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Variational inference
Laplace approximation provides a heuristic for large-sample
approximations, but it fails to characterize well .

We consider rather a setting where we approximate  by
another distribution  which we wish to be close.

The terminology variational is synonym for optimization in
this context.
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Kullback–Leibler divergence
The Kullback–Leibler divergence between densities 
and  is
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Model misspeci�cation

• The divergence is strictly positive unless 

• The divergence is not symmetric.

The Kullback–Leibler divergence notion is central to study
of model misspeci�cation.

• if we �t  when data arise from  the maximum

likelihood estimator of the parameters  will be the value
of the parameter that minimizes the Kullback–Leibler
divergence .
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Marginal likelihood
Consider now the problem of approximating the marginal
likelihood, sometimes called the evidence,

where we only have the joint  is the product of the
likelihood times the prior.

p(y) = ∫

Θ

p(y, θ)dθ.

p(y, θ)
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Approximating the marginal likelihood
Consider  with  an approximating density
function

• whose integral is one over  (normalized density)

• whose support is part of that of
 (so KL divergence is not

in�nite)

Objective: minimize the Kullback–Leibler divergence

g(θ; ψ) ψ ∈ R

J
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p

supp(g) ⊆ supp(p) = Θ

KL {p(θ ∣ y) ∥ g(θ; ψ)}.
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Problems ahead
Minimizing the Kullback–Leibler divergence is not feasible
to evaluate the posterior.

Taking  is not feasible: we need the marginal
likelihood to compute the expectation!
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Alternative expression for the marginal likelihood
We consider a different objective to bound the marginal
likelihood. Write

p(y) = ∫

Θ

p(y, θ)

g(θ; ψ)

g(θ; ψ)dθ.
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Bounding the marginal likelihood
For  a convex function, Jensen’s inequality implies that

and applying this with  we get

h(x)

h{E(X)} ≤ E{h(X)},

h(x) = − log(x),

− log p(y) ≤ − ∫

Θ

log (

p(y, θ)

g(θ; ψ)

)g(θ; ψ)dθ.
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Evidence lower bound
We can thus consider the model that minimizes the reverse
Kullback–Leibler divergence

Since ,

g(θ;

ˆ

ψ) = argmin

ψ

KL{g(θ; ψ) ∥ p(θ ∣ y)}.

p(θ, y) = p(θ ∣ y)p(y)
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g
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+ log p(y).
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Evidence lower bound
Instead of minimizing the Kullback–Leibler divergence, we
can equivalently maximize the so-called evidence lower
bound (ELBO)

The ELBO is a lower bound for the marginal likelihood
because a Kullback–Leibler divergence is non-negative and

ELBO(g) = E

g

{log p(y, θ)} − E

g

{log g(θ)}

log p(y) = ELBO(g) + KL{g(θ; ψ) ∥ p(θ ∣ y)}.
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Use of ELBO
The idea is that we will approximate the density

• the ELBO can be used for model comparison (but we
compare bounds…)

• we can sample from  as before.

p(θ ∣ y) ≈ g(θ;

ˆ

ψ).
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Heuristics of ELBO
Maximize the evidence, subject to a regularization term:

The ELBO is an objective function comprising:

• the �rst term will be maximized by taking a distribution
placing mass near the MAP of 

• the second term can be viewed as a penalty that favours
high entropy of the approximating family (higher for
distributions which are diffuse).

ELBO(g) = E

g

{log p(y, θ)} − E

g

{log g(θ)}

p(y, θ),
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Laplace vs variational approximation

Figure 1: Skewed density with the Laplace approximation (dashed orange) and
variational Gaussian approximation (dotted blue).
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Choice of approximating density
In practice, the quality of the approximation depends on the
choice of 

• We typically want matching support.

• The approximation will be affected by the correlation
between posterior components 

• Derivations can also be done for , where  are
latent variables from a data augmentation scheme.

g(⋅; ψ).

θ ∣ y.
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Factorization
We can consider densities  that factorize into blocks
with parameters  where

If we assume that each of the  parameters  are
independent, then we obtain a mean-�eld approximation.
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Maximizing the ELBO one step at a time

which is the negative of a Kullback–Leibler divergence.
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Optimal choice of approximating density
The maximum possible value of zero for the KL is attained
when

The choice of marginal  that maximizes the ELBO is

Often, we look at the kernel of  to deduce the normalizing

constant.
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Coordinate-ascent variational inference (CAVI)

• We can maximize  in turn for each 

treating the other parameters as �xed.

• This scheme is guaranteed to monotonically increase the
ELBO until convergence to a local maximum.

• Convergence: monitor ELBO and stop when the change is
lower then some present numerical tolerance.

• The approximation may have multiple local optima:
perform random initializations and keep the best one.
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⋆

j
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Example of CAVI mean-�eld for Gaussian target
We consider the example from Section 2.2.2 of Ormerod &
Wand ( ) for approximation of a Gaussian distribution,
with

This is an example where the full posterior is available in
closed-form, so we can compare our approximation with the
truth.
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Variational approximation to Gaussian — mean
We assume a factorization of the variational approximation

 the factor for  is proportional to

which is quadratic in  and thus must be Gaussian with
precision  and mean 
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Variational approximation to Gaussian — precision
The optimal precision factor satis�es

This is of the same form as  namely a gamma
with shape  and rate .
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Rate of the gamma for 
It is helpful to rewrite the expected value as

so that it depends on the parameters of the distribution of 
directly.
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CAVI for Gaussian
The algorithm cycles through the following updates until
convergence:

• 

• 

•  where  is a function of both  and

We only compute the ELBO at the end of each cycle.
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Monitoring convergence
The derivation of the ELBO is straightforward but tedious;
we only need to monitor

for convergence, although other normalizing constants
would be necessary if we wanted to approximate the
marginal likelihood.

We can also consider relative changes in parameter values
as tolerance criterion.
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Stochastic optimization
We consider alternative numeric schemes which rely on
stochastic optimization ( ).

The key idea behind these methods is that

• we can use gradient-based algorithms,

• and approximate the expectations with respect to  by
drawing samples from it

Also allows for minibatch (random subset) selection to
reduce computational costs in large samples

Hoffman et al., 2013

g
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Black-box variational inference
Ranganath et al. ( ) shows that the gradient of the ELBO
reduces to

using the change rule, differentiation under the integral sign
(dominated convergence theorem) and the identity

2014

∂

∂ψ

ELBO(g) = E
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Black-box variational inference in practice

• Note that the gradient simpli�es for  in exponential
families (covariance of suf�cient statistic with ).

• The gradient estimator is particularly noisy, so Ranganath
et al. ( ) provide two methods to reduce the variance
of this expression using control variates and Rao–
Blackwellization.
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Automatic di�erentiation variational inference
Kucukelbir et al. ( ) proposes a stochastic gradient
algorithm, but with two main innovations.

• The �rst is the general use of Gaussian approximating
densities for factorized density, with parameter
transformations to map from the support of 
via 

• The second is to use the resulting location-scale family to
obtain an alternative form of the gradient.

2017

T : Θ ↦ R

p

T (θ) = ζ.
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Gaussian full-rank approximation
Consider an approximation  where  consists of

• mean parameters  and

• covariance , parametrized through a Cholesky
decomposition

The full approximation is of course more �exible when the
transformed parameters  are correlated, but is more
expensive to compute than the mean-�eld approximation.

g(ζ; ψ) ψ

μ

Σ

ζ
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Change of variable
The change of variable introduces a Jacobian term 
for the approximation to the density , where

J

T

−1(ζ)

p(θ, y)

p(θ, y) = p(ζ, y) |J

T

−1(ζ)|
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Gaussian entropy
The entropy of the multivariate Gaussian with mean  and
covariance , where  is a lower triangular matrix,
is

and only depends on .
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⊤
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ELBO with Gaussian approximation
Since the Gaussian is a location-scale family, we can rewrite
the model in terms of a standardized Gaussian variable

 where  (this

transformation has unit Jacobian).

The ELBO with the transformation becomes
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Chain rule
If  and  we have for  equal to
either  or , using the chain rule,
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Gradients for ADVI
The gradients of the ELBO with respect to the mean and variance are

and we can approximate the expectation by drawing standard Gaussian samples
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Quality of approximation
Consider the stochastic volatility model.

Fitting HMC-NUTS to the exchange rate data takes 156
seconds for 10K iterations, vs 2 seconds for the mean-�eld
approximation.
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