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Crib sheet

1. binom(n, p) with n fixed and p ∈ [0,1], has mass function
(n

p

)
p y (1− p)n−y for y ∈ {0, . . . ,n}. The

expectation is np and the variance np(1−p).
2. beta(a,b) random variable on [0,1] has density f (x) = Γ(a+b)/{Γ(a)Γ(b)}xa−1(1−x)b−1 and expec-

tation a/(a +b).
3. Poisson(λ) with expectation λ> 0 has mass function f (x) =λx /x!exp(−λ), x ∈ 0,1, . . . .
4. Gauss(µ,σ2) with expectation µ ∈R and variance σ2 > 0, has density

f (x) = 1p
2πσ

exp

{
− 1

2σ2 (x −µ)2
}

, x ∈R.

5. Gaussp (µ,Q−1) with expectation µ ∈Rp and precision (reciprocal variance) Q ⪰ 0, has density

f (x) = (2π)−p/2|Q|1/2 exp

{
−1

2
(x −µ)⊤Q(x −µ)

}
, x ∈Rp .

6. Student(µ,σ,ν) with location µ ∈R, scale σ> 0 and ν degrees of freedom, has density

f (x;ν) = Γ
(
ν+1

2

)
σΓ

(
ν
2

)p
νπ

(
1+ (x −µ)2

σ2ν

)− ν+1
2

, x ∈R.

7. gamma(α,β) with shape α> 0 and rate β> 0, has expectation α/β, variance α/β2 and density

f (x;α,β) =βα/Γ(α)xα−1 exp(−βx), x > 0,

where Γ(α) = ∫ ∞
0 xα−1 exp(−x)dx is the gamma function, and xΓ(x) = Γ(x+1) for x > 0. If α= 1, we

recover expo(β).
8. inv.gamma(α,β) with shape α> 0 and rate β> 0, has expectation β/(α−1) for α> 1 and density

f (x;α,β) =βα/Γ(α)x−α−1 exp(−β/x), x > 0.

9. Laplace(µ,σ) with mean µ ∈ R and scale σ> 0 with density f (x) = (2σ)−1 exp(−|x −µ|/σ) for x ∈ R.
It’s variance is 2σ2.



Jeffrey’s prior: p(θ) ∝|ı|1/2, where ı is the unit Fisher (expected) information.
Change of variable formula: consider an injective (one-to-one) differentiable function g : Rd →Rd , with
inverse g−1. Then, if Y = g (X ), the density of Y is

fY (y) = fX
{

g−1(y)
}∣∣Jg−1 (y)

∣∣= fX (x)
∣∣Jg (x)

∣∣−1 ,

where Jg (x) is the Jacobian matrix with (i , j )th element ∂[g (x)]i /∂x j .
Metropolis–Hastings algorithm: consider p(θ | y) and q(θ | θt−1), the proposal density evaluated at θ.
The acceptance ratio for proposal θ⋆t given the current value θt−1 is min{1,R}, where

R = p(θ⋆t | y)

p(θt−1 | y)

q(θt−1 | θ⋆t )

q(θ⋆t | θt−1)

Effective sample size: for autocorrelation at lag t ofρt for a Markov chain of length B , ESS= B/
{
1+2

∑∞
t=1ρt

}
.

Law of iterated mean and variance:

EY (Y ) =EZ
{
EY |Z (Y )

}
, VaY (Y ) =EZ

{
VaY |Z (Y )

}+VaZ
{
EY |Z (Y )

}
.

Kullback–Leibler divergence:

KL( f ∥ g ) =
∫ {

log f (x)− log g (x)
}

f (x)dx .

Quadratic form completion:

(x −a)⊤A(x −a)+ (x −b)⊤B(x −b)
x∝ (x −c)⊤C(x −c),

where C = A+B and c = C−1(Aa +Bb).
Laplace approximation: Let h(x) be a twice-differentiable function which is concave in the vicinity of
it’s mode x0, with H(x) the Hessian matrix of −h(x). If h(x0) is O(n), then as n →∞,

In =
∫
Rd

exp{h(x)}dx ≈ (2π)p/2 |H(x0)|−1/2 exp{h(x0)}.

Evidence lower bound (ELBO): ELBO(g ) =Eg {log p(θ, y)}−Eg {log g (θ}.
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Question 1. True or false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Explain whether each of the following statement is true, false or uncertain. To get marks, you must
briefly justify your reasoning by proving the statement or providing a counterexample if the state-
ment is false. Answers without justifications are worth zero mark.

1.1 [2]A Gaussian approximation g that minimizes the forward Kullback–Leibler divergence and a
Laplace approximation to a univariate density p will have the same mean.

Solution: False; the Laplace approximation will be centered at the mode, while the other
model will be centered at the mean of the true distribution. They coincide for symmetric
unimodal distributions.

1.2 [2]We can readily obtain marginal posterior moments from variational inference procedures.

Solution: Uncertain; the optimal decomposition might lead to a multivariate family, which
may be unnormalized. Gaussian approximations will of course be marginalizable, and we
could resort to Monte Carlo methods if we can simulate.

1.3 [2]The impact of the prior vanishes as the sample size gets larger.

Solution: False; this depends largely on what level the parameter or prior is located; for
example, a random effect model with different variance per group would vanish only if the
number of groups increases (in addition to the number of observations within each group).

Other counterexample: any prior that restricts the support would not vanish.

1.4 [2]Marginalization in Markov chain Monte Carlo methods is always beneficial (fewer parameters,
lower dependence between components).

Solution: False; we have seen examples where parameter expansion improves mixing for
the eight school example by adding redundancy. Generally, it complexifies the dependence
structure, while reducing the dimension (thinks data augmentation in Gibbs sampling).

1.5 [2]Consider a prediction ỹ from a frequentist model with density f (ỹ ;θ), where θ̂ is a point esti-
mator. The posterior predictive distribution p(ỹ | y) will be more variable than it’s frequentist
counterpart f (ỹ ; θ̂).

Solution: True, follows from the law of iterated variance as

p(ỹ | y) =
∫

f (ỹ ;θ, y)p(θ | y)dθ
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so Vaỹ |y (Ỹ ) = Eθ|y
{
Vaỹ |θ(Ỹ )

}+Vaθ|y
{
Eỹ |θ(Ỹ )

}
. The frequentist version amounts to taking

a point mass at p(θ | y) = I(θ = θ̂), so the second term vanishes as there is no variability.

Question 2. Short questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 [3]Zellner (1996) proposed the maximal data information (MDI) prior. The latter is proportional
to the exponential of the negative entropy, p(θ) ∝ exp{Eg (log g )}.

• Show that the entropy of a Gaussian random variable Gauss(µ,σ2) is a function of the scale
σ only.

• Use this result to derive the corresponding MDI prior for (µ,σ).

• Is the resulting prior proper? Justify your answer.

Solution:

−Eg (log g ) = 1

2
log(2π)+ log(σ)+ 1

2σ2 EX {(X −µ)2} = 1+ log(2π)

2
+ log(σ)

so the MDI prior is proportional to 1/σ, hence is improper.

2.2 [3]Define the concepts of burn in, warmup, and thinning for Markov chain Monte Carlo. Explain
their relevance in the context of a sampling-based Bayesian analysis.

Solution: Burn in refers to discarding the initial transient runs of the Markov chain, to en-
sure that it has converged to the stationnary distribution. Warmup is used sometimes in-
terchangedly, but also serves for tuning parameters of the algorithm. Both of these initial
runs are discarded after sampling is performed, to avoid biasing the results.

Thining refers to the practice of keeping only a fraction of the draws. This is only useful
when there is strong autocorrelation to reduce storage costs.
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2.3 [3]The following R code implements a simple Markov chain Monte Carlo to sample from the poste-
rior mean and std. deviation (µ,σ), where we assume independent and identically observations
and a half-Cauchy prior on [0,∞) for the scale, assumed independent apriori

Yi |µ,σ∼Gauss(µ,σ2), i = 1, . . . ,n; p(µ) ∝ 1; p(σ) ∝ Student+(1,0,1).

Find the error in the code and explain why this isn’t sampling from the posterior distribution of
interest.

sd_prop <- 0.05
# Unnormalized log posterior for mu, sigma
logpost <- function(pars, y){

mu <- pars[1]; sigma <- pars[2]
if(sigma < 0){ return(-Inf)}
sum(dnorm(x = y, mean = mu, sd = sigma, log = TRUE)) + # log likelihood

log(2) + dt(x = sigma, df = 1, log = TRUE) # log prior for scale
}

B <- 1e4L # number of simulations
mu_s <- sigma_s <- numeric(B) # containers
mu <- mean(y); sigma <- sd(y) # initial values
for(b in 1:B){

# Gibbs step for mu
mu <- mu_s[b] <- rnorm(n = 1, mean = mean(y), sd = sigma/sqrt(length(y)))
# Metropolis random walk on the log scale
sigma_prop <- exp(rnorm(n = 1, mean = log(sigma), sd = sd_prop))
# Log of Metropolis acceptance ratio
logR <- logpost(c(mu, sigma_prop), y = y) - logpost(c(mu, sigma), y = y)
if(logR > log(runif(1))){

sigma <- sigma_prop
}
sigma_s[b] <- sigma

}

Solution: The Jacobian of the transformation is missing; the ratio of proposal densities isn’t
zero since the lognormal is not symmetric.
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Question 3. Stochastic versus deterministic approximations . . . . . . . . . . . . . . . . . . . . . . 10

3.1 [2]Define the marginal likelihood as a function of the prior p(θ) and the likelihood p(y | θ).

Solution: The marginal likelihood is the normalizing constant for the posterior, defined as

p(y) =
∫

p(y | θ)p(θ)dθ.

3.2 [2]Explain in your own words why estimation of the marginal likelihood is difficult.

Solution: The marginal likelihood is often small (think discrete components with prob-
abilty) and decreases with n. We have seen examples where numerical integral will fail
because of numerical overflow. Likewise, Monte Carlo does not readily work because sam-
pling from the prior unless the latter aligns with the likelihood model.

3.3 [2]Explain how to obtain a Laplace approximation of the marginal likelihood. Under which cir-
cumstances will it be a good approximation?

Solution: Write θ̂ for the maximum a posteriori (MAP) and H(θ̂) for the Hessian of the neg-
ative log posterior evaluate at the MAP. Then a straightforward application of Laplace ap-
proximation gives

p(y) ≈ (2π)p/2|H(θ̂)|−1/2p(y | θ̂)p(θ̂)

It is a good approximation if the sample size n is large and the posterior is approximately
symmetric in the parameterization considered.

3.4 [2]Explain the relevance of the marginal likelihood in the context of

1. calculation of posterior moments of the form EΘ|Y {g (θ)}.

2. model comparison using Bayes factor.

Solution: Given the joint p(y ,θ), any expectation is of the form

EΘ|Y {g (θ)} = p(y)−1
∫

g (θ)p(y ,θ)dθ

we need the normalizing constant to compute the moments.
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Model comparison in Bayesian is based on the posterior model odds, which are

p(Mi | y) ∝ p(y |Mi )p(Mi ).

For two models M1 and M2, the Bayes factor involve the ratio of marginal likelihoods p(y |
M1)/p(y |M2). These require necessarily proper priors.

3.5 [2]How does Markov chain Monte Carlo (MCMC) methods get around estimation of the marginal
likelihood p(y)? Hint: consider the Metropolis–Hastings acceptance ratio.

Solution: We compare current value with the proposal; since the marginal likelihood is
a constant, taking ratios of posterior leads to it’s cancellation in the Metropolis–Hastings
ratio.

Once we have posterior samples, we can evaluate any functional of interest via Monte Carlo,
circumventing the evaluation of the normalizing constant. We however cannot use this for
model comparison.

Question 4. Probit regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Experiment 2 of Duke and Amir (2023) consider the effect of sequential versus integrated decisions
on customers decision to buy. Customers in an online experiment where exposed to products and
decided whether to buy (Yi = 1) or not (Yi = 0). To model these, we consider a simple probit regres-
sion model with response Yi ∼ binom(1, pi ), where

pi = Pr(Yi = 1) =Φ(xiβ),

with Φ(·) the distribution function of the standard Gaussian distribution. We set β∼Gaussp (0p ,cIp )
for c > 0 a known positive constant.

The model matrix include an intercept, a coefficient for age and a binary indicator equal to 1 if the
participant was exposed to quantity-integrated decision, and zero for quantity-sequential (control
group).

4.1 [2]Consider the data augmentation scheme where Yi = I(Zi > 0), where Zi ∼Gauss(xiβ,1), with xi

denoting the i th row of the n ×p design matrix.

Write down the expression for the joint distribution p(y , z ,β) = p(y | z)p(z |β)p(β).
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Solution:

p(z , y ,β) ∝ exp

{
− 1

2c
β⊤β− 1

2
(z −Xβ)⊤(z −Xβ)

}
×

n∏
i=1

I(zi > 0)yi I(zi ≤ 0)1−yi

4.2 [4]Derive the conditional distributions p(β | z) and that of p(zi | yi ,β) for i = 1, . . . ,n.

Solution: A simple Gaussian completion of squares gives

β | z , y ∼Gaussp
{
(X⊤X+ c−1Ip )−1X⊤z , (X⊤X+ cIp )−1} .

The augmented variables Zi are conditionally independent and truncated Gaussian with
unit variance

Zi | yi ,β∼
{

trunc.Gauss(xiβ,1,−∞,0) yi = 0

trunc.Gauss(xiβ,1,0,∞) yi = 1.

4.3 [2]Based on the conditional distributions detail a Gibbs sampling algorithm for β and z . Explain
the benefit of the latter over the marginal posterior p(β | y).

Solution: We obtain conditional conjugacy, which simplifies the likelihood. The algorithm
is also automatic since the acceptance rate of Gibbs sampling is one; there are no tuning
parameters.

4.4 [4]Suppose that we instead used coordinate-ascent variational inference with a factorization of
the posterior pZ (z)pβ(β).

Write down the optimal form of these distributions and the parameter updates. Explain how
you would assess convergence.

Hint: if Y ∼ trunc.Gauss(µ,σ, a,b) a truncated Gaussian on [a,b] with location µ and scaleσ has
expectation

E(Y ) =µ−σφ{(b −µ)/σ}−φ{(a −µ)/σ}

Φ{(b −µ)/σ}−Φ{(a −µ)/σ}
,

where φ and Φ are the density and distribution functions of a standard Gaussian, respectively.
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Solution: If we consider a factorization of the form g Z (z)gβ(β), then we exploit the condi-
tionals in the same way as for Gibbs sampling, but substituting unknown parameter func-
tionals by their expectations. Furthermore, the optimal form of the density further factor-
izes as g Z (z) =∏n

i=1 gZi (zi ).

The model depends on the mean parameter of Z , say µZ , and that of β, say µβ. To see this,
consider the terms in the posterior proportional to Zi , where

p(zi |β, yi ) ∝−z2
i −2zi xiβ

2
× I(zi > 0)yi I(zi < 0)1−yi

which is linear inβ. The expectation of a univariate truncated Gaussian Z ∼ trunc.Gauss(µ,σ2, l ,u)
is

E(Z ) =µ−σφ{(u −µ/σ)}−φ{(l −µ/σ)}

Φ{(u −µ/σ)}−Φ{(l −µ/σ)}
.

If we replace µ= xiµβ in this expression, we get the update

µZi (zi ) =
xiµβ− φ(xiµβ)

1−Φ(xiµβ) yi = 0;

xiµβ+ φ(xiµβ)
Φ(xiµβ) yi = 1,

since φ(x) =φ(−x).

The optimal form for β is Gaussian and the only unknown parameter is µβ; the log density
only involves a linear form for Z , so follows from the same principle. We get regrouping the
vector of means for the latent variables

µβ = (X⊤X+Q0)−1(XµZ +Q0µ0)

Starting with an initial vector for either parameters, the CAVI algorithm alternatives be-
tween updates of µβ and µZ until the value of the evidence lower bound stabilizes.

4.5 [2]The right panel of Figure 1 shows the marginal density for the coefficient β2. Explain why the
two are not identical.

Solution: CAVI solves an approximate problem by maximizing the ELBO (or equivalently
minimizing the reverse KL divergence), so it needs not coincide. We see that the Gaussian
approximation does not fully capture the scale of the marginal.

4.6 [2]What can we conclude from Figure 1 as to what is the most effective method?

page 7 of 8



MATH 80601A Practice final examination Winter 2024

−210

−180

−150

−120

0 5 10 15 20
number of iterations

evidence lower bound (ELBO)

0

1

2

3

0.0 0.5 1.0
β2

density

Figure 1: Left: evidence lower bound (ELBO) as a function of iteration. Right: marginal density of β2

for quantity-integrated binary indicator, based on Monte Carlo samples (full), versus variational approx-
imation (dashed).

Solution: The posterior for the effect of quantity-integrated (versus control for the inter-
cept has marginal posterior probability Pr(β2 > 0) ≈ 1. The latter thus indicates that, for the
same age, it leads to more sales. This finding is contingent on the model being correct.
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