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F-test for one way ANOVA

Global null hypothesis
No difference between treatments

 (null): all of the  treatment groups have the same average 
 (alternative): at least two treatments have different averages

Tacitly assume that all observations have the same standard deviation .

H0 K μ

Ha

σ
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null model alternative model added variability

Building a statistic
 is observation  of group 

 are sample averages of groups 
 is the overall sample mean

Decomposing variability into bits
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F-test statistic

Omnibus test
With  groups and  observations, the statistic isK n

F =

=

between-group variability

within-group variability

between sum of squares/(K − 1)

within sum of squares/(n − K)
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Ratio of variance

Data with equal mean (left) and different mean per group (right).
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What happens under the null regime?
If all groups have the same mean, both numerator and denominator are
estimators of , thus

the  ratio should be 1 on average if there are no mean differences.
but the numerator is more variable because it is based on  observations

benchmark is skewed to the right.

σ
2

F

K
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Null distribution and degrees of freedom
The null distribution (benchmark) is a Fisher distribution .
The parameters  are called degrees of freedom.
For the one-way ANOVA:

 is the number of constraints imposed by the null (number of groups
minus one)

 is the number of observations minus number of mean parameters
estimated under alternative

F(ν1, ν2)

ν1, ν2

ν1 = K − 1

ν2 = n − K
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Fisher distribution

Note: the  distribution is indistinguishable from  for  large.F(ν1, ν2) χ2(ν1) ν2
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Impact of encouragement on teaching
From Davison (2008), Example 9.2

In an investigation on the teaching of arithmetic, 45 pupils were divided
at random into �ve groups of nine. Groups A and B were taught in
separate classes by the usual method. Groups C, D, and E were taught
together for a number of days. On each day C were praised publicly for
their work, D were publicly reproved and E were ignored. At the end of
the period all pupils took a standard test.
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Formulating an hypothesis
Let  denote the population average (expectation) score for the test for
each experimental condition.
The null hypothesis is

against the alternative  that at least one of the population average is different.

μA, … , μE

H0 : μA = μB = ⋯ = μE

Ha
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F statistic

term df sum of square mean square statistic p-value
group 4 722.67 180.67 15.27 < 1e-04
Residuals 40 473.33 11.83

#Fit one way analysis of variance

test <- aov(data = arithmetic, 

            formula = score ~ group)

anova(test) #print anova table
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The p-value gives the probability of
observing an outcome as extreme if
the null hypothesis was true.

Probability that a  exceeds 15.27.

P-value

# Compute p-value

pf(15.27, 

   df1 = 4, 

   df2 = 40, 

   lower.tail = FALSE)

F(4, 40)
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Power
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I cried power!

Power is the ability to detect when the null is false,
for a given alternative
It is the probability of correctly rejecting the null
hypothesis under an alternative.
The larger the power, the better.
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Null distribution (full) and given alternative
distribution (dashed).

Power is the area in white under the dashed
curved, beyond the cutoff.

Power of an alternative
There are in�nitely many alternatives...
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Living in an alternative world
How does the F-test behaves under an alternative?

17 / 50



Thinking about power
What do you think is the effect on power of an increase of the

group sample size .
variability .
true mean difference .

n1, … , nK

σ2

μj − μ
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What happens under the alternative?
The peak of the distribution shifts to the right.
Why? on average, the numerator of the -statistic is

Under the null hypothesis,  for 

the rightmost term is 0.

F

E(between-group variability) = σ2 + .
∑

K

j=1 nj(μj − μ)2

K − 1

μj = μ j = 1, … , K
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Noncentrality parameter and power
The alternative distribution is  distribution with degrees of freedom  and

 and noncentrality parameter
F(ν1, ν2, Δ) ν1

ν2

Δ = .
∑K

j=1 nj(μj − μ)2

σ2
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Impact of noncentrality parameter

 distribution with  (solid line),  (dashed) and  (dotted).F Δ = 0 Δ = 3 Δ = 6
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Model assumptions

22 / 50



Quality of approximations
The null and alternative hypothesis of the analysis of variance only specify
the mean of each group
We need to assume more to derive the behaviour of the statistic

All statements about p-values 
are approximate.

Read the �ne print conditions!
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Additivity and linearity

Independence

Equal variance

Large sample size

Model assumptions
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Alternative representation
Write th observation of th experimental group as

where, for  and ,

 (mean zero) and
 (equal variance)

errors are independent from one another.

i k

Yik
observation

= μk
mean of group

+ εik
error term

,

i = 1, … , nk k = 1, … , K

E(εik) = 0

Va(εik) = σ2
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# 1: Additivity
Additive decomposition reads:

each unit is unaffected by the treatment of the other units
average effect of the treatment is constant

(
quantity depending

on the treatment used
) + (

quantity depending only 

on the particular unit
)
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Diagnostic plots for additivity
Plot group averages  against residuals , where .

By construction, sample mean of  is always zero.

{μ̂k} {eik} eik = yik − μ̂k

eik
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Lack of additivity
Less improvement for scores of stronger students.

Plot and context suggests multiplicative structure. Tempting to diagnose unequal variance.
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Interpretation of residual plots

Look for potential patterns
on the -axis only!y
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Multiplicative structure
Multiplicative data of the form

tend to have higher variability when the response is larger.

(
quantity depending

on the treatment used
) × (

quantity depending only 

on the particular unit
)
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Fixes for multiplicative data
A log-transformation of response makes the model additive.
For responses bounded between  and , reduce warping effects via

Careful with transformations:

lose interpretability
change of meaning (different scale/units).

a b

ln{ }
x − a + δ

b + δ − x
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Interactions
Plot residuals against other explanatories.
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A note about interactions
An interaction occurs when the effect of experimental group depends on
another variable.
In principle, randomization ensures we capture the average marginal effect
(even if misleading/useless).
We could incorporate the interacting variable in the model capture it's effect
(makes model more complex), e.g. using a two-way ANOVA.
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# 2: Equal variance

Each observation 
has the same

standard deviation .

ANOVA is quite sensitive to this assumption!

σ
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Graphical diagnostics
Plot standardized (rstandard) or studentized residuals (rstudent) against �tted
values.

data(arithmetic, package = "hecedsm")

model <- lm(score ~ group, data = arithmetic)

data <- data.frame(

  fitted = fitted(model),

  residuals = rstudent(model))

ggplot(data = data,

       mapping = aes(x = fitted,

                     y = residuals)) +

    geom_point()
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Test diagnostics
Can use a statistical test for .

Bartlett's test (assumes normal data)
Levene's test: a one-way ANOVA for 
Brown–Forsythe test: a one-way ANOVA for  (more robust)
Fligner-Killeen test: based on ranks

Different tests may yield different conclusions

H0 : σ1 = ⋯ = σK

|yik − μ̂k|

|yik − mediank|
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Example in R

Fail to reject the null: no evidence of unequal variance

data(arithmetic, package = "hecedsm")

model <- aov(score ~ group, data = arithmetic)

car::leveneTest(model) #Brown-Forsythe by default

## Levene's Test for Homogeneity of Variance (center = median)

##       Df F value Pr(>F)

## group  4  1.2072 0.3228

##       40
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Box's take
To make the preliminary test on variances is rather like putting to sea in
a rowing boat to �nd out whether conditions are suf�ciently calm for an
ocean liner to leave port!

Box, G.E.P. (1953). Non-Normality and Tests on Variances. Biometrika 40 (3)-4: 318–335.
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Solutions
In large sample, power is large so probably always reject .
If heterogeneity only per experimental condition, use Welch's ANOVA
(oneway.test in R).
This statistic estimates the std. deviation of each group separately.
Could (should?) be the default when you have large number of observations,
or enough to reliably estimate mean and std. deviation.

H0 : σ1 = ⋯ = σK

39 / 50



What can go wrong? Spurious �ndings!
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More complex heterogeneity patterns
Variance-stabilizing transformations (e.g., log for counts)
Explicit model for trend over time, etc. may be necessary in more complex
design (repeated measure) where there is a learning effect.
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# 3: Independence

No visual diagnostic or test available.

Rather, infer from context.

As a Quebecer, I am not allowed to talk about this topic.
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Checking independence
Repeated measures are not independent
Group structure (e.g., people performing experiment together and exchanging
feedback)
Time dependence (time series, longitudinal data).
Dependence on instrumentation, experimenter, time of the day, etc.

Observations close by tend to be more alike (correlated).
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# 4: Sample size (normality?)

Where does the -distribution come from?

Normality of group average

This holds (in great generality) 
because of the

central limit theorem

F
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Central limit theorem
In large samples, the mean is approximately normally distributed.
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How large should my sample be?

Rule of thumb: 20 or 30 per group

Gather suf�cient number of observations.
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Assessing approximate normality
The closer data are to being normal, the better the large-sample distribution
approximation is.
Can check normality via quantile-quantile plot with standardized residuals :

on the -axis, the theoretical quantiles  of the residuals, where 
 is the normal quantile function.

on the -axis, the empirical quantiles 

ri

x F̂
−1

{rank(ri)/(n + 1)}

F −1

y ri

In R, use functions qqnorm or car::qqPlot to produce the plots.
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More about quantile-quantile plots
The ordered residuals should align on a straight line.

Normal quantile-quantile plot (left) and Tukey's mean different QQ-plot (right).
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Recap 1

One-way analysis of variance compares average of
experimental groups
Null hypothesis: all groups have the same average
Easier to detect when the null hypothesis is false if:

large differences group average
small variability
large samples
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Recap 2

Model assumes independent observations, additive
structure and equal variability in each group.
All statements are approximate, but if model
assumptions are invalid, can lead to spurious results
or lower power.
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