates.
dtmvnorm(x, mu, sigma, lb, ub, type = c("mc", "qmc"), log = FALSE, B = 1e4) ptmvnorm(q, mu, sigma, lb, ub, type = c("mc", "qmc"), log = FALSE, B = 1e4) rtmvnorm(n, mu, sigma, lb, ub)
Z. I. Botev (2017), The normal law under linear restrictions: simulation and estimation via minimax tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1--24.
d <- 4; lb <- rep(0, d) mu <- runif(d) sigma <- matrix(0.5, d, d) + diag(0.5, d) samp <- rtmvnorm(n = 10, mu = mu, sigma = sigma, lb = lb) loglik <- dtmvnorm(samp, mu = mu, sigma = sigma, lb = lb, log = TRUE) cdf <- ptmvnorm(samp, mu = mu, sigma = sigma, lb = lb, log = TRUE, type = "q") # Exact Bayesian Posterior Simulation Example # Vignette, example 5 if (FALSE) { data("lupus"); # load lupus data Y <- lupus[,1]; # response data X <- as.matrix(lupus[,-1]) # construct design matrix n <- nrow(X) d <- ncol(X) X <- diag(2*Y-1) %*% X; # incorporate response into design matrix nusq <- 10000; # prior scale parameter C <- solve(diag(d)/nusq + crossprod(X)) sigma <- diag(n) + nusq*tcrossprod(X) # this is covariance of Z given beta est <- pmvnorm(sigma = sigma, lb = 0) # estimate acceptance probability of crude Monte Carlo print(attributes(est)$upbnd/est[1]) # reciprocal of acceptance probability Z <- rtmvnorm(sigma = sigma, n = 1e3, lb = rep(0, n)) # sample exactly from auxiliary distribution beta <- rtmvnorm(n = nrow(Z), sigma = C) + Z %*% X %*% C # simulate beta given Z and plot boxplots of marginals boxplot(beta, ylab = expression(beta)) # output the posterior means colMeans(beta) }