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Fundamentals

e Bayesian inference uses likeli

nood

e It complements the likelihooc

p(y

nased inference.

@) with a prior p(0).

o Provided that p(8, y) is integrable, we get

0

p(0 | y) x p(y | 0)p(0).
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Marginal likelihood

The normalizing constant

p(y) = /@ p(y | 6)p(6)d6

to make the posterior a valid density is termed marginal
likelihood.
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Marginal likelihood

Moments of the posterior depend on p(y).

It is hard to compute because ® C RP, and the integral is

often high-dimensional.

e Monte Carlo integration (does not typically work because
prior need not align with likelihood)

e Numerical integration performance degrades with p,
numerical overflow.
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Bayes factors

The Bayes factoris the ratio of marginal likelihoods, as

p(y | M) = / o(y | 69, M,)p(6% | M,)d6".

Values of BF;; > 1 correspond to model M, being more
likely than M.

e Strongde

e Must use

rendence on the prior p(8%) | M,).

Droper priors.
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Predictive distributions

Define the posterior predictive,

P(yhew | ) = /@ P(tew | O)0(0 | )dO
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Bayesian inference

If we have samples from p(@ | y) or an approximation of the
joint/marginals, then we can

e use the posterior distribution to answer any question that
is a function of @ alone.

e use the posterior predictive p(ynew | Y) for prediction or
forecasting, and checks of model adequacy.
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Point estimators and credible regions

Interpretation is different from frequentist, but methods are
similar:

e point estimators (MAP, posterior mean and median, etc.)
derive from consideration of loss functions that return a

summary of the posterior.

e credible interval or regions (interval for which the true
parameter lies with a certain probability).
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Stochastic approximations

Stochastic approximations rely on sampling methods
(rejection sampling, MCMC)

e returns (correlated) posterior samples.

e Metropolis—Hastings acceptance ratio bypasses marginal
likelihood calculation.

e Marginalization is straightforward.
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e Need to assess convergence to the stationary distribution
(traceplots)

e Autocorrelation reduces precision of Monte Carlo
estimates (effective sample size)
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Markov chain Monte Carlo algorithms

We covered in class the following (in decreasing order of
efficiency).

e random walk Metropolis

e Metropolis-adjusted Langevin algorithm (MALA)

e Hamiltonian Monte Carlo

Better sampling performance, but the latter two require
gradient and are more expensive to compute.
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Model selection

e Bernstein-von Mises ensures convergence in total
variation of the posterior under weak conditions.

e Distinguish between
» M-closed: true parameter is part of set considered or

= M-open: only misspecified models are considered.

e The model that gets selected minimizes the Kullback-
Leibler divergence with the truth.

e Indiscrete parameter settings, we recover the truth with
probability 1.
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