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Rationale for deterministic approximations
Markov chain Monte Carlo methods require tuning and can
be markedly slow when the dimension of the parameter
space grows.

The curse of dimensionality affects the performance of
MCMC.

We consider simple approximations to the marginal
likelihood, posterior moments, or posterior density that only
require numerical optimization.

2



Landau notation
We need notation to characterize the growth rate of
functions: when 

• big-O:  means that  as 

• little-o:  implies  as 

n → ∞

x = O(n) x/n → c ∈ R n → ∞

x = o(n) x/n → 0 n → ∞.
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Taylor series expansion
Consider a concave function  assumed twice
continuously differentiable with mode at . Then, a Taylor
series expansion around  gives
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Multivariate Taylor series expansion
Similarly, for  a smooth vector valued function with
mode at , we can write

Under regularity conditions, the mode  is such that
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Laplace approximation
The Laplace approximation is used to approximate integrals
of non-negative functions  that are  of the form

The idea is that we can, ignoring terms above third order and
assuming  satis�es  approximate  by a

multivariate Gaussian density.

g(x) O(n)

I

n

= ∫

R

p

g(x)dx = ∫ exp{h(x)}dx.

x

0

h

′

(x

0

) = 0

p

, g(⋅)

6



Laplace approximation to integrals
If we perform a Taylor series expansion of the log of the
integrand, then

where  is the determinant of the Hessian matrix of
 evaluated at the mode 
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Laplace approximation

• The idea behind the Laplace approximation is to
approximate the log of the density (since the latter must
be non-negative).

• Compared to sampling-based methods, the Laplace
approximation requires optimization.

• The Laplace approximation is not invariant to
reparametrization: in practice, it is best to perform it on a
scale where the likelihood is as close to quadratic as
possible in  and back-transform using a change of
variable.

g(θ)
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Laplace approximation to the marginal likelihood
Consider a simple random sample of size  from a
distribution with parameter vector 

Write ( )

and take

n

θ ∈ R

p

.

Raftery, 1995

p(y) = ∫

R

p

p(y ∣ θ)p(θ)dθ

h(θ) = log p(y ∣ θ) + log p(θ).
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Laplace approximation to the marginal likelihood
Evaluating at the maximum a posteriori  and letting

 denote the Hessian matrix of second partial derivatives
of the unnormalized log posterior, we get (

)

ˆ

θ
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−H

Tierney & Kadane,
1986
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Example with exponential likelihood
Consider an exponential likelihood  with
conjugate gamma prior . The exponential
model has information  and the mode of the
posterior is

Y

i

∣ λ ∼ expo(λ)

λ ∼ gamma(a, b)

i(λ) = n/λ

2

ˆ

λ

MAP

=

n + a − 1

∑
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i=1

y

i

+ b

.
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Marginal likelihood approximation for exponential
likelihood

We can also obtain an estimate of the marginal likelihood,
which is equal for the conjugate model

For the sample of size  the exponential model marginal
likelihood is 

p(y) =
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Γ(a)
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62,

−276.5.
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Numerical approximation to marginal likelihood

The Laplace approximation gives 

data(waiting, package = "hecbayes")1
a <- 0.01; b <- 0.012
n <- length(waiting); s <- sum(waiting)3
map <- (n + a - 1)/(s + b) #posterior mode4
logpost <- function(x){5
sum(dexp(waiting, rate = x, log = TRUE)) +6
dgamma(x, a, b, log = TRUE)7

}8
# Hessian evaluated at MAP9
H <- -c(numDeriv::hessian(logpost, x = map))10
# Laplace approximation11
marg_lik_laplace <- 0.5*log(2*pi) - log(H) + logpost(map)12

−281.9.
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Posterior expectation using Laplace method
If we are interested in computing the posterior expectation
of a positive real-valued functional  we
may write

g(θ) : R

p

→ R

+

,

E

Θ∣Y

{g(θ) ∣ y} =

∫ g(θ)p(y ∣ θ)p(θ)dθ

∫ p(y ∣ θ)p(θ)dθ
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Posterior expectation via Laplace
We can apply Laplace’s method to both numerator and

denominator. Let  and  of the integrand of the

numerator and denominator, respectively, and the negative
of the Hessian matrix of the log integrands
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Posterior expectation approximation
Putting these together

While the Laplace method has an error  the leading
order term of the expansion cancels out from the ratio and
the above has error of 
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Example of posterior mean for exponential likelihood
Consider the posterior mean  and let .

Then,
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Posterior mean
Simpli�cation gives the approximation

which gives  whereas the true posterior mean is

exp(−1)

s + b

(n + a)

n+a+1/2

(n + a − 1)

n+a−1/2

0.03457,

(n + a)/(s + b) = 0.03457.
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Aside on prior and likelihood relative contribution
Usually,

•  and

• 

Thus, provided the prior does not impose unnecessary
support constraints, we could alternatively

• replace the MAP by the MLE, and

• the Hessian  by the Fisher information

p(θ) = O(1)

p(y ∣ θ) = O(n)

−H(

ˆ

θ
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)

nı(

ˆ

θ
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).
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Frequentist approximations
If we use these approximations instead, we get

where the error is now  due to replacing the true
information by it’s sample counterpart.
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Reducing the approximation rate
Ignoring all but the two �rst terms leads to 
approximation error, unless we consider the setting where
we take a prior centered at the MLE with unit Fisher
information precision (equivalent to  phantom
observation). Then, due to cancellation of terms in the
expansion,

with approximation error of 

O(1)

n = 1

θ ∼ Gauss

p
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Frequentist approximation to the marginal likelihood
This gives the approximation, whose quality improves with
increasing sample size :

The unnormalized weight  is an
approximation fo the marginal likelihood sometimes used
for model comparison in Bayes factor.

n

−2 log p(y) ≈ BIC = −2 log p(y ∣ θ) + p log n

exp(−BIC/2)
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Bayesian model averaging via BIC
We consider the diabetes model from Park & Casella

( ) and models with 10 predictors plus intercept.2008
library(leaps)1
data(diabetes, package = "lars")2
search <- leaps::regsubsets(3
x = diabetes$x,4
y = diabetes$y,5
intercept = TRUE,6
method = "exhaustive", 7
nvmax = 10, nbest = 99, really.big = TRUE)8

models_bic <- summary(search)$bic9
# Renormalize BIC and keep only models with some weight10
bic <- models_bic - min(models_bic)11
models <- which(bic < 7)12
bma_weights <- exp(-bic[models]/2)/sum(exp(-bic[models]/2))13
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Weights and model components

Figure 1: BIC as a function of the linear model covariates (left) and Bayesian model
averaging approximate weights (in percentage) for the 10 models with the highest
posterior weights according to the BIC approximation.

24



Gaussian approximation to the posterior
We can also use similar ideas to approximate the posterior.
Suppose that we can Taylor expand the log prior and log

density around their respective mode, say  and 

with  and  denoting negative of the
corresponding Hessian matrices.
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)
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Approximation to posterior
Together, these yield

log p(θ) ≈ log p(
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Gaussian approximation to posterior
The approximate posterior must be Gaussian with precision

 and mean  where

and note that  whereas  is 
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Gaussian large-sample approximation to MLE
Suppose that the prior is continuous and positive in a
neighborhood of the maximum.

Assume further that the regularity conditions for maximum
likelihood estimator holds. Then, in the limit as n → ∞

θ ∣ y

⋅

∼ Gauss

p

{

ˆ

θ

MLE

, ȷ

−1

(

ˆ

θ

MLE

)}
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Corollary
In large samples, the inference obtained from using
likelihood-based inference and Bayesian methods will be
equivalent

• credible intervals will also have guaranteed frequentist
coverage.

Misspeci�ed model: Bayesian will return the model from the
family that minimizes the Kullback–Leibler divergence with
the true data generating process.
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Regularity conditions

• The maximizer must be uniquely identi�ed from the data
and must not be on boundary, so that we can perform a
two-sided Taylor series expansion around 

• We need to be able to apply the law of large numbers to
get the variance (reciprocal Fisher information) and apply
a central limit theorem to the score.

• The third-order derivative of the likelihood is bounded:
we can get away with weaker, but this is easiest to check
(and ensures that the higher order terms of the Taylor
series expansion vanishes asymptotically).

θ

0

.
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Gaussian approximation to gamma posterior

Figure 2: Gaussian approximation (dashed) to the posterior density (full line) of the
exponential rate  for the waiting dataset with an exponential likelihood and a

gamma prior with  and  The plots are based on the �rst 
observations (left) and the whole sample of size  (right).

λ

a = 0.01 b = 0.01. 10

n = 62
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Structured models
Models in genomics data or spatio-temporal applications
including random effects (e.g., spline smoothers) are
predominant.

They often contain several thousands or millions of latent
parameters.

Inference becomes unfeasible in reasonable time using
methods we covered so far.
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Integrated nested Laplace approximation
Consider a model with response  which depends on
covariates  through a latent Gaussian process 

Typically, the prior of coef�cients  The dimension 
can be substantial (several thousands) with a comparably
low-dimensional hyperparameter vector 

Consider data that are conditionally independent given 
and  for simplicity.

y

x β.

β ∈ R

p

. p

θ ∈ R

m

.

β

β ∼ Gauss

p

(0

p

, Q

−1

)
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Gaussian approximations considered
Then,

If  is a Gaussian Markov random �eld, it’s precision matrix
 will be sparse. A Gaussian approximation to this model

would have precision matrix  for some vector 
obtained from the second-order expansion of the likelihood.

This allows one to use dedicated algorithms for sparse
matrices.

p(β ∣ y, θ) ∝ exp {−

1

2

β

⊤

Qβ +

n

∑

i=1

log p(y

i

∣ β

i

, θ)}

β

Q

Q + diag(c) c
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INLA: targets of inference
Interest typically then lies in marginal parameters

where  denotes the vector of hyperparameters excluding
the th element 

p(β

i

∣ y) = ∫ p(β

i

∣ θ, y)p(θ ∣ y)dθ

p(θ

i

∣ y) = ∫ p(θ ∣ y)dθ

−i

θ

−i

i θ

i

.
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Philosophy of INLA
The INLA method builds Laplace approximations to the
integrands  and  and evaluates the
integral using quadrature rules over a coarse grid of values
of 

The marginal posterior  is approximated by writing

and performing a Laplace approximation for �xed value of 

for the term  whose mode we denote by 

p(β

i

∣ θ, y) p(θ ∣ y),

θ.

p(θ ∣ y)

p(β, θ ∣ y) ∝ p(β ∣ θ, y)p(θ ∣ y)

θ

p(β ∣ θ, y),

ˆ

β.
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INLA approximation (step 1)
This yields

˜
p(θ ∣ y) ∝

p(

ˆ

β, θ ∣ y)

p

G

(

ˆ

β ∣ y, θ)

=

p(

ˆ

β, θ ∣ y)

|H(

ˆ

β)|

1/2
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Note on approximation
The Laplace approximation  has kernel

since it is evaluated at  we retrieve only the determinant

of the negative Hessian of  namely  Note
that the latter varies with 

p

G

(

ˆ

β ∣ y, θ)

p

G

(β ∣ y, θ) ∝ |H(

ˆ

β)|

1/2

exp{−(β −

ˆ
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⊤

H(

ˆ

β)(β −

ˆ

β)/2}

ˆ

β,

p(β ∣ θ, y), H(

ˆ

β).

θ.
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Numerical integration
To obtain , we then proceed with

1. �nding the mode of  using a Newton’s method,
approximating the gradient and Hessian via �nite
differences.

2. Compute the negative Hessian at the mode to get an
approximation to the covariance of  Use an
eigendecomposition to get the principal directions .

p(θ

i

∣ y)

˜
p(θ ∣ y)

θ.

z
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Numerical integration (2)

3. In each direction of , consider drops in  as we
move away from the mode and de�ne a coarse grid based
on these, keeping points where the difference in 
relative to the mode is less than some small 

4. Retrieve the marginal by numerical integration using the
central composition design outline above. We can also use
directly avoid the integration and use the approximation
at the posterior mode of 

z
˜
p(θ ∣ y)

˜
p(θ ∣ y)

δ.

˜
p(θ ∣ y).
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Approximation of marginal of Gaussian latent e�ect
For the marginal  term, Rue et al. ( ) proceed
instead with the marginal for  by building an
approximation of it based on maximizing  to

yield  whose th element is  yielding

with a suitable renormalization of 

p(β

i

∣ y) 2009
β

i

β

−i

∣ β

i

, θ, y

ˆ

β

(i)

i β

i

,

˜
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i

∣ θ, y) ∝

p(

ˆ

β

(i)

, θ ∣ y)

˜
p(

ˆ

β

(i),−i

∣ β

i

, θ, y)

,

˜
p(

ˆ

β
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∣ β

i

, θ, y).
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Remark on approximation
While we could use the Laplace approximation 
and marginalize the latter directly, this leads to evaluation of
the Laplace approximation to the density far from the mode,
which is often inaccurate.

p

G

(

ˆ

β ∣ y, θ)

42



Numerical challenges to Laplace approximation
One challenge is that  is very large, so calculation of the
Hessian  is costly to evaluate.

Having to evaluate it repeatedly for each marginal  for
 is prohibitive since it involves factorizations of

 matrices.

p

H

β

i

i = 1, … , p

p × p
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Further approximations
To reduce the computational costs, Rue et al. ( ) propose
to use the approximate mean to avoid optimizing and use the

conditional of the Gaussian approximation with mean  and

covariance 

This only requires a rank-one update.

2009

ˆ

β

Σ = H

−1

(

ˆ

β),

β

−i

∣ β

i
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p−1
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, M
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−i,−i
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˜

β

(i)

=

ˆ
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−i

+ Σ

−1

i,i

Σ

i,−i

(β

i

−

ˆ

β

i

),
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Further approximations
Wood ( ) suggest to use a Newton step to correct 

starting from the conditional mean.

The second step is to exploit the local dependence on 
using the Markov structure to build an improvement to the
Hessian. Various strategies are proposed in Rue et al. ( )
and Wood ( ).

Nowadays, the INLA software uses a low-rank variational
correction to Laplace method, proposed in van Niekerk &
Rue ( ).

2019 ˜

β

(i)

,

β

2009
2019

2024
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The INLA software
The INLA  provides an interface to �t models with

Gaussian latent random effects. While the software is
particularly popular for spatio-temporal applications using
the SPDE approach, we revisit two examples in the sequel
where we can exploit the Markov structure.

R package
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Stochastic volatility model with INLA
Financial returns  typically exhibit time-varying variability.
The stochastic volatility model is a parameter-driven model
that speci�es

where  and  The
 provides information about which

default prior and hyperparameters are speci�ed. We use a
 prior for the precision.

Y

t

Y

t

= exp(h

t

/2)Z

t

h

t

= γ + ϕ(h

t−1

− γ) + σU

t

U

t

iid

∼ Gauss(0, 1) Z

t

∼

iid

∼ Gauss(0, 1).

INLA documentation

gamma(1, 0.001)
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Stochastic volality code
library(INLA)1
data(exchangerate, package = "hecbayes")2
# Compute response from raw spot exchange rates at noon3
y <- 100*diff(log(exchangerate$dexrate))4
time <- seq_along(y)5
data <- data.frame(y = y, time = time)6
f_stochvol <- y ~ f(time, model = "ar1",7

param = list(prec = c(1, 0.001)))8
mod_stochvol <- inla(f_stochvol, family = "stochvol", data = data)9
# Obtain summary10
summary <- summary(mod_stochvol)11
# plot(mod_stochvol)12
marg_prec <- mod_stochvol$marginals.hyperpar[[1]]13
marg_phi <- mod_stochvol$marginals.hyperpar[[2]]14
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Marginal posterior approximations

Figure 3: Marginal densities of precision and autocorrelation parameters from the
Gaussian stochastic volatility model.
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Comment on stochastic volatility
 shows that the correlation  is nearly one, leading

to random walk behaviour and high persistence over time
(this is also due to the frequency of observations).

This strong serial dependence in the variance is in part
responsible for the dif�culty in �tting this model using
MCMC.

Figure 3 ϕ
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Marginal approximations
We can use the marginal density approximations to obtain
quantiles for summary of interest, marginal posterior
moments, etc.

The software also includes utilities to transform the
parameters using the change of variable formula.
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Marginal summaries
# Compute density, quantiles, etc. via inla.*marginal1
# Change of variable to get variance from precision2
marg_var <- INLA::inla.tmarginal(3
fun = function(x) { 1 / x }, 4
marginal = marg_prec)5

INLA::inla.qmarginal(marg_var, p = c(0.025, 0.5,  0.975))6

[1] 0.2864905 0.4543037 0.7396820

# Posterior marginal mean and variance of phi1
mom1 <- INLA::inla.emarginal(2

fun = function(x){x}, 3
marginal = marg_phi)4

mom2 <- INLA::inla.emarginal(5
fun = function(x){x^2}, 6
marginal = marg_phi)7

c(mean = mom1, sd = sqrt(mom2 - mom1^2))8

       mean          sd 
0.984052723 0.005762531 
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Tokyo binomial time series
We revisit the Tokyo rainfall example, but this time �t the
model with INLA rather than MCMC.

We specify the mean model without intercept and �t a
logistic regression, with a second-order cyclic random walk
prior for the coef�cients, and the default priors for the other
parameters.
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Code syntax

The marginal posterior with pointwise 95% credible
intervals on the next slide show nearly identical results to
marginals from the probit model.

data(Tokyo, package = "INLA")1
# Formula (removing intercept)2
formula <- y ~ f(time, model = "rw2", cyclic = TRUE) - 13
mod <- INLA::inla(4

formula = formula, 5
family = "binomial",6
Ntrials = n, 7
data = Tokyo)8
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Posterior of random e�ect prior

Figure 4: Posterior probability per day of the year with posterior median and 95%
credible interval for the Tokyo rainfall binomial time series.
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