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Crib sheet

1. binom(n, p) with n fixed and p ∈ [0,1], has mass function
(n

p

)
p y (1− p)n−y for y ∈ {0, . . . ,n}. The

expectation is np and the variance np(1−p).
2. beta(a,b) random variable on [0,1] has density f (x) = Γ(a+b)/{Γ(a)Γ(b)}xa−1(1−x)b−1 and expec-

tation a/(a +b).
3. Poisson(λ) with expectation λ> 0 has mass function f (x) =λx /x!exp(−λ), x ∈ 0,1, . . . .
4. Gauss(µ,σ2) with expectation µ ∈R and variance σ2 > 0, has density

f (x) = 1p
2πσ

exp

{
− 1

2σ2 (x −µ)2
}

, x ∈R.

5. Gaussp (µ,Q−1) with expectation µ ∈Rp and precision (reciprocal variance) Q ⪰ 0, has density

f (x) = (2π)−p/2|Q|1/2 exp

{
−1

2
(x −µ)⊤Q(x −µ)

}
, x ∈Rp .

6. Student(µ,σ,ν) with location µ ∈R, scale σ> 0 and ν degrees of freedom, has density

f (x;ν) = Γ
(
ν+1

2

)
σΓ

(
ν
2

)p
νπ

(
1+ (x −µ)2

σ2ν

)− ν+1
2

, x ∈R.

7. gamma(α,β) with shape α> 0 and rate β> 0, has expectation α/β, variance α/β2 and density

f (x;α,β) =βα/Γ(α)xα−1 exp(−βx), x > 0,

where Γ(α) = ∫ ∞
0 xα−1 exp(−x)dx is the gamma function, and xΓ(x) = Γ(x+1) for x > 0. If α= 1, we

recover expo(β).
8. inv.gamma(α,β) with shape α> 0 and rate β> 0, has expectation β/(α−1) for α> 1 and density

f (x;α,β) =βα/Γ(α)x−α−1 exp(−β/x), x > 0.

9. Laplace(µ,σ) with mean µ ∈ R and scale σ> 0 with density f (x) = (2σ)−1 exp(−|x −µ|/σ) for x ∈ R.
It’s variance is 2σ2.



Jeffrey’s prior: p(θ) ∝|ı|1/2, where ı is the unit Fisher (expected) information.
Change of variable formula: consider an injective (one-to-one) differentiable function g : Rd →Rd , with
inverse g−1. Then, if Y = g (X ), the density of Y is

fY (y) = fX
{

g−1(y)
}∣∣Jg−1 (y)

∣∣= fX (x)
∣∣Jg (x)

∣∣−1 ,

where Jg (x) is the Jacobian matrix with (i , j )th element ∂[g (x)]i /∂x j .
Metropolis–Hastings algorithm: consider p(θ | y) and q(θ | θt−1), the proposal density evaluated at θ.
The acceptance ratio for proposal θ⋆t given the current value θt−1 is min{1,R}, where

R = p(θ⋆t | y)

p(θt−1 | y)

q(θt−1 | θ⋆t )

q(θ⋆t | θt−1)

Effective sample size: for autocorrelation at lag t ofρt for a Markov chain of length B , ESS= B/
{
1+2

∑∞
t=1ρt

}
.

Law of iterated mean and variance:

EY (Y ) =EZ
{
EY |Z (Y )

}
, VaY (Y ) =EZ

{
VaY |Z (Y )

}+VaZ
{
EY |Z (Y )

}
.

Kullback–Leibler divergence:

KL( f ∥ g ) =
∫ {

log f (x)− log g (x)
}

f (x)dx .

Quadratic form completion:

(x −a)⊤A(x −a)+ (x −b)⊤B(x −b)
x∝ (x −c)⊤C(x −c),

where C = A+B and c = C−1(Aa +Bb).
Laplace approximation: Let h(x) be a twice-differentiable function which is concave in the vicinity of
it’s mode x0, with H(x) the Hessian matrix of −h(x). If h(x0) is O(n), then as n →∞,

In =
∫
Rd

exp{h(x)}dx ≈ (2π)p/2 |H(x0)|−1/2 exp{h(x0)}.

Evidence lower bound (ELBO): ELBO(g ) =Eg {log p(θ, y)}−Eg {log g (θ}.
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Question 1. True or false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Explain whether each of the following statement is true, false or uncertain. To get marks, you must
briefly justify your reasoning by proving the statement or providing a counterexample if the state-
ment is false. Answers without justifications are worth zero mark.

1.1 [2]A Gaussian approximation g that minimizes the forward Kullback–Leibler divergence and a
Laplace approximation to a univariate density p will have the same mean.

1.2 [2]We can readily obtain marginal posterior moments from variational inference procedures.

1.3 [2]The impact of the prior vanishes as the sample size gets larger.

1.4 [2]Marginalization in Markov chain Monte Carlo methods is always beneficial (fewer parameters,
lower dependence between components).

1.5 [2]Consider a prediction ỹ from a frequentist model with density f (ỹ ;θ), where θ̂ is a point esti-
mator. The posterior predictive distribution p(ỹ | y) will be more variable than it’s frequentist
counterpart f (ỹ ; θ̂).

Question 2. Short questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 [3]Zellner (1996) proposed the maximal data information (MDI) prior. The latter is proportional
to the exponential of the negative entropy, p(θ) ∝ exp{Eg (log g )}.

• Show that the entropy of a Gaussian random variable Gauss(µ,σ2) is a function of the scale
σ only.

• Use this result to derive the corresponding MDI prior for (µ,σ).

• Is the resulting prior proper? Justify your answer.

2.2 [3]Define the concepts of burn in, warmup, and thinning for Markov chain Monte Carlo. Explain
their relevance in the context of a sampling-based Bayesian analysis.
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2.3 [3]The following R code implements a simple Markov chain Monte Carlo to sample from the poste-
rior mean and std. deviation (µ,σ), where we assume independent and identically observations
and a half-Cauchy prior on [0,∞) for the scale, assumed independent apriori

Yi |µ,σ∼Gauss(µ,σ2), i = 1, . . . ,n; p(µ) ∝ 1; p(σ) ∝ Student+(1,0,1).

Find the error in the code and explain why this isn’t sampling from the posterior distribution of
interest.

sd_prop <- 0.05
# Unnormalized log posterior for mu, sigma
logpost <- function(pars, y){

mu <- pars[1]; sigma <- pars[2]
if(sigma < 0){ return(-Inf)}
sum(dnorm(x = y, mean = mu, sd = sigma, log = TRUE)) + # log likelihood

log(2) + dt(x = sigma, df = 1, log = TRUE) # log prior for scale
}

B <- 1e4L # number of simulations
mu_s <- sigma_s <- numeric(B) # containers
mu <- mean(y); sigma <- sd(y) # initial values
for(b in 1:B){

# Gibbs step for mu
mu <- mu_s[b] <- rnorm(n = 1, mean = mean(y), sd = sigma/sqrt(length(y)))
# Metropolis random walk on the log scale
sigma_prop <- exp(rnorm(n = 1, mean = log(sigma), sd = sd_prop))
# Log of Metropolis acceptance ratio
logR <- logpost(c(mu, sigma_prop), y = y) - logpost(c(mu, sigma), y = y)
if(logR > log(runif(1))){

sigma <- sigma_prop
}
sigma_s[b] <- sigma

}
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Question 3. Stochastic versus deterministic approximations . . . . . . . . . . . . . . . . . . . . . . 10

3.1 [2]Define the marginal likelihood as a function of the prior p(θ) and the likelihood p(y | θ).

3.2 [2]Explain in your own words why estimation of the marginal likelihood is difficult.

3.3 [2]Explain how to obtain a Laplace approximation of the marginal likelihood. Under which cir-
cumstances will it be a good approximation?

3.4 [2]Explain the relevance of the marginal likelihood in the context of

1. calculation of posterior moments of the form EΘ|Y {g (θ)}.

2. model comparison using Bayes factor.

3.5 [2]How does Markov chain Monte Carlo (MCMC) methods get around estimation of the marginal
likelihood p(y)? Hint: consider the Metropolis–Hastings acceptance ratio.

Question 4. Probit regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Experiment 2 of Duke and Amir (2023) consider the effect of sequential versus integrated decisions
on customers decision to buy. Customers in an online experiment where exposed to products and
decided whether to buy (Yi = 1) or not (Yi = 0). To model these, we consider a simple probit regres-
sion model with response Yi ∼ binom(1, pi ), where

pi = Pr(Yi = 1) =Φ(xiβ),

with Φ(·) the distribution function of the standard Gaussian distribution. We set β∼Gaussp (0p ,cIp )
for c > 0 a known positive constant.

The model matrix include an intercept, a coefficient for age and a binary indicator equal to 1 if the
participant was exposed to quantity-integrated decision, and zero for quantity-sequential (control
group).

4.1 [2]Consider the data augmentation scheme where Yi = I(Zi > 0), where Zi ∼Gauss(xiβ,1), with xi

denoting the i th row of the n ×p design matrix.

Write down the expression for the joint distribution p(y , z ,β) = p(y | z)p(z |β)p(β).

4.2 [4]Derive the conditional distributions p(β | z) and that of p(zi | yi ,β) for i = 1, . . . ,n.

4.3 [2]Based on the conditional distributions detail a Gibbs sampling algorithm for β and z . Explain
the benefit of the latter over the marginal posterior p(β | y).

4.4 [4]Suppose that we instead used coordinate-ascent variational inference with a factorization of
the posterior pZ (z)pβ(β).

Write down the optimal form of these distributions and the parameter updates. Explain how
you would assess convergence.
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Figure 1: Left: evidence lower bound (ELBO) as a function of iteration. Right: marginal density of β2

for quantity-integrated binary indicator, based on Monte Carlo samples (full), versus variational approx-
imation (dashed).

Hint: if Y ∼ trunc.Gauss(µ,σ, a,b) a truncated Gaussian on [a,b] with location µ and scaleσ has
expectation

E(Y ) =µ−σφ{(b −µ)/σ}−φ{(a −µ)/σ}

Φ{(b −µ)/σ}−Φ{(a −µ)/σ}
,

where φ and Φ are the density and distribution functions of a standard Gaussian, respectively.

4.5 [2]The right panel of Figure 1 shows the marginal density for the coefficient β2. Explain why the
two are not identical.

4.6 [2]What can we conclude from Figure 1 as to what is the most effective method?
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