Introduction to experimental design

Session 1

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Class details

Motivation

Review

Key concepts in experimental designs

Class details

Course content

Content

- Basics of experimental design
- Statistical inference
- Completely randomized designs
- Analysis of variance
- Blocked designs
- Analysis of covariance
- Mixed models
- Intro to causal inference
- Mediation analysis

Cross-disciplinary skills

- Scientific workflow
- Peer-review
- Reporting
- Statistical fallacies
- Reproducibility

Prerequisites

Math skills

Basic algebra

Computer science

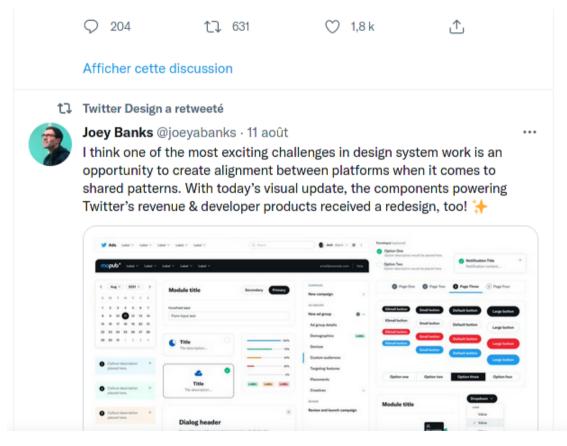
None

Statistics

At the level of OpenIntro Statistics (Chapter 1)

Motivation

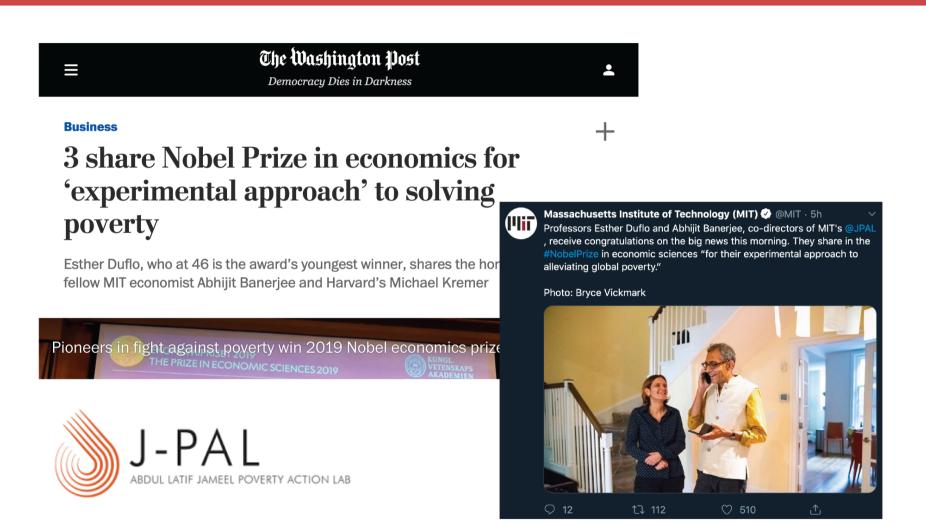
History


Experiments on agricultural trials in Rothamsted ongoing since 1843

ECN ROTHAMSTED

Rothamsted (Latitude 51° 48′ 34.44″ N; Longitude 0° 21′ 22.76″ W) is located about 35 km North of London, UK. It covers about 330 ha, all of which is included within the Rothamsted ECN site. The estate contains several ecosystems, including managed arable and grassland fields, naturally regenerated and ancient woodland, the river Ver and more recently energy crops e.g. short rotation coppice willow and miscanthus grass. The Park Grass Hay Experiment (est. 1856) is the principal target sample site (TSS) for the majority of the ECN protocols at Rothamsted. This experiment is widely acknowledged to be the oldest continuing agro-ecological experiment in the world; it is recognised internationally as an important site for long-term studies on biodiversity and ecology. The experimental plot on Park Grass of most interest to the ECN, in relation to physical and atmospheric inputs is Plot 3, Section d (Plot 3d). This plot receives no inorganic or organic inputs apart from atmospheric deposition.

Modern experiments: A/B testing



Evidence-based policy

RAND health insurance study

Student Teacher Achievement Ratio (STAR)

Nobel memorial prize

Review

Population and sampling

Defining a target population

Sampling frame

Where to draw sample from

Sampling procedure

Randomness

Convenience samples and non-response bias

Sampling scheme

Simple random sampling

Stratified sampling

Cluster sampling

Multi-stage sampling

Judging the quality of a sample

Summary statistics

Raw data

Pre-testing

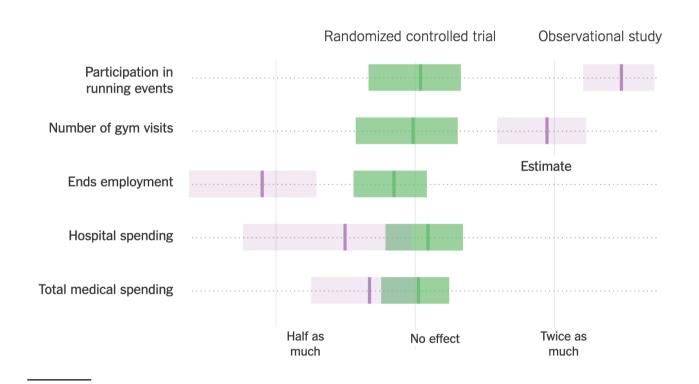
Experiments as gold-standard

Randomised controlled trials – the gold standard for effectiveness research

Study design: randomised controlled trials

Eduardo Hariton, Joseph J Locascio

First published: 19 June 2018 | https://doi.org/10.1111/1471-0528.15199 | Citations: 121


Randomised controlled trials (RCTs) are the reference standard for studying **causal relationships** between interventions and outcomes as randomisation eliminates much of the bias inherent with other study designs.

Study type versus sampling

ideal experiment	Random assignment	No random assignment	most observational studies
Random sampling	Causal conclusion, generalized to the whole population.	No causal conclusion, correlation statement generalized to the whole population.	Generalizability
No random sampling	Causal conclusion, only for the sample.	No causal conclusion, correlation statement only for the sample.	No generalizability
most experiments	Causation	Correlation	bad observational studies

Experimental versus observational

How the Illinois Wellness Program Affected . . .

Source: What Do Workplace Wellness Programs Do? Evidence from the Illinois Workplace Wellness Study

Key concepts in experimental design

Technical vocabulary

Experimental unit

Observational unit

Factor / treatment

Impact of encouragement on teaching

From Davison (2008), Example 9.2

In an investigation on the teaching of arithmetic, 45 pupils were divided at random into five groups of nine. Groups A and B were taught in separate classes by the usual method. Groups C, D, and E were taught together for a number of days. On each day C were praised publicly for their work, D were publicly reproved and E were ignored. At the end of the period all pupils took a standard test.

Exercise

In pairs, identify

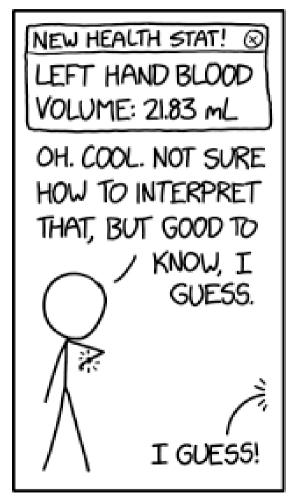
- the experimental and observational units
- the treatment levels
- the response variable

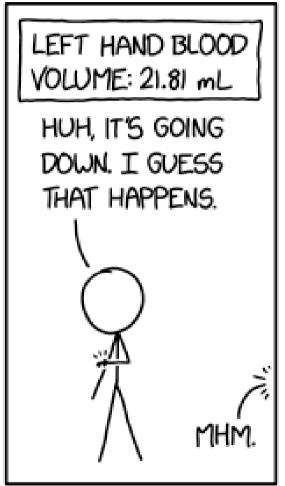
Comparing treatments

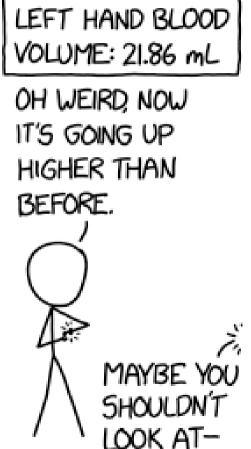
- Without treatment, **variability** in output from one observation to the next.
- Differences between treatment are comparatively stable.

Choices in experimental designs

- treatments for comparison
- observations to be made (number of repetitions, etc.)
- experimental units

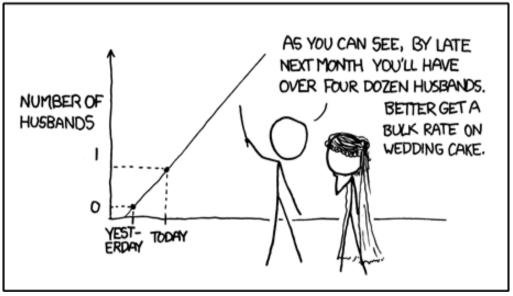

Requirements for good experiments


- 1. Absence of systematic error
- 2. Precision
- 3. Range of validity
- 4. Simplicity of the design


Absence of systematic error

- Achieved via randomization
- Controlling the environment

Precision


Precision

- depends on the intrinsic variability
- function of
 - 1. accuracy of experimental work
 - 2. number of experimental units / repetitions per unit
 - 3. design and methods of analysis

Range of validity

- What is population?
- Identify restrictions
- Extrapolation
 - if proper random sampling scheme
 - range of validity

Simplicity of the design

 Simple designs lead to simple statistical analyses