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Priors

The posterior density is

where

We need to determine a suitable prior.

p(θ ∣ Y ) = ,
p(Y ∣ θ) × p(θ)

∫ p(Y ∣ θ)p(θ)dθ

posterior ∝ likelihood × prior
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Impact of the prior

The posterior is a compromise prior and likelihood:

the more informative the prior, the more the posterior
resembles it.

in large samples, the effect of the prior is often negligible1

1. depends on the parameter!
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Controversial?

No unique choice for the prior: different analysts get
different inferences

What is the robustness to the prior speci�cation? Check
through sensitivity analysis.

By tuning the prior, we can get any answer we get (if
informative enough)

Even with prior knowledge, hard to elicit parameter (many
different models could yield similar summary statistics)
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Choosing priors

In�nite number of choice, but many default choices…

conditionally conjugate priors (ease of interpretation,
computational advantages)

�at priors and vague priors (mostly uninformative)

informative priors (expert opinion)

Jeffrey’s priors (improper, invariant to reparametrization)

penalized complexity (regularization)

shrinkage priors (variable selection, reduce over�tting)
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Determining hyperparameters

We term hyperparameters the parameters of the
(hyper)priors.

How to elicit reasonable values for them?

use moment matching to get sensible values

trial-and-error using the prior predictive
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Example of simple linear regression

Working with standardized response and inputs

the slope is the correlation between explanatory  and
response 

the intercept should be mean zero

are there sensible bounds for the range of the response?

↦ ( − )/sd(x),xi xi x̄̄̄

X
Y
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Bixi counts

Figure 1: Prior draws of the linear regression coef�cients with observed data
superimposed (left), and scatterplot of prior predictive draws (light gray) against
observed data (right). There are 20 docks on the platform.
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Example 2 - simple linear regression

Consider the relationship between height ( , in cm) and
weight ( , in kg) among humans adults.1

Model using a simple linear regression

Y

X

hi

μi

β0

σ

∼ No( , )μi σ2

= + ( − )β0 β1 xi x̄̄̄

∼ No(178, )202

∼ U(0, 50)

1. Section 4.4.1 of McElreath ( )2020
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Priors for the slope

Figure 2: Prior draws of linear regressions with different priors: vague  (left) and lognormal
 (right). Figure 4.5 of McElreath ( ). The Guiness record for the world’s tallest person is 272cm.

∼ No(0, 100)β1

ln( ) ∼ No(0, 1)β1 2020
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Conjugate priors

A prior density  is conjugate for likelihood  if
the product , after renormalization, is of the
same parametric family as the prior.

Distributions that are exponential family admit conjugate
priors.1

p(θ) L(θ; y)
L(θ; y)p(θ)

1. A distribution is an exponential family if it’s density can be written

The support of mustn’t depend on .

f(y; θ) = exp{ (θ) (y) + D(θ)}.∑
k=1

K

Qk tk

f θ
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Conjugate priors for common exponential families

distribution unknown
parameter

conjugate prior

,

Y ∼ Exp(λ) λ λ ∼ Ga(α, β)

Y ∼ Po(μ) μ μ ∼ Ga(α, β)

Y ∼ Bin(n, θ) θ θ ∼ Be(α, β)

Y ∼ No(μ, )σ2 μ μ ∼ No(ν, )ω2

Y ∼ No(μ, )σ2 σ ∼ Ga(α, β)σ−2

Y ∼ No(μ, )σ2 μ, σ μ ∣ ∼ No(ν,ω )σ2 σ2

∼ Ga(α, β)σ−2
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Conjugate prior for the Poisson

If  with density , then
for  with  �xed.

so the posterior is gamma .

Parameter interpretation:  events in  time intervals.

Y ∼ Po(μ) f(y) = exp(−μx)/x!μx

μ ∼ Ga(α, β) α, β

p(μ ∣ y) exp(−μx) exp(−βμ)∝
μ
μx μα−1

Ga(x + α, x + β)

α β
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Conjugate prior for Gaussian (known variance)

Consider an iid sample,  and let . Then,

The conditional posterior  is Gaussian with

mean  and

precision (reciprocal variance) .

∼ No(μ, )Yi σ2 μ ∣ σ ∼ No(ν, )σ2τ 2

p(μ,σ) ∝ exp{− ( − μ } exp{− (μ − ν }
p(σ)

σn+1

1

2σ2
∑
i=1

n

yi )2 1

2σ2τ 2
)2

∝ exp{( + ) −( + ) }.
p(σ)

σn+1
∑
i=1

n

yi
ν

τ 2

μ

σ2

n

2

1

2τ 2

μ2

σ2

p(μ ∣ σ)

(n + ν)/(n + 1)ȳ̄̄τ 2 τ 2

(n + 1/ )/τ 2 σ2
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Upworthy examples

The Upworthy Research Archive ( )
contains results for 22743 experiments, with a click
through rate of 1.58% on average and a standard
deviation of 1.23%.

We consider an A/B test that compared four different
headlines for a story.

We model the conversion rate for each using

Matias et al., 2021

∼ Po( )clicki λiimpressioni
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A/B test: Sesame street example

headline impressions clicks

H1 3060 49

H2 2982 20

H3 3112 31

H4 3083 9

Conjugate prior: moment matching for  gives
 and , as .

λ ∼ Ga(α, β)
α = 1.64 β = 0.01 β = (λ)/ (λ)Va0 E0
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Posterior distributions for Sesame Street

Figure 3: Gamma posterior of the conversion rate for the Upworthy Sesame street
headline.
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Proper priors

Theorem 1 A suf�cient condition for a prior to yield a proper
(i.e., integrable) posterior density function is that it is
(proportional) to a density function.

If we pick an improper prior, we need to check that the
posterior is well-de�ned.

The answer to this question may depend on the sample
size.
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Proper posterior in a random e�ect model

Consider a Gaussian random effect model with 
independent observations in  groups

The th observation in group  is

n
J

i j

Yij

μij

αj

. . .

∼ No( , )μij σ2

= β + ,Xi αj

∼ No(0, )τ 2
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Conditions for a proper posterior

for , we need at least  ‘groups’ for the
posterior to be proper.

if we take , the posterior is never proper.

As Gelman ( ) states:

τ ∼ U(0, ∞) J ≥ 3

p(τ) ∝ τ−1

2006

in a hierarchical model the data can never rule out a
group-level variance of zero, and so [a] prior distribution
cannot put an in�nite mass in this area
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Improper priors as limiting cases

We can view the improper prior as a limiting case

The Haldane prior for  in a binomial model is
, a limiting  distribution.

The improper prior  is equivalent to an inverse
gamma  when .

The limiting posterior is thus improper for random effects
scales, so the value of  matters.

σ ∼ U(0, t), t → ∞.

θ
(1 − θθ−1 )−1 Be(0, 0)

p(σ) ∝ σ−1

IGa(ϵ, ϵ) ϵ → 0

ϵ
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MDI prior for generalized Pareto

Let  be generalized Pareto with density

for  and , and .

Consider the maximum data information (MDI)

Since , the prior density increases

without bound as  becomes smaller.

∼ GP(σ, ξ)Yi

f(x) = (1 + ξx/σσ−1 )
−1/ξ−1
+

σ > 0 ξ ∈ R = max{0, x}x+

p(ξ) ∝ exp(−ξ).

exp(−ξ) = ∞limξ→−∞

ξ
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Truncated MDI for generalized Pareto distribution

The MDI prior leads to an improper posterior without
modi�cation.

Figure 4: Unscaled maximum data information (MDI) prior density.

If we restrict the range of the MDI prior  to ,
then  and posterior is proper.

p(ξ) ξ ≥ −1
p(ξ + 1) ∼ Exp(1)
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Flat priors

Uniform prior over the support of ,

Improper prior unless  for �nite .

θ

p(θ) ∝ 1.

θ ∈ [a, b] a, b

24



Flat priors for scale parameters

Consider a scale parameter .

We could truncate the range, e.g., , but this
is not ‘uninformative’, as extreme values of  are as likely
as small ones.

These priors are not invariant: if  implies
 so can be informative on another scale.

σ > 0

σ ∼ U(0, 50)
σ

p{log(σ)} ∝ 1
p(σ) ∝ σ−1

25



Vague priors

Vague priors are very diffuse proper prior.

For example, a vague Gaussian prior for regression
coef�cients on standardized data,

if we consider a logistic regression with a binary variable
, then  gives odds ratios of 150, and

 of around 22K…

β ∼ ( , 100 ).Nop 0p Ip

∈ {0, 1}Xj = 5βj
= 10βj
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Invariance and Je�rey’s prior

In single-parameter models, the Jeffrey’s prior

proportional to the square root of the determinant of the
Fisher information matrix, is invariant to any (differentiable)
reparametrization.

p(θ) ∝ |ı(θ) ,|1/2
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Je�rey’s prior for the binomial distribution

Consider . The negative of the second
derivative of the log likelihood with respect to  is

Since , the Fisher information is

Jeffrey’s prior is therefore , a
conjugate Beta prior .

Y ∼ Bin(1, θ)
p

ȷ(θ) = − ℓ(θ; y)/∂ = y/ + (1 − y)/(1 − θ .∂2 θ2 θ2 )2

E(Y ) = θ

ı(ϑ) = E{ȷ(θ)} = 1/θ + 1/(1 − θ) = n/{θ(1 − θ)}.

p(θ) ∝ (1 − θθ−1/2 )−1/2

Be(0.5, 0.5)
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Invariant priors for location-scale families

For a location-scale family with location  and scale , the
independent priors

are location-scale invariant.

The results are invariant to af�ne transformations of the
units, .

μ σ

p(μ)

p(σ)

∝ 1

∝ σ−1

ϑ = a + bθ
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Penalized complexity priors

Simpson et al. ( ) consider a principled way of
constructing priors that penalized model complexity for
stable inference and limit over-speci�cation.

Suppose that the restriction of the parameter creates a
simpler base version.

e.g., if we have a random effect , the value
 corresponds to no group variability.

2017

α ∼ No(0, )ζ2

ζ = 0
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Ingredients of penalized complexity priors

Consider a penalized complexity prior for parameter .

Occam’s razor states that the simpler base model should be
preferred if there is not enough evidence in favor of the full
model.

We measure the complexity of the full model with density 
using the Kullback–Leibler divergence between  and base
model  densities. This is transformed into a distance

.

ζ

f
f

f0

d = 2KL(f|| )f0
− −−−−−−−−

√
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Penalized complexity prior construction

Using a constant rate penalization from base model gives an
exponential prior  on the distance
scale, with a mode at , corresponding to the base
model.

Backtransform to parameter space to get , truncate
above if  is upper bounded,

p(d) = λ exp(−λd)
d = 0

p(ζ)
d

p(ζ) = λ exp{−λ ⋅ d(ζ)} .
∣

∣
∣
∂d(ζ)

∂ζ

∣

∣
∣
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Fixing penalized complexity hyperparameter

Pick rate  to control prior density in the tail, by specifying a
value for (a transformation of) the parameter, say ,
which is interpretable.

Elicit values of  and small probability  such that the tail
probability

λ
g(ζ)

Q α

Pr{g(ζ) > Q} = α.
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Penalized complexity prior for random e�ect scale

If , the penalized complexity prior is

exponential with rate .

Given  a high quantile of the standard deviation , set
.

∼ No(0, )αj ζ2

λ

Q ζ
λ = − ln(α/Q)

34



Priors for scale of random e�ects

The conjugate inverse gamma prior  is
such that the mode for  is .

Often, we take  or , but this leads to
improper prior. So small values are not optimal for ‘random
effects’, and this prior cannot provide shrinkage or allow for
no variability between groups.

p(1/ζ) ∼ Ga(α, β)
ζ β/(1 + α)

β = α = 0.01 0.001
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Priors for scale of random e�ects

A popular suggestion, due to Gelman ( ), is to take a
centered Student-  distribution with  degrees of freedoms,
truncated over  with scale .

since the mode is at zero, provides support for the base
model

we want small degrees of freedom , preferable to take
? Cauchy model ( ) still popular.

2006
t ν

[0, ∞) s

ν
ν = 3 ν = 1
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Prior sensitivity

Does the priors matter? As robustness check, one can �t the
model with

different priors function

different hyperparameter values

Costly, but may be needed to convince reviewers ;)
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Distraction from smartwach

We consider an experimental study conducted at Tech3Lab
on road safety.

In Brodeur et al. ( ), 31 participants were asked to
drive in a virtual environment.

The number of road violation was measured for 4
different type of distractions (phone noti�cation, phone
on speaker, texting and smartwatch).

Balanced data, random order of tasks

2021
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Poisson mixed model

We model the number of violations, nviolation as a

function of distraction type (task) and participant id.1

nviolationij

μij

βj

αi

∼ Po( )μij

= exp( + ),βj αi

∼ No(0, 100),

∼ No(0, ).κ2

1. Speci�cally,  is the coef�cient for task  (distraction type) and  is the random

effect of participant .

βj j αi

i
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Priors for random e�ect scale

Consider different priors for 

�at uniform prior 

conjugate inverse gamma  prior

a Student-  with  degrees of freedom

a penalized complexity prior such that the 0.95 percentile
of the scale is 5, corresponding to .

κ

U(0, 10)

IG(0.01, 0.01)

t ν = 3

Exp(0.6)
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Sensitivity analysis for smartwatch data

Figure 5: Posterior density of  for four different priors. The circle denotes the median
and the bars the 50% and 95% percentile credible intervals.

Basically indistinguishable results for the random scale..

ζ

41



Eight schools example

Average results on SAT program, for eight schools (
).

The hierarchical model is

Given the large sample in each school, we treat  as �xed
data.

Rubin,
1981

Yi

μ

ηi

∼ No(μ + , )ηi σ2
i

∼ No(0, 100)

∼ No(0, )τ 2

σi
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Sensibility analysis for eight schools example

Figure 6: Posterior density of the school-speci�c random effects standard deviation 
under different priors.

τ
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