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Revisiting Kullback–Leibler divergence
The Kullback–Leibler divergence between densities 
and  is
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Forward Kullback–Leibler divergence
If  is Gaussian approximating density, then we
minimize the KL divergence by matching moments:

See Exercise 10.1 for a derivation.
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Variational inference
We don’t know the posterior mean and variance! (they
depend on unknown normalizing constant).

Variational inference �nds rather the approximation that
minimizes the reverse Kullback–Leibler divergence

Qualitatively, this yields a very different approximation.
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Comparing approximations

Figure 1: Approximation of a correlated bivariate Gaussian density by independent
Gaussians.
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Gaussian as exponential family
Write the Gaussian distribution in terms of canonical
parameters

where  is the precision matrix and  the linear
shift.
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Notation
Let  denote the posterior density.

Since logarithm is a monotonic transform, we can equivalent
minimize  to �nd the posterior mode.

Denote

• the gradient 

• the Hessian matrix 

p(θ ∣ y) = exp{−ψ(θ)}
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Newton algorithm
Starting from an initial value  we consider at step , a

second order Taylor series expansion of  around 

which gives
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Gaussian smoothing
The term  is constant, so if we plug-in this inside the

exponential, we obtain

where the mean of the approximation is
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Side remarks
The new mean vector  corresponds to a Newton

update, and at the same time we have de�ned a sequence of
Gaussian updating approximations.

This scheme works provided that  is positive de�nite

and invertible. Without convexity, we get a divergent
sequence.

The �xed point to which the algorithm converges is the
Laplace approximation.

θ

(i+1)

H(θ

(i)

)

10



Location-scale transformation gradients
For location-scale family, with a Gaussian approximation on
the target  with  and

 that the gradient satis�es
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Stein’s lemma
Consider  a differentiable function and
integration with respect to  such that
the gradient is absolutely integrable, 
for  Then ( ),
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Alternative expression for the scale
If we apply Stein’s lemma,
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Variational inference
At a critical point, both of these derivatives must be zero,
whence
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Variational inference vs Laplace
Compared to the Laplace approximation, the variational
Gaussian approximation returns

• a vector  around which the expected value of the
gradient is zero

• and similarly  which matches the expected value of the
Hessian.

The averaging step is what distinguishes the Laplace and
variational approximations.
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Expectation propagation
Expectation propagation is an approximation algorithm
proposed by Minka ( ).

It is more accurate, but generally slower than variational
Bayes.

However, the algorithm can be parallelized, which makes it
fast.

2001
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Decomposition
EP builds on a decomposition of the posterior as a product of
terms; with likelihood contributions 

We call  the “factors” or “sites”, and  is the prior
density.
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Comment on factorization
Such factorization is also feasible in graphical models (e.g.,
autoregressive processes, Markov �elds), but needs not be
unique.

• Note that it is not equivalent to the factorization of the
posterior (mean-�eld approximation) for variational
Bayes, as every term in the EP approximation is a function
of the whole vector θ.
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Expectation propagation approximating density
Considers a factor structure approximation in which each 
is Gaussian with precision  and linear shift ,
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Step 1 of expectation propagation
Form the cavity by removing one factor , so thatq
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Step 2 of expectation propagation
Construct an hybrid or tilted distribution

The resulting density is unnormalized.

h

j

(θ) ∝ q

−j

(θ)L

j

(θ).

21



Global approximation
The overall approximation is Gaussian with precision

 and linear shift 

These parameters are obtained by optimizing each hybrid
distribution with a Gaussian.

That is, we minimize the  at each step

conditional on the other parameters.
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Step 3 of expectation propagation
Compute normalizing constant and moments
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Comment on step 3
The normalizing constant, mean and variance in the above
are written in terms of -dimensional integrals.

For exponential family of distributions, we can perform
dimension reduction.

For example, with generalized linear models, the update for
hybrid  depends only on the summary statistic , where

 is the th row of the model matrix. Then, the integral is
one-dimensional.
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Projection of Gaussians
Linear combinations of Gaussian vectors are also Gaussian.

If  thenβ ∼ Gauss
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Step 4 of expectation propagation
Convert moments  and  to canonical parameters  and 

Update the global approximation with
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Recap of expectation propagation
The EP algorithm iterates the steps until convergence:

1. Initialize the site-speci�c parameters

2. Loop over each observation of the likelihood factorization:
2.1 form the cavity and the hybrid distribution 2.2
compute the moments of the hybrid  and  2.3
transform back to canonical parameters  and  2.3
update the global approximation

3. Declare convergence when change in parameters is less
than tolerance.

The algorithm can be run in parallel.

μ Σ
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Improving convergence
There is no guarantee that the �xed-point algorithm will
converge…

The algorithm behaves like a smoothed Newton method
( ), so we can borrow tricks from
numerical optimization to improve convergence.

• linearly interpolate between updates, with weight
 to the current update where at step .

Some individual factor updates may yield non-positive
de�nite precision for individual terms , which is okay as

long as the global approximation  remains positive.

Dehaene & Barthelmé, 2018
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Example: EP for logistic regression
Consider a binary response  with logistic
model

We assume for simplicity that  a Gaussian prior
could also be used.

Y ∈ {−1, 1}

Pr(Y = 1 ∣ x, β) = {1 + exp(−xβ)}

−1

= expit(xβ).

p(β) ∝ 1;
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