
Bayesian modelling
Simulation-based inference

Léo Belzile
2023

1

Bayesian inference beyond conjugate models

How to circumvent the problem of intractable posteriors?

simulation-based methods: accept-reject, Markov chain
Monte Carlo, particle �lters, etc.

deterministic methods: (integrated nested) Laplace
approximations, variational Bayes, expectation
propagation, etc.

We focus on the Monte Carlo methods in the sequel.

2

Objective of methods

Suppose we can simulate i.i.d. variables with the same
distribution,

We want to compute for some functional

 (posterior mean)

 (probability of event)

etc.

B
∼ FXb (b = 1, … , B).

E{g(X)} = μg

g(⋅)

g(x) = x

g(x) = I(x ∈ A)

3

Monte Carlo methods

We substitute expected value by sample average

= g(), ∼ Fμ̂g

1

B
∑
b=1

B

Xb Xb

4

Ordinary Monte Carlo

We want to have an estimator as precise as possible.

but we can’t control the variance of , say

the more simulations , the lower the variance of the
mean.

sample average for i.i.d. data has variance

to reduce the standard deviation by a factor 10, we need
 times more draws!

Remember: the answer is random.

g(X) σ2
g

B

/Bσ2
g

100

5

Example: functionals of gamma distribution

Figure 1: Running mean trace plots for (left), (middle) and
 (right) for a Gamma distribution with shape 0.5 and rate 2, as a function

of the Monte Carlo sample size.

g(x) = I(x < 1) g(x) = x
g(x) = 1/x

6

Simulation algorithms: inversion method

If is an absolutely continuous distribution function, then

The inversion method consists in applying the quantile
function to , viz.

F

F(X) ∼ U(0, 1).

F −1 U ∼ U(0, 1)

(U) ∼ X.F −1

7

Inversion method for truncated distributions

Consider a random variable with distribution function .

If follows the same distribution as , but restricted over
the interval , then

Therefore,

Y F

X Y
[a, b]

Pr(X ≤ x) = , a ≤ x ≤ b,
F(x) − F(a)

F(b) − F(a)

[F(a) + {F(b) − F(a)}U] ∼ XF −1

8

Simulation algorithms: accept-reject

Target: sample from density (hard to sample from)

Proposal: �nd a density with nested support,
, such that

p(x)

q(x)
supp(p) ⊆ supp(q)

≤ C, C ≥ 1.
p(x)

q(x)

9

Rejection sampling algorithm

1. Generate from proposal with density .

2. Compute the ratio .

3. If for , return , else go back to
step 1.

X q(x)

R ← p(X)/q(X)

CU ≤ R U ∼ U(0, 1) X

10

Remarks on rejection sampling

Acceptance rate is

we need on average draws from to get one from

 must be more heavy-tailed than

e.g., Student- for Gaussian

 should be cheap and easy to sample from!

1/C

C q p

q p

q(x) t p(x)

q

11

Designing a good proposal density

Good choices must satisfy the following constraints:

pick a family so that

is as close to 1 as possible.

you can use numerical optimization with
 to �nd the mode and the

upper bound .

q(x)

C = supx

p(x)

q(x)

f(x) = log p(x) − log q(x) x⋆

C = exp f()x⋆

12

Accept-reject illustration

Figure 2: Target density (full) and scaled proposal density (dashed): the vertical
segment at shows the percentage of acceptance for a uniform slice under the
scaled proposal, giving an acceptance ratio of 0.58.

x = 1

13

Truncated Gaussian via accept-reject

Consider sampling , but truncated in the
interval . The target density is

for and . where
are respectively the density and distribution function of the
standard Gaussian distribution.

Y ∼ No(μ,)σ2

(a, b)

p(x; μ, σ, a, b) = .
1

σ

ϕ ()x−μ

σ

Φ(β) − Φ(α)

α = (a − μ)/σ β = (b − μ)/σ ϕ(⋅), Φ(⋅)

14

Accept-reject (crude version)

1. Simulate

2. reject any draw if or .

The acceptance rate is

X ∼ No(μ,)σ2

X < a X > b

= {Φ(β) − Φ(α)}C −1

Standard Gaussian truncated on [0,1]1

candidate <- rnorm(1e5)2

trunc_samp <- candidate[candidate >= 0 & candidate <= 1]3

Acceptance rate4

length(trunc_samp)/1e55

[1] 0.34242

Theoretical acceptance rate1

pnorm(1)-pnorm(0)2

[1] 0.3413447

15

Accept-reject for truncated Gaussian

Since the Gaussian is a location scale family, the inversion method gives

We however need to evaluate numerically (no closed-form expression).

The method fails for rare event simulation because the computer returns

 for

 for ,

implying that for this approach to work ().

X ∼ μ + σ [Φ(α) + {Φ(β) − Φ(α)}U]Φ−1

Φ

Φ(x) = 0 x ≤ −39

Φ(x) = 1 x ≥ 8.3

a ≤ 8.3 Botev & L’Écuyer, 2017

16

Simulating tails of Gaussian variables

We consider simulation from a standard Gaussian truncated above

Write the density of the truncated Gaussian as ()

Note that, for ,

where is the density of a Rayleigh variable shifted by .1

a > 0

Devroye, 1986, p. 381

f(x) = = .
exp(− /2)x2

exp(− /2)dz∫ ∞
a

z2

exp(− /2)x2

c1

x ≥ a

f(x) ≤ exp(−) = exp(−)g(x);c1
x

a

x2

2
a−1 a2

2

g(x) a

1 The constant approaches 1 quickly as (asymptotically optimality)C = exp(− /2)(aa2 c1)−1 a → ∞

17

Accept-reject: truncated Gaussian with Rayleigh

The shifted Rayleigh has distribution function

1. Generate a shifted Rayleigh above , for

2. Accept if , where .

For sampling on , propose from a Rayleigh truncated above at (
).

G(x) = 1 − exp{(−)/2}, x ≥ a.a2 x2

Marsaglia algorithm

a X ← { − 2 log(U)a2 }1/2 U ∼ U(0, 1)

X XV ≤ a V ∼ U(0, 1)

[a, b] b Botev & L’Écuyer,
2017

a <- 8.31

niter <- 1000L2

X <- sqrt(a^2 + 2*rexp(niter))3

samp <- X[runif(niter)*X <= a]4

18

Markov chains

Plain ordinary Monte Carlo is great, but few algorithms are
generic enough to be useful in complex high-dimensional
problems.

We will instead typically build Markov chains that target an
invariant stationary distribution.

19

Caveats?

Markov chain Monte Carlo methods generate correlated
draws.

Questions:

1. can we use them as ordinary independent samples?

2. what is the price to pay?

We need to do a little theoretical detour to answer these
questions.

20

Stationarity and Markov property

A stochastic process is (weakly) stationary if

the distribution of is the same as that of
 for any value of and given .

A stochastic process is Markov if

it satis�es the Markov property: given the current state of
the chain, the future only depends on the current state
and not on the past.

{ , … , }X1 Xt

{ , … }Xn+1 Xt+n n t

21

Autoregressive process of order 1

Consider a �rst-order autoregressive process, or ,

where

 is the lag-one correlation,

 the global mean

 is an iid innovation with mean zero and variance

If , the process is stationary, otherwise variance
increases with

AR(1)

= μ + ϕ(− μ) + ,Yt Yt−1 εt

ϕ

μ

εt σ2

|ϕ| < 1
t

22

Variance of a stationary distribution

For a correlated sequence, the variance of the stationary
distribution is

for i.i.d. data,

for stationary process, we get
(geometric series)

= Va() + 2 Co(,).τ 2 Yt ∑
k=1

∞

Yt Yt−k

= Va()τ 2 Yt

AR(1) /(1 −)σ2 ϕ2

23

Variance of sample average

Intuitively, a sample of correlated observations carries less
information than an independent sample of draws.

We want the variance of the sample average, which is

If the process is stationary, the covariances at lag are the
same regardless of the time index and the unconditional
variance is constant.

Va() = Va() + Co(,).Y
¯ ¯¯̄

T

1

T
∑
t=1

T

Yt

2

T
∑
t=1

T−1

∑
s=t+1

T

Yt Ys

k

24

Variance of sample average, redux

If a central limit theorem applies, the limiting variance of the
sample mean simpli�es to

which is a function of

the unconditional variance

the lag- autocorrelation

TVa() = {1 + 2 } .lim
T→∞

Y
¯ ¯¯̄

T τ 2 ∑
t=1

∞

γt

τ 2

k Cor(,) =Yt Yt+k γk

25

Correlogram

Figure 3: Correlogram of two two Markov chains. These plots, often called acf or
autocorrelation functions, show the lag-k sample autocorrelation against lag number.

26

Variance of sample mean of AR(1)

The lag- correlation of the stationary autoregressive
process of order 1 is , so

For an independent sample, we have

k
ϕk

TVa() = (1 + ϕ)/(1 − ϕ).Y
¯ ¯¯̄

T σ2

TVa() = /(1 −).Y
¯ ¯¯̄

T σ2 ϕ2

27

Ine�ciency curve for AR(1)

Figure 4: Left: scaled asymptotic variance of the sample mean for AR(1) (full line) and independent observations with the
same marginal variance (dashed). Right: variance ratio for positive correlations.

To get the same precision for the mean of process with than with i.i.d.
data, we would need 9 times as many observations.

AR(1) ϕ ≈ 0.75

28

Morale of the story

The price to pay for having correlated samples is

inef�ciency
The higher the autocorrelation, the larger the variability of
our estimators.

29

When can we use Markov chains?

If a Markov chain is irreducible and acyclic, it has a unique
stationary distribution.

irreducibility: means that the chain can move from
anywhere to anywhere, so it doesn’t get stuck in part of
the space forever.

acyclic: cyclical chains loop around and visit periodically a
state

Ergodic theorem is our guarantee of convergence.

30

Examples

Consider discrete Markov chains over the integers
with transition matrices

Chain 1 is reducible to , chain 2 is cyclical.

1, 2, 3

= , = .P1

⎛

⎝
⎜

0.5

0

0

0.3

0.4

0.5

0.2

0.6

0.5

⎞

⎠
⎟ P2

⎛

⎝
⎜

0

1

0

0

0

1

1

0

0

⎞

⎠
⎟

{2, 3}

31

Convergence of Markov chains

Figure 5: Discrete Markov chain on integers from 1 to 5, with traceplot of 1000 �rst
iterations (left) and running mean plots of sample proportion of each state visited
(right).

32

Markov chain Monte Carlo

We consider simulating from a distribution with associated
density function .

known up to a normalizing factor not depending on .

We use as transition kernel to generate proposals.

∝ p(θ)

θ

q(θ ∣)θ
∗

33

Metropolis–Hastings algorithm

Starting from an initial value :

1. draw a proposal value .

2. Compute the acceptance ratio

3. With probability , accept the proposal and set
, otherwise set the value to the previous state,

.

θ0

∼ q(θ ∣)θ⋆
t θt−1

R =
p()θ⋆

t

p()θt−1

q(∣)θt−1 θ⋆
t

q(∣)θ⋆
t θt−1

min{R, 1}
←θt θ⋆

t

←θt θt−1

34

Interpretation

If , the proposal has higher density and we always
accept the move.

If we reject the move, the Markov chain stays at the
current value, which induces autocorrelation.

Since the acceptance probability depends only on the
density through ratios, normalizing factors of and
cancel out.

R > 1

p q

35

Symmetric proposals and random walk

If the proposal is symmetric, the ratio of proposal densities is

Common examples include random walk proposals

where is a mean zero, variance one random variable.

q(∣)/q(∣) = 1.θt−1 θ⋆
t θ⋆

t θt−1

← + τZ, Zθ⋆
t θt−1

Z

36

Independent proposals

If we pick instead a global proposal, we must ensure that
samples in far regions (recall rejection sampling),
otherwise …

Good proposals include heavy tailed distribution such as
Student- with small degrees of freedom, centered at the

maximum a posteriori and with scale matrix
, where is the Hessian of the log

posterior.

q

t

θ̂

− ()H
−1

θ⋆
t H(⋅)

37

Upworthy data example

We model the Poisson rates for headlines with questions or
not. Our model is

Yi

λ1

λ2

β

κ

∼ Po(), (i = 1, 2)niλi

= exp(β + κ)

= exp(β)

∼ No(log 0.01, 1.5)

∼ No(0, 1)

38

Implementation details: data and containers

In regression models, scale inputs if possible.
data(upworthy_question, package = "hecbayes")1

Compute sufficient statistics2

data <- upworthy_question |>3

 dplyr::group_by(question) |>4

 dplyr::summarize(ntot = sum(impressions),5

 y = sum(clicks))6

Create containers for MCMC7

niter <- 1e4L8

chain <- matrix(0, nrow = niter, ncol = 2L)9

colnames(chain) <- c("beta","kappa")10

39

Implementation details: log posterior function

Perform all calculations on the log scale to avoid numerical
over�ow!

Code log posterior as sum of log likelihood and log prior1

loglik <- function(par, counts = data$y, offset = data$ntot, ...){2

 lambda <- exp(c(par[1] + log(offset[1]), par[1] + par[2] + log(offset[2])3

 sum(dpois(x = counts, lambda = lambda, log = TRUE))4

}5

Note common signature of function6

logprior <- function(par, ...){7

 dnorm(x = par[1], mean = log(0.01), sd = 1.5, log = TRUE) +8

 dnorm(x = par[2], log = TRUE)9

}10

logpost <- function(par, ...){11

 loglik(par, ...) + logprior(par, ...)12

}13

40

Implementation details: proposals

Use good starting values for your Markov chains, such as
maximum a posteriori.

Compute maximum a posteriori (MAP)1

map <- optim(2

 par = c(-4, 0.07),3

 fn = logpost,4

 control = list(fnscale = -1),5

 offset = data$ntot,6

 counts = data$y,7

 hessian = TRUE)8

Use MAP as starting value9

cur <- map$par10

Compute logpost_cur - we can keep track of this to reduce calculations11

logpost_cur <- logpost(cur)12

Proposal covariance13

cov_map <- -2*solve(map$hessian)14

chol <- chol(cov_map)15

41

Implementation details: Metropolis–Hastings

algorithm

Use seed for reproducibility, do not compute posterior
twice, compute log of acceptance ratio.

set.seed(80601)1

naccept <- 0L2

for(i in seq_len(niter)){3

 # Multivariate normal proposal - symmetric random walk4

 prop <- c(rnorm(n = 2) %*% chol + cur)5

 logpost_prop <- logpost(prop)6

 logR <- logpost_prop - logpost_cur7

 if(logR > -rexp(1)){8

 cur <- prop9

 logpost_cur <- logpost_prop10

 naccept <- naccept + 1L11

 }12

 chain[i,] <- cur13

}14

42

Implementation details: analysis of output

Need specialized methods to compute standard errors of
the posterior mean.

Posterior summaries1

summary(coda::as.mcmc(chain))2

Computing standard errors using batch means3

sqrt(diag(mcmc::olbm(chain, batch.length = niter/40)))4

1. Empirical mean and standard deviation for each variable,

 plus standard error of the mean:

 Mean SD Naive SE Time-series SE

beta -4.51268 0.001697 1.697e-05 6.176e-05

kappa 0.07075 0.002033 2.033e-05 9.741e-05

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%

beta -4.51591 -4.51385 -4.51273 -4.51154 -4.50929

kappa 0.06673 0.06933 0.07077 0.07212 0.07463

43

References

Botev, Z., & L’Écuyer, P. (2017). Simulation from the normal distribution truncated to an
interval in the tail. Proceedings of the 10th EAI International Conference on Performance
Evaluation Methodologies and Tools on 10th EAI International Conference on
Performance Evaluation Methodologies and Tools, 23–29.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer.
https://doi.org/10.4108/eai.25-10-2016.2266879

http://www.nrbook.com/devroye/

44

https://doi.org/10.4108/eai.25-10-2016.2266879
http://www.nrbook.com/devroye/

