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Fundamentals

• Bayesian inference uses likelihood based inference.

• It complements the likelihood  with a prior .

• Provided that  is integrable, we get

p(y ∣ θ) p(θ)

p(θ, y)

p(θ ∣ y)

θ

∝ p(y ∣ θ)p(θ).
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Marginal likelihood
The normalizing constant

to make the posterior a valid density is termed marginal
likelihood.

p(y) = ∫

Θ

p(y ∣ θ)p(θ)dθ
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Marginal likelihood
Moments of the posterior depend on .

It is hard to compute because , and the integral is
often high-dimensional.

• Monte Carlo integration (does not typically work because
prior need not align with likelihood)

• Numerical integration performance degrades with ,
numerical over�ow.

p(y)

Θ ⊆ R

p

p
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Bayes factors
The  is the ratio of marginal likelihoods, as

Values of  correspond to model  being more

likely than .

• Strong dependence on the prior .

• Must use proper priors.
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Predictive distributions
De�ne the ,posterior predictive

p(y

new

∣ y) = ∫

Θ

p(y

new

∣ θ)p(θ ∣ y)dθ
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Bayesian inference
If we have samples from  or an approximation of the
joint/marginals, then we can

• use the posterior distribution to answer any question that
is a function of  alone.

• use the posterior predictive  for prediction or
forecasting, and checks of model adequacy.

p(θ ∣ y)

θ

p(y

new

∣ y)

7



Point estimators and credible regions
Interpretation is different from frequentist, but methods are
similar:

• point estimators (MAP, posterior mean and median, etc.)
derive from consideration of loss functions that return a
summary of the posterior.

• credible interval or regions (interval for which the true
parameter lies with a certain probability).
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Stochastic approximations
Stochastic approximations rely on sampling methods
(rejection sampling, MCMC)

• returns (correlated) posterior samples.

• Metropolis–Hastings acceptance ratio bypasses marginal
likelihood calculation.

• Marginalization is straightforward.
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Markov chains

• Need to assess convergence to the stationary distribution
(traceplots)

• Autocorrelation reduces precision of Monte Carlo
estimates (effective sample size)
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Markov chain Monte Carlo algorithms
We covered in class the following (in decreasing order of
ef�ciency).

• random walk Metropolis

• Metropolis-adjusted Langevin algorithm (MALA)

• Hamiltonian Monte Carlo

Better sampling performance, but the latter two require
gradient and are more expensive to compute.
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Model selection

• Bernstein-von Mises ensures convergence in total
variation of the posterior under weak conditions.

• Distinguish between

▪ -closed: true parameter is part of set considered or

▪ -open: only misspeci�ed models are considered.

• The model that gets selected minimizes the Kullback–
Leibler divergence with the truth.

• In discrete parameter settings, we recover the truth with
probability 1.

M

M
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