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Bayesian regression
Same, same, but different…

• Generalized linear models, with distributional
assumptions and link functions.

• We assign priors to  which

▪ can provide shrinkage (regularization towards zero)

▪ can enable variable selection (spike and slab)

β
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Model setup
Consider regression models with

• model (or design) matrix 

• regression coef�cients 
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Ordinary linear regression model.
In the ordinary linear regression model, observations are
independent and homoscedastic and

The intercept  receives special treatment, is always
included. It is typically assigned an improper prior

Y ∣ X, β, ω ∼ Gauss
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Decomposition of quadratic forms
For quadratic forms (in ) with

where  and .

This is useful to complete the square in Gaussian-Gaussian
models.

x

(x − a)

⊤

A(x − a) + (x − b)

⊤

B(x − b)

x

∝ (x − c)

⊤

C(x − c)

C = A + B c = C

−1

(Aa + Bb)
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Bayesian Gaussian linear model
Consider Gaussian-gamma conjugate priors for the mean
and precision parameters  and ,

Recall the sampling distribution of the ordinary least
squares estimator is

β ω

β ∣ ω ∼ Gauss {μ
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, (ωΩ
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Conditional distributions
The conditional and marginal posterior distributions for the
mean coef�cients  and for the precision  are

If we integrate over the precision, we get instead

β ω

β ∣ ω, y ∼ Gauss

p

{μ

n

, (ωΩ

n

)
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}

ω ∣ y ∼ gamma {(ν

0

+ n)/2, τ
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β ∣ y ∼ Student
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Posterior parameters
The precision is the sum of the precision of OLS estimator
and prior precision.

The posterior mean is a weighted combination of the prior
and OLS means, weighted by the scaled precision.
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Scale mixture of Gaussians
If  and we assign a prior 

• if , then

• if  then 

X ∣ σ

2

∼ Gauss(0, σ

2

) p(σ

2

)

σ

2

∼ inv. gamma(ν/2, ν/2)

X ∼ Student(0, 1, ν)

σ

2

∼ exp(1/λ

2

), X ∼ Laplace(0, λ).
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Sketch of proof

1. write down the joint posterior as

2. rewrite the �rst quadratic form in  using the
orthogonal decomposition

3. pull terms together and separate the conditional posterior
 and 

p(β, ω ∣ y) ∝ p(y ∣ β, ω)p(ω)

y − Xβ

(y − X

ˆ

β) + (X

ˆ

β − Xβ)

p(β ∣ y, ω) p(ω ∣ y)
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Sketch of proof (continued)

4. use decomposition of quadratic forms with ,
,  and 

5. the marginal of  is obtained by regrouping all terms that
depend on  and integrating over the latter, recognizing
the integral as an unnormalized gamma density

a =

ˆ

β

A = X

⊤

X b = μ

0

B = Ω

0

β

ω
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Cultural appropriation
Study 4 of Lin et al. ( ) is a 3 by 2 by 2 three-way
between-subject ANOVA focusing on cultural appropriation
using a �ctional scenario on publication of a soul food recipe
cookbook from Chef Dax.

2024
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Experimental variables

• ethnicity: chef is African-American or not

• action: the way he obtained the recipes (by peeking
without permission in kitchens, by asking permission or
without mention (control)

• political ideology of respondant (liberal or conservative).

13



Posterior densities for marginal e�ects

Figure 1: Difference in appropriation rating for black vs non-black Chef Dax, average
accross different levels of brand action.
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Chef Dax and cultural appropriation
The coef�cients and standard errors from the linear
regression are very nearly similar to the posterior mean and
standard deviations for  from the marginal Student-
owing to the large sample size and uninformative priors.

On average, liberals perceive cultural appropriation more
strongly (with nearly 2 points more), than conservatives (0.7
points on average).

β t,
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Modelling random e�ects
Gaussian mixed models in frequentist statistics are of the
form

Bayesians also assign priors to  as well! but typically apriori
independent with 

Y ∣ B = b ∼ Gauss

n

(Xβ + Zb, σ
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Prior for covariance matrices
We need a prior for  symmetric positive de�nite matrix
random matrices!

We consider two cases:

• Wishart (precision) / inverse Wishart (covariance), the
conjugate prior for Gaussian

• onion peel prior on the correlation matrix

Wishart allows for conjugacy, but has unintuitive properties.

p × p
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Wishart distribution
We say  for  degrees of freedom

and scale  if it’s density is proportional to

where  denotes the determinant of the matrix and 
the trace operator.

Q ∼ Wishart

p

(ν, S) ν > 0

S

f(Q)

Q

∝ |Q|

(ν−p−1)/2

exp {−

tr(S
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2

}, ν > p − 1.

| ⋅ | tr(⋅)
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Wishart distribution
The Wishart arises from considering  independent
and identically distributed mean zero Gaussian vectors

, where

n ≥ p

Y
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∼ Gauss
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(ν, S).

19



Prior elicitation for Wishart
For prior elicitation, the mean of the Wishart is 

•  is thus a prior sample size

•  is a scale matrix, often the identity matrix.

νS

ν

S
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Inverse Wishart
Consider a prior for the covariance matrix .
Applying the change of variable formula, we get Jacobian

, and so  with density

with expectation  for 
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Wishart as conjugate prior in Gaussian model
Consider  and 

for . Then,

and thus

μ ∼ Gauss
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Conjugacy
Note that a  matrix is equal to it’s trace, and the trace
operator is invariant to cyclic of it’s argument, meaning that

1 × 1

(μ − μ

0

)

⊤

Q(μ − μ

0

) = tr {Q(μ − μ

0

)(μ − μ

0

)

⊤

}.
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Properties of Wishart
The marginal precision for the Wishart variate are gamma
distributed with the same degrees of freedom .

• there is a single parameter governing all marginal
variances.

Moreover, the absolute value of the correlation and
marginal variance parameters are negatively related
( ). Large variance thus correspond to
small correlations shrunk towards zero when the degrees of
freedom increase.

ν

Gelman et al., 2013
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Wishart draws

Figure 2: Prior draws from a bivariate inverse Wishart with identity scale matrix and
 degrees of freedom.ν ∈ {3, 20}
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Onion peel prior
A better alternative is to specify

• different prior for each marginal scale  and

• a prior on the correlation matrix 

For the latter, the onion peel or LKJ prior, named after the
authors of Lewandowski et al. ( ), is

The case  leads to uniform over the space of
correlation matrices, and  favours the identity matrix.

σ

j

R.

2009

p(R) ∝ |R|

η−1

, η > 0

η = 1

η > 1
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Shrinkage and variable selection
With  covariates, there are  potential regression models.

This is too many models to explore for  large, and too many
parameters relative to sample size .

Two solutions:

• shrinkage priors: penalize small coef�cients by shrinking
towards zero via priors on 

• Bayesian model averaging: assign prior to each model
(different sets of covariates ) and get a mixture of
models.

p 2

p

p

n

β

X
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Spike-and-slab prior
The discrete spike-and-slab prior (

) is a two-component mixture with

• the spike: a point mass  or a vary narrow distribution
centered at zero

• the slab, a diffuse distribution.

Mitchell & Beauchamp,
1988

δ

0

β

j

∣ γ

j

, σ

2

∼ γ

j

δ
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j

)Gauss(0, σ

2

)
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Prior for the spike-and-slab prior probability
Set independent and identically distributed conjugate prior
for  whence

Apriori, we set  as the proportion of the 
coef�cients  that are zero (so  nonzero
coef�cients).

γ

j

∼ binom(1, ω),

p(γ ∣ ω) =

n

∏

j=1

ω

γ

j

(1 − ω)

1−γ

j

ω ∈ (0, 1) p

β p(1 − ω)
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Continuous spike-and-slab prior
George & McCulloch ( ) replaced the spike by a
Gaussian with near in�nite precision around zero, with

where  is very nearly zero, typically .

The construction allows for variable augmentation with
mixture indicators and Gibbs sampling, although mixing
tends to be poor.

1993

β

j

∣ γ

j

, σ

2

j

, ϕ

2

j

∼ γ

j

Gauss(0, σ

2

j

ϕ

2

) + (1 − γ

j

)Gauss(0, σ

2

j

)

ϕ

2

j

ϕ

2

j

= 0.001
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Horseshoe prior
The horseshoe prior of Carvalho et al. ( ) is a
hierarchical prior of the form

where  denotes a half-Cauchy
distribution with scale  truncated on 

2010

β

j

∣ σ

2

j

∼ Gauss(0, σ

2

j

),

σ

2

j

∣ λ ∼ Student

+

(0, λ, 1),

λ ∼ Student

+

(0, ω, 1)

Student

+

(0, a, 1)

a > 0, R

+

.
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Understanding shrinkage priors
The choice of  leads to an unconditional scale mixture of

Gaussian for .

Better is to consider

Penalization of near-zero components can be deduced from
the density of , and similarly penalization of large
signals by looking at the density when 

σ

2

j

β

j

κ = 1 − 1/(1 + σ

2

) ∈ [0, 1].

κ → 0

κ → 1.
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Shrinkage weights
Weighting implied by Gaussian mixture density with
Cauchy/Laplace/horsehoe.

Figure 3: Density of penalization weights  of spike (near zero) and slab (near one) for
three shrinkage priors.

κ
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Comparison of shrinkage priors

Figure 4: Marginal density for a regression coef�cient  with horseshoe prior (full),
Laplace (dashed) and a Student-  (thick dotted).

β

t
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Comments about the horseshoe
While the horseshoe prior guarantees that large coef�cients
are not regularized, this feature of the shrinkage prior is
harmful in certain instances, for example separation of
variables for logistic regression.

Markov chain Monte Carlo simulations are hampered by
these parameters whose posterior mean does not exist,
leading to poor mixing.
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Finnish horseshoe (aka regularized horseshoe)
Piironen & Vehtari ( ) proposed instead2017

β

j

∣ λ, τ

j

, c

2

∼ Gauss (0, λ

c

2

τ

2

j

c

2

+ τ

2

j

λ

2

),

τ

j
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+

(0, 1, 1)

c

2

∣ s

2

, ν ∼ inv. gamma(ν/2, νs

2

/2).
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Shrinkage for Finnish horsshoe
When  is much greater than , this amounts to having

a Student slab with  degrees of freedom for large
coef�cients.

Taking a small value of  allows for large, but not extreme
components, and the authors use 

τ

2

λ

2

j

c

2

ν

ν

s

2

= 2, ν = 4.
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Hyperprior for Finnish horseshoe
The above speci�cation does not specify the prior for the
global scale , for which Piironen & Vehtari ( )
recommend

where  is a prior guess for the number of non-zero
components out of  is the sample size and  is some level
of the noise.

λ 2017

λ ∼ Student

+

{0,

p

0

(p − p

0

)

σ

n

1/2

, 1},

p

0

p, n σ
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Comparison of shrinkage priors
We revisit the diabetes data from the R package lars,

which was used in Park & Casella ( ) to illustrate the
Bayesian LASSO. We consider three methods:

• the default Gaussian prior, which gives a ridge penalty,

• the Bayesian LASSO of Park & Casella ( )

• the horseshoe prior.

Models are �tted using the bayesreg package.

2008

2008
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Density estimates of ordered coe�cients

Figure 5: Density estimates for regression coef�cients with Gaussian (ridge), double
exponential (Laplace) and horseshoe priors for the diabetes data.
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Comments on penalization

• Ridge has the widest intervals of all methods, providing
some shrinkage only for large values of .

• The horseshoe has typically narrower intervals, with more
mass in a neighborhood of zero for smaller coef�cients,
and asymmetric intervals.

• The effective sample size fraction relative to the number
of samples ranges from 11% to 85%, compared to 54% to
100% for the Bayesian LASSO and near-independent
draws with the conjugate ridge.

β
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Bayesian model averaging
BMA refers to situation where we specify a mixture of
models , and we wish to recover the posterior
weights of these.

This is useful for predictions (ensemble) methods to account
for uncertainty in variable selection.

We consider design of MCMC for moving between models.

M

1

, … ,
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Reversible jump MCMC
Reversible jump Markov chain Monte Carlo ( ) is
an extension of the classical Metropolis–Hastings scheme
that allows for arbitrary measures and through this varying
dimensions.

Varying dimensions occurs not only with variable selection,
but also changepoint analysis and mixture models with
varying number of components.

Reversible jump requires dimension-balancing and de�ning
different types of moves for jumping between dimensions.

Green, 1995
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Dimension changes and jacobians
Dimensions changes are integrated in the Metropolis–
Hastings step through a Jacobian term : the probability of
rejection  for Metropolis becomes

In regression models, we will consider moves that adds or
removes one parameter/regressor at a time.

J

R

R = J

p(θ

⋆

t

)

p(θ

t−1

)

q(θ

t−1

∣ θ

⋆

t

)

q(θ

⋆

t

∣ θ

t−1

)
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Setup
We consider models  with for simplicity

 for all models that include an intercept.

We write  for the cardinality of the set of non-zero
coef�cients  in model 

De�ne  and  as the model matrix and the
associated vector of non-zero coef�cients associated with
model 

M

1

, … , M

m

p(M

i

) = 1

|M|

β M.

X

(m)

β

(m)

M

m
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Setup for regression

We assign a Gaussian prior on  is assigned a
Gaussian prior, etc.

Y ∣ M

m

, β, ∼ Gauss(X

(m)

β

(m)

, σ

2

I

n

).

β

(m)

∣ M

m

,
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Conditional Bayes factor
Write  for all parameters other than the response, model
and vector of coef�cients.

We can consider a joint update of the regression parameters
 by sampling from their joint distribution via

The update for  is as usual.

θ

β, M

p(β ∣ M, θ)p(M ∣ θ).

p(β ∣ M, θ)
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Update for model
The conditional Bayes factor

p(M ∣ Y , θ)

M

∝ p(M)p(Y ∣ M, θ)

= p(M) ∫

R

|M|

p(Y ∣ M, β, θ)p(β ∣ M, θ)dβ
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Marginalization
We can thus marginalize over  to get

where  and  are the mean and precision of

β

p(M ∣ Y , θ) ∝ p(M)|Q

β

|

−1/2

exp (

1

2

μ

⊤

β

Q

β

μ

β

)

μ

β

Q

β

p(β ∣ Y , M, θ).
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Moves for variable selection
We consider different types of move for the  potential
covariates (including interactions, etc.) ( )

• birth: adding an unused covariate chosen at random from
the remaining ones

• death: removing one covariate at random from the
current matrix

• swap an active covariate for an unused one.

Only the last type of move preserves the dimension.

k

max

Holmes et al., 2002
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Jacobians for reversible jump
For most moves  in this case, except in four cases
where the dimension  and

•  if  and we try to add a covariate, or if
 and we try to remove a covariate

•  if  and we try to remove a covariate, or
if  and we try to add the last covariate.

J = 1

|M| ∈ {1, 2, k

max

− 1, k

max

}

J = 2/3 |M| = 1

|M| = k

max

J = 3/2 |M| = 2

|M| = k

max

− 1
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Posterior weights
We can keep track of which variables are active at each
iteration of the MCMC and obtain the marginal posterior
probability of inclusion through sample proportions.

This methods that explores neighbouring models (Grey
code) only works with a limited number of covariates
p < 25.
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