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Reminder: Metropolis–Hastings algorithm
Starting from an initial value :

1. draw a proposal value .

2. Compute the acceptance ratio

3. With probability , accept the proposal and set
, otherwise set the value to the previous state,

.
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∼ q(θ ∣ )θ⋆
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Calculations
We compute the log of the acceptance ratio, , to avoid
numerical over�ow, with the log posterior difference

Compare the value of  (if less than zero) to ,
where .

ln R

ln{ } = ℓ( ) + ln p( ) − ℓ( ) − ln p( )
p( )θ⋆

t

p( )θt−1
θ⋆

t θ⋆
t θt−1 θt−1

ln R log(U)
U ∼ unif(0, 1)
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What proposal?
The independence Metropolis–Hastings uses a global
proposal  which does not depend on the current state
(typically centered at the MAP)

This may be problematic with multimodal targets.

The Gaussian random walk takes , where

 and  is the proposal standard deviation.

Random walks allow us to explore the space.

q

= + Zθ⋆
t θt−1 σp

Z ∼ Gauss(0, 1) σp
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Burn in
We are guaranteed to reach stationarity with Metropolis–
Hastings, but it may take a large number of iterations…

One should discard initial draws during a burn in or warmup
period if the chain has not reached stationarity. Ideally, use
good starting value to reduce waste.

We can also use the warmup period to adapt the variance of
the proposal.
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Goldilock principle and proposal variance
Mixing of the chain requires just the right variance (not too
small nor too large).

Figure 1: Example of traceplot with proposal variance that is too small (top), adequate
(middle) and too large (bottom).
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Correlograms for Goldilock

Figure 2: Correlogram for the three Markov chains.
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Tuning Markov chain Monte Carlo

• Outside of starting values, the variance of the proposal
has a huge impact on the asymptotic variance.

• We can adapt the variance during warmup by increasing/
decreasing proposal variance (if acceptance rate is too
large/small).

• We can check this via the acceptance rate (how many
proposals are accepted).
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Optimal acceptance rates
The following rules were derived for Gaussian targets under
idealized situations.

• In 1D, rule of thumb is an acceptance rate of  is
optimal, and this ratio decreases to  when 
( ) for random walk Metropolis–Hastings.

• Proposals for -variate update should have proposal
variance of roughly , where  is the
posterior variance.

• For MALA (see later), we get  rather than 

0.44
0.234 D ≥ 2

Sherlock, 2013

D
( /d) × Σ2.382 Σ

0.574 0.234
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Block update or one parameter at a time?
As with any accept-reject, proposals become inef�cient
when the dimension  increase.

This is the curse of dimensionality.

Updating parameters in turn

• increases acceptance rate (with clever proposals),

• but also leads to more autocorrelation between
parameters

D
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Solutions for strongly correlated coe�cients

• Reparametrize the model to decorrelate variables
(orthogonal parametrization).

• Block updates: draw correlated parameters together

▪ using the chain history to learn the correlation, if
necessary
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Parameter transformation
Parameters may be bounded, e.g.  .

• We can ignore this and simply discard proposals outside
of the range, by setting the log posterior at  outside

• We can do a transformation, e.g.,  if  and
perform a random walk on the unconstrained space: don’t
forget Jacobians for !

• Another alternative is to use truncated proposals (useful
with more complex algorithms like MALA)

∈ [a, b]θi

−∞
[a, b]

log θi > 0θi

q(⋅)
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E�cient proposals: MALA
The Metropolis-adjusted Langevin algorithm (MALA) uses a Gaussian random walk
proposal

with mean

and variance , for some mass matrix , tuning parameter .

The parameter  is a learning rate. This is akin to a Newton algorithm, so beware
if you are far from the mode (where the gradient is typically large)!

∼ Gauss{μ( ), A},θ⋆
t θt−1 τ 2

μ( ) = + Aη∇ log p( ∣ y),θt−1 θt−1 θt−1

Aτ 2 A τ > 0

η < 1
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Higher order proposals
For a single parameter update , a Taylor series expansion of
the log posterior around the current value suggests using as
proposal density a Gaussian approximation with (

)

• mean  and

• precision 

We need  to be negative!

This gives local adaption relative to MALA (global variance).

θ

Rue &
Held, 2005

= − ( )/ ( )μt−1 θt−1 f ′ θt−1 f ′′ θt−1

= − ( )τ −2 f ′′ θt−1

( )f ′′ θt−1
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Higher order and moves
For MALA and cie., we need to compute the density of the
proposal also for the reverse move for the expansion
starting from the proposal .

These methods are more ef�cient than random walk
Metropolis–Hastings, but they require the gradient and the
hessian (can be obtained analytically using autodiff, or
numerically).

μ( )θ⋆
t
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Modelling individual headlines of Upworthy example
The number of conversions nclick is binomial with sample

size nimpression.

Since  is large, the sample average nclick/nimpression is

approximately Gaussian, so write

[Math Processing Error]

=ni

ni
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MALA: data set-up
data(upworthy_question, package = "hecbayes")1
# Select data for a single question2
qdata <- upworthy_question |>3
  dplyr::filter(question == "yes") |>4
  dplyr::mutate(y = clicks/impressions,5

no = impressions)6
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MALA: de�ne functions
# Create functions with the same signature (...) for the algorithm1
logpost <- function(par, data, ...){2
  mu <- par[1]; sigma <- par[2]3
  no <- data$no4
  y <- data$y5
if(isTRUE(any(sigma <= 0, mu < 0, mu > 1))){6
return(-Inf)7

  }8
dnorm(x = mu, mean = 0.01, sd = 0.1, log = TRUE) +9
dexp(sigma, rate = 0.7, log = TRUE) +10
sum(dnorm(x = y, mean = mu, sd = sigma/sqrt(no), log = TRUE))11

}12
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MALA: compute gradient of log posterior
logpost_grad <- function(par, data, ...){1
   no <- data$no2
  y <- data$y3
  mu <- par[1]; sigma <- par[2]4
c(sum(no*(y-mu))/sigma^2 -(mu - 0.01)/0.01,5
-length(y)/sigma + sum(no*(y-mu)^2)/sigma^3 -0.76

  )7
}8
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MALA: compute maximum a posteriori
# Starting values - MAP1
map <- optim(2
par = c(mean(qdata$y), 0.5),3
fn = function(x){-logpost(x, data = qdata)},4
gr = function(x){-logpost_grad(x, data = qdata)},  5
hessian = TRUE,6
method = "BFGS")7

# Check convergence 8
logpost_grad(map$par, data = qdata)9
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MALA: starting values and mass matrix
# Set initial parameter values1
curr <- map$par 2
# Compute a mass matrix3
Amat <- solve(map$hessian)4
# Cholesky root - for random number generation5
cholA <- chol(Amat)6
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MALA: containers and setup
# Create containers for MCMC1
B <- 1e4L # number of iterations2
warmup <- 1e3L # adaptation period3
npar <- 2L4
prop_sd <- rep(1, npar) # tuning parameter5
chains <- matrix(nrow = B, ncol = npar)6
damping <- 0.87
acceptance <- attempts <- 08
colnames(chains) <- names(curr) <- c("mu","sigma")9
# Proposal variance proportional to inverse hessian at MAP10
prop_var <- diag(prop_sd) %*% Amat %*% diag(prop_sd)11

22



MALA: sample proposal with Newton step
for(i in seq_len(B + warmup)){1
  ind <- pmax(1, i - warmup)2
# Compute the proposal mean for the Newton step3

  prop_mean <- c(curr + damping *4
     Amat %*% logpost_grad(curr, data = qdata))5
# prop <- prop_sd * c(rnorm(npar) %*% cholA) + prop_mean6

  prop <- c(mvtnorm::rmvnorm(7
n = 1,8
mean = prop_mean, 9
sigma = prop_var))10

#  [...]11
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MALA: reverse step
# Compute the reverse step1

  curr_mean <- c(prop + damping *2
     Amat %*% logpost_grad(prop, data = qdata))3
# log of ratio of bivariate Gaussian densities4

  logmh <- mvtnorm::dmvnorm(5
x = curr, mean = prop_mean, 6
sigma = prop_var, 7
log = TRUE) -8

    mvtnorm::dmvnorm(9
x = prop, 10
mean = curr_mean, 11
sigma = prop_var, 12
log = TRUE) +13

logpost(prop, data = qdata) -14
logpost(curr, data = qdata)15
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MALA: Metropolis–Hastings ratio
if(logmh > log(runif(1))){1

    curr <- prop2
    acceptance <- acceptance + 1L3
  }4
  attempts <- attempts + 1L5
# Save current value6

  chains[ind,] <- curr7
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MALA: adaptation
if(i %% 100 & i < warmup){1
# Check acceptance rate and increase/decrease variance2

    out <- hecbayes::adaptive(3
attempts = attempts, # counter for number of attempts4
acceptance = acceptance, 5
sd.p = prop_sd, #current proposal standard deviation6
target = 0.574) # target acceptance rate7

    prop_sd <- out$sd # overwrite current std.dev8
    acceptance <- out$acc # if we change std. dev, this is set to zero9
    attempts <- out$att # idem, otherwise unchanged10
    prop_var <- diag(prop_sd) %*% Amat %*% diag(prop_sd)11
  }12
} # End of MCMC for loop13
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Gibbs sampling
The Gibbs sampling algorithm builds a Markov chain by
iterating through a sequence of conditional distributions.

Figure 3: Sampling trajectory for a bivariate target using Gibbs sampling.

27



Gibbs sampler
Split the parameter vector  into  blocks,

such that, conditional on the remaining components of the
parameter vector , the conditional posterior

is from a known distribution from which we can easily
simulate.

θ ∈ Θ ⊆ Rp m ≤ p

j = 1, … , mθ[j]

θ−[j]

p( ∣ , y)θ[j] θ−[j]
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Gibbs sampling update
At iteration , we can update each block in turn: note that
the th block uses the partially updated state [Math
Processing Error] which corresponds to the current value of
the parameter vector after the updates.

t
k
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Notes on Gibbs sampling

• Special case of Metropolis–Hastings with conditional
density as proposal .

• The bene�t is that all proposals get accepted, !

• No tuning parameter, but parametrization matters.

• Automatic acceptance does not equal ef�ciency.

To check the validity of the Gibbs sampler, see the methods
proposed in Geweke ( ).

q

R = 1

2004
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E�ciency of Gibbs sampling
As the dimension of the parameter space increases, and as
the correlation between components becomes larger, the
ef�ciency of the Gibbs sampler degrades

Figure 4: Trace plots (top) and correlograms (bottom) for the �rst component of a
Gibbs sampler with  equicorrelated Gaussian variates with correlation

 (left) and  with equicorrelation  (right).
d = 20

ρ = 0.9 d = 3 ρ = 0.5
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Gibbs sampling requires work!

• You need to determine all of the relevant conditional
distributions, which often relies on setting conditionally
conjugate priors.

• In large models with multiple layers, full conditionals may
only depend on a handful of parameters (via directed
acyclic graph and moral graph of the model; not covered).
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Example of Gibbs sampling
Consider independent and identically distributed
observations, with [Math Processing Error]

The joint posterior is not available in closed form, but the
independent priors for the mean and variance of the
observations are conditionally conjugate.
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Joint posterior for Gibbs sample
Write the posterior density as usual, [Math Processing Error]
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Recognizing distributions from posterior
Consider the conditional densities of each parameter in turn
(up to proportionality): [Math Processing Error]
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Gibs sample
We can simulate in turn [Math Processing Error]
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Data augmentation and auxiliary variables
When the likelihood  is intractable or costly to
evaluate (e.g., mixtures, missing data, censoring), auxiliary
variables are introduced to simplify calculations.

Consider auxiliary variables  such that

i.e., the marginal distribution is that of interest, but
evaluation of  is cheaper.

p(y; θ)

U ∈ Rk

p(U, θ ∣ y)dU = p(θ ∣ y),∫
Rk

p(U, θ; y)
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Bayesian augmentation
The data augmentation algorithm ( )
consists in running a Markov chain on the augmented state
space , simulating in turn from the conditionals

•  and

• 

For more details and examples, see Dyk & Meng ( ) and
Hobert ( ).

Tanner & Wong, 1987

(Θ, )Rk

p(U ∣ θ, y)

p(θ ∣ U, y)

2001
2011
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Data augmentation: probit example
Consider independent binary responses , with [Math
Processing Error] where  is the distribution function of the
standard Gaussian distribution. The likelihood of the probit
model is

and this prevents easy simulation.

Yi

Φ

L(β; y) = (1 − ,∏
i=1

n

p
yi

i pi)1−yi
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Probit augmentation
We can consider a data augmentation scheme where

, where , where  is
the th row of the design matrix.

The augmented data likelihood is [Math Processing Error]

= I( > 0)Yi Zi ∼ Gauss( β, 1)Zi xi xi

i
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Conditional distributions for probit regression
[Math Processing Error] with  the
ordinary least square estimator.

= ( X zβ̂ X⊤ )−1X⊤
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Data augmentation with scale mixture of Gaussian
The Laplace distribution with mean  and scale  has
density [Math Processing Error] and can be expressed as a
scale mixture of Gaussians, where  is
equivalent to  and

.

μ σ

Y ∣ τ ∼ Laplace(μ, τ)
Z ∣ τ ∼ Gauss(μ, τ)

τ ∼ expo{(2σ })−1
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Joint posterior for Laplace model
With , the joint posterior for the i.i.d. sample
is [Math Processing Error]

p(μ, σ) ∝ σ−1
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Conditional distributions
The conditionals for  and  are, as usual,
Gaussian and inverse gamma, respectively. The variances, ,

are conditionally independent of one another, with [Math
Processing Error]

μ ∣ ⋯ σ ∣ ⋯
τj
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Inverse transformation
With the change of variable , we have [Math
Processing Error] and we recognize the Wald (or inverse
Gaussian) density, where  with

 and .

= 1/ξj τj

∼ Wald( , λ)ξi νi

= {σ/( − μνi yi )2}1/2 λ = σ−1
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Bayesian LASSO
Park & Casella ( ) use this hierarchical construction to
de�ned the Bayesian LASSO. With a model matrix  whose
columns are standardized to have mean zero and unit
standard deviation, we may write [Math Processing Error]

2008
X
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Comment about Bayesian LASSO

• If we set an improper prior , the resulting
conditional distributions are all available and thus the
model is amenable to Gibbs sampling.

• The Bayesian LASSO places a Laplace penalty on the
regression coef�cients, with lower values of  yielding
more shrinkage.

• Contrary to the frequentist setting, none of the posterior
draws of  are exactly zero.

p(μ, σ) ∝ σ−1

λ

β
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Summary

• Gibbs sampling is a special case of Metropolis–Hastings
algorithm that leads to acceptance

• We need to get the conditional distribution
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