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Curse of dimensionality
This material is drawn from

• Neal ( ),

• Betancourt ( )

Check out these  by Chi Feng

2011

2017

animations
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Motivation
We are interested in calculating expectations of some
function  against the posterior.

The integral is determined by the product of the ``volume’’ of
 and the density.

g

∫

R

d

g(θ)p(θ ∣ y)dθ.

g(⋅)
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Curse of dimensionality
As the dimension of the posterior, , grows, the mass
concentrates in a small region, the so-called typical set. The
number of regions/directions to consider increases
exponentially in .

If we start at the stationary distribution, most proposals
from a random walk Metropolis will fall outside of the typical
set and get rejected.

This phenomenon also explains the decrease in performance
of numerical integration schemes (quadrature).

d

d
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Better informed proposals
For differentiable targets, we saw that we can do better than
random walk Metropolis–Hastings.

• Idea: use the gradient to make an informed proposal (e.g.,
in MALA)

• There are two remaining challenges.

▪ it makes a single step from the current position. But
why stop at one?

▪ the gradient needs not be aligned with the typical set
(Betancourt analogy with satellite in orbit).
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Hamiltonian Monte Carlo
Hamitonian Monte Carlo borrows ideas from Hamiltonian
dynamics.

Consider the evolution over time of a particle characterized
by a

• position  along with potential energy

• an added auxiliary vector  of momentum
(describing mass and velocity) with accompaying kinetic
energy .

θ ∈ R

d

U(θ) = − log p(θ ∣ y)

s ∈ R

d

K(s) = − log p(s)
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Hamiltonian
Write the negative of the log of the joint density as

The partial derivatives of the Hamiltonian give the evolution
over time of the system:

H(θ, s) = − log p(s) − log p(θ) = U(θ) + K(s).

dθ

j

dt

=

∂H

∂s

j

=

∂K

∂s

j

ds

j

dt

= −

∂H

∂θ

j

= −

∂U

∂θ

j

, j = 1, … , d.
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There is no explicit solution to these differential equations in
most settings.



Kinetic energy
The most popular choice of kinetic energy is the Gaussian,

the negative of a mean zero log Gaussian density with
positive-de�nite covariance matrix 

Typically, we take  diagonal, or
else proportional .

K(s) =

1

2

s

⊤

M

−1

s

M.

M = diag{m

1

, … , m

d

}

M = mI

d
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Properties of Hamiltonian dynamics
The mapping  from time  at  to time ,

 satis�es the following properties:

• Reversible: MCMC will thus preserve the invariant target
distribution

• Conservation of energy: proposals from Hamiltonian
dynamics would lead to acceptance probability of 1.

• Symplecticness/volume preserving: the Jacobian of  is
one — no need to calculate it.

T

s

t (θ(t), s(t)) t + ε

(θ(t + ε), s(t + ε))

T

s
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A necessary discretization step
There is no explicit solution to the Hamiltonian differential
equation. We must move away from continuous time…

• For solving the differential equation numerically, Euler’s
method doesn’t work because it does not preserve
volume, and this leads to divergences.
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Leapfrog integrator
The leapfrog integrator performs a half step for momentum,
then does a full step for the position using the updated
components, etc.

s

j

(t + ε/2) = s

j

(t) −

ε

2

∂U(θ)

∂θ

j

θ(t)

θ

j

(t + ε) = θ

j

(t) + ε

s

j

(t + ε/2)

m

j

s

j

(t + ε) = s

j

(t + ε/2) −

ε

2

∂U(θ)

∂θ

j

θ(t+ε)

∣ ∣
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Hamiltonian Monte Carlo algorithm
Consider the joint distribution with positions  and
momentum variables , 

We start with a position vector  at step :

1. Sample a new momentum vector 

2. Use Verlet’s (leapfrog) integrator to evolve the state
vector for  steps of size  to get a proposal
tuple 

θ

s p(θ, s) ∝ exp{−H(θ, s)}.

θ

t−1

t − 1

s

t−1

∼ Gauss(0

d

, M).

L = ⌊τ/ε⌋ ε

(θ

⋆

t

, s

⋆

t

)
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Hamiltonian Monte Carlo algorithm

3. Flip the momentum variable, 

4. Metropolis step: if , where

set , else keep the previous value and set
.

5. Discard the momentum vector

s ↦ −s.

U ∼ unif(0, 1) < R

log R = −H(θ

⋆

, s

⋆

t

) + H(θ

t−1

, s

t−1

),

θ

t

= θ

⋆

t

θ

t

= θ

t−1
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Tuning
Hamiltonian Monte Carlo (HMC) has numerous tuning
parameters

1. size of the leapfrog step .

2. length of the integration time  (or equivalently the
number of steps ).

• too small leads HMC to bear close resemblance to
random walk,

• too large leads to wasteful calculations.

3. choice of the mass matrix  (pre-conditioner obtained
during warmup period).

ε

τ

L = ⌊τ/ε⌋

M
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Leapfrog and error
The Störmer–Verlet (leapfrog) integrator is a second order
method, so for step size :

• local error  and

• global error of size  (accumulated error over 
steps).

Leapfrog updates one variable at a time, a shear
transformation.

Leapfrog step should be ( )

ε

O(ε

3

)

O(ε

2

) L

O(d

−1/4

) Beskos et al., 2013
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Optimal acceptance rate
In practice, we use a Metropolis step to adjust for the
discretization of the system.

• This leads to acceptance rates less than the theoretical
value of 1.

• with optimal acceptance rate of (
); see Neal ( ) for heuristics.

• software like Stan tunes to around 0.8, but can be
adjusted in settings.

0.651 Beskos et al.,
2013 2011
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It’s nuts!

• Homan & Gelman ( ) propose the no -turn sampler
(NUTS), which continues the trajectory until the sampler
turns back, to determine the number of steps , along
with tuning of 

• Stan uses an adaptation of NUTS due to Betancourt
( )

2014 U

L

ε.

2016
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HMC and divergences
In theory, the energy of the Hamiltonian should stay
constant, but the numerical scheme leads to small
perturbations (hence the rejection step).

• If the value of the Hamiltonian changes too much, this is
identi�ed as a divergence. These occur when the
geometry of the posterior is heavily constrained (funnel
shaped).

• Reparametrization of the model can help improve this: see
the .Stan manual
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Neal’s funnel
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Achieving independence
We have seen that for differentiable posterior ,
using the gradient information can improve convergence by
informing about the direction of the mode.

• Neal ( ) discusses how informally, random walk
Metropolis requires  steps to get an independent
draw, compared to  for MALA.

• HMC scales like , a notable improvement in
performance.

• It however comes at the cost of repeated gradient
evaluations (  by update).

p(θ ∣ y)

2011
O(d

2

)

O(d

4/3

)

O(d

5/4

)

L
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Take-home

• HMC is more ef�cient than what we have seen, but not a
silver bullet: it works very well for not overly complicated
models and moderate sample sizes.

• HMC works better than many MCMC, but requires
special tuning best left to specialized implementations
already available in software.

• Most implementations don’t cover the case of discrete
random variables ( ).Nishimura et al., 2020
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Probabilistic programming
There are several languages and interfaces that implement
probabilistic programming where the user has only to
specify the likelihood and prior.

Historically,  paved the way to practitioners.

It relies on Gibbs sampling (updating one parameter at the
time), but is not actively developed. Still the source of many
exercises and inspiration for the syntax of other
implementations (e.g., Nimble, JAGS).

Bugs
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Stan
The programming language  is written in C++ and offers
cross-platform interfaces.

Stan
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Other MCMC software

• , C++ with R interface

• , Julia

• , Python

• , Julia

Nimble

Turing.jl

PyMC

Pigeons
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Stochastic volatility model
Financial returns  typically exhibit time-varying variability.
The stochastic volatility model is a parameter-driven model
that speci�es

where  and 

It is possible to introduce leverage by adding

Y

t

Y

t

= exp(h

t

/2)Z

t

h

t

= γ + ϕ(h

t−1

− γ) + σU

t

U

t

iid

∼ Gauss(0, 1) Z

t

∼

iid

∼ Gauss(0, 1).

Cor(Z

t

, U

t

) = ρ.
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