
Bayesian modelling
Hamiltonian Monte Carlo and

probabilistic programming
Léo Belzile

Last compiled Monday Feb 17, 2025

1

Curse of dimensionality
This material is drawn from

• Neal (),

• Betancourt ()

Check out these by Chi Feng

2011

2017

animations

2

http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
https://chi-feng.github.io/mcmc-demo/
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
https://chi-feng.github.io/mcmc-demo/

Motivation
We are interested in calculating expectations of some
function against the posterior.

The integral is determined by the product of the ``volume’’ of
 and the density.

g

∫

R

d

g(θ)p(θ ∣ y)dθ.

g(⋅)

3

Curse of dimensionality
As the dimension of the posterior, , grows, the mass
concentrates in a small region, the so-called typical set. The
number of regions/directions to consider increases
exponentially in .

If we start at the stationary distribution, most proposals
from a random walk Metropolis will fall outside of the typical
set and get rejected.

This phenomenon also explains the decrease in performance
of numerical integration schemes (quadrature).

d

d

4

Better informed proposals
For differentiable targets, we saw that we can do better than
random walk Metropolis–Hastings.

• Idea: use the gradient to make an informed proposal (e.g.,
in MALA)

• There are two remaining challenges.

▪ it makes a single step from the current position. But
why stop at one?

▪ the gradient needs not be aligned with the typical set
(Betancourt analogy with satellite in orbit).

5

Hamiltonian Monte Carlo
Hamitonian Monte Carlo borrows ideas from Hamiltonian
dynamics.

Consider the evolution over time of a particle characterized
by a

• position along with potential energy

• an added auxiliary vector of momentum
(describing mass and velocity) with accompaying kinetic
energy .

θ ∈ R

d

U(θ) = − log p(θ ∣ y)

s ∈ R

d

K(s) = − log p(s)

6

Hamiltonian
Write the negative of the log of the joint density as

The partial derivatives of the Hamiltonian give the evolution
over time of the system:

H(θ, s) = − log p(s) − log p(θ) = U(θ) + K(s).

dθ

j

dt

=

∂H

∂s

j

=

∂K

∂s

j

ds

j

dt

= −

∂H

∂θ

j

= −

∂U

∂θ

j

, j = 1, … , d.

7

There is no explicit solution to these differential equations in
most settings.

Kinetic energy
The most popular choice of kinetic energy is the Gaussian,

the negative of a mean zero log Gaussian density with
positive-de�nite covariance matrix

Typically, we take diagonal, or
else proportional .

K(s) =

1

2

s

⊤

M

−1

s

M.

M = diag{m

1

, … , m

d

}

M = mI

d

8

Properties of Hamiltonian dynamics
The mapping from time at to time ,

 satis�es the following properties:

• Reversible: MCMC will thus preserve the invariant target
distribution

• Conservation of energy: proposals from Hamiltonian
dynamics would lead to acceptance probability of 1.

• Symplecticness/volume preserving: the Jacobian of is
one — no need to calculate it.

T

s

t (θ(t), s(t)) t + ε

(θ(t + ε), s(t + ε))

T

s

9

A necessary discretization step
There is no explicit solution to the Hamiltonian differential
equation. We must move away from continuous time…

• For solving the differential equation numerically, Euler’s
method doesn’t work because it does not preserve
volume, and this leads to divergences.

10

Leapfrog integrator
The leapfrog integrator performs a half step for momentum,
then does a full step for the position using the updated
components, etc.

s

j

(t + ε/2) = s

j

(t) −

ε

2

∂U(θ)

∂θ

j

θ(t)

θ

j

(t + ε) = θ

j

(t) + ε

s

j

(t + ε/2)

m

j

s

j

(t + ε) = s

j

(t + ε/2) −

ε

2

∂U(θ)

∂θ

j

θ(t+ε)

∣ ∣

11

Hamiltonian Monte Carlo algorithm
Consider the joint distribution with positions and
momentum variables ,

We start with a position vector at step :

1. Sample a new momentum vector

2. Use Verlet’s (leapfrog) integrator to evolve the state
vector for steps of size to get a proposal
tuple

θ

s p(θ, s) ∝ exp{−H(θ, s)}.

θ

t−1

t − 1

s

t−1

∼ Gauss(0

d

, M).

L = ⌊τ/ε⌋ ε

(θ

⋆

t

, s

⋆

t

)

12

Hamiltonian Monte Carlo algorithm

3. Flip the momentum variable,

4. Metropolis step: if , where

set , else keep the previous value and set
.

5. Discard the momentum vector

s ↦ −s.

U ∼ unif(0, 1) < R

log R = −H(θ

⋆

, s

⋆

t

) + H(θ

t−1

, s

t−1

),

θ

t

= θ

⋆

t

θ

t

= θ

t−1

13

Tuning
Hamiltonian Monte Carlo (HMC) has numerous tuning
parameters

1. size of the leapfrog step .

2. length of the integration time (or equivalently the
number of steps).

• too small leads HMC to bear close resemblance to
random walk,

• too large leads to wasteful calculations.

3. choice of the mass matrix (pre-conditioner obtained
during warmup period).

ε

τ

L = ⌊τ/ε⌋

M

14

Leapfrog and error
The Störmer–Verlet (leapfrog) integrator is a second order
method, so for step size :

• local error and

• global error of size (accumulated error over
steps).

Leapfrog updates one variable at a time, a shear
transformation.

Leapfrog step should be ()

ε

O(ε

3

)

O(ε

2

) L

O(d

−1/4

) Beskos et al., 2013

15

http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references

Optimal acceptance rate
In practice, we use a Metropolis step to adjust for the
discretization of the system.

• This leads to acceptance rates less than the theoretical
value of 1.

• with optimal acceptance rate of (
); see Neal () for heuristics.

• software like Stan tunes to around 0.8, but can be
adjusted in settings.

0.651 Beskos et al.,
2013 2011

16

http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references

It’s nuts!

• Homan & Gelman () propose the no -turn sampler
(NUTS), which continues the trajectory until the sampler
turns back, to determine the number of steps , along
with tuning of

• Stan uses an adaptation of NUTS due to Betancourt
()

2014 U

L

ε.

2016

17

http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references

HMC and divergences
In theory, the energy of the Hamiltonian should stay
constant, but the numerical scheme leads to small
perturbations (hence the rejection step).

• If the value of the Hamiltonian changes too much, this is
identi�ed as a divergence. These occur when the
geometry of the posterior is heavily constrained (funnel
shaped).

• Reparametrization of the model can help improve this: see
the .Stan manual

18

https://mc-stan.org/docs/stan-users-guide/efficiency-tuning.html#reparameterization.section
https://mc-stan.org/docs/stan-users-guide/efficiency-tuning.html#reparameterization.section

Neal’s funnel
19

Achieving independence
We have seen that for differentiable posterior ,
using the gradient information can improve convergence by
informing about the direction of the mode.

• Neal () discusses how informally, random walk
Metropolis requires steps to get an independent
draw, compared to for MALA.

• HMC scales like , a notable improvement in
performance.

• It however comes at the cost of repeated gradient
evaluations (by update).

p(θ ∣ y)

2011
O(d

2

)

O(d

4/3

)

O(d

5/4

)

L

20

http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references

Take-home

• HMC is more ef�cient than what we have seen, but not a
silver bullet: it works very well for not overly complicated
models and moderate sample sizes.

• HMC works better than many MCMC, but requires
special tuning best left to specialized implementations
already available in software.

• Most implementations don’t cover the case of discrete
random variables ().Nishimura et al., 2020

21

http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references
http://localhost:7761/slides/bayesmod-slides7.html?view=print#/references

Probabilistic programming
There are several languages and interfaces that implement
probabilistic programming where the user has only to
specify the likelihood and prior.

Historically, paved the way to practitioners.

It relies on Gibbs sampling (updating one parameter at the
time), but is not actively developed. Still the source of many
exercises and inspiration for the syntax of other
implementations (e.g., Nimble, JAGS).

Bugs

22

https://www.mrc-bsu.cam.ac.uk/software/bugs-project
https://www.mrc-bsu.cam.ac.uk/software/bugs-project

Stan
The programming language is written in C++ and offers
cross-platform interfaces.

Stan

23

https://mc-stan.org/
https://mc-stan.org/

Other MCMC software

• , C++ with R interface

• , Julia

• , Python

• , Julia

Nimble

Turing.jl

PyMC

Pigeons

24

https://r-nimble.org/
https://turinglang.org/docs/getting-started/
https://www.pymc.io/welcome.html
https://pigeons.run/stable/
https://r-nimble.org/
https://turinglang.org/docs/getting-started/
https://www.pymc.io/welcome.html
https://pigeons.run/stable/

Stochastic volatility model
Financial returns typically exhibit time-varying variability.
The stochastic volatility model is a parameter-driven model
that speci�es

where and

It is possible to introduce leverage by adding

Y

t

Y

t

= exp(h

t

/2)Z

t

h

t

= γ + ϕ(h

t−1

− γ) + σU

t

U

t

iid

∼ Gauss(0, 1) Z

t

∼

iid

∼ Gauss(0, 1).

Cor(Z

t

, U

t

) = ρ.

25

References
Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., & Stuart, A. (2013). Optimal

tuning of the hybrid Monte Carlo algorithm. Bernoulli, 19(5A), 1501–1534.

Betancourt, M. (2016). Identifying the optimal integration time in Hamiltonian
Monte Carlo. arXiv.

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv
Preprint.

Homan, M. D., & Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1),
1593–1623.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G.
Jones, & X. L. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 113–162).
CRC Press.

Nishimura, A., Dunson, D. B., & Lu, J. (2020). Discontinuous Hamiltonian Monte
Carlo for discrete parameters and discontinuous likelihoods. Biometrika, 107(2),
365–380.

https://doi.org/10.3150/12-BEJ414

https://doi.org/10.48550/arXiv.1601.00225

https://doi.org/10.48550/arXiv.1701.02434

https://doi.org/10.1201/b10905-5

https://doi.org/10.1093/biomet/asz083

26

https://doi.org/10.3150/12-BEJ414
https://doi.org/10.48550/arXiv.1601.00225
https://doi.org/10.48550/arXiv.1701.02434
https://doi.org/10.1201/b10905-5
https://doi.org/10.1093/biomet/asz083
https://doi.org/10.3150/12-BEJ414
https://doi.org/10.48550/arXiv.1601.00225
https://doi.org/10.48550/arXiv.1701.02434
https://doi.org/10.1201/b10905-5
https://doi.org/10.1093/biomet/asz083

