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Planned comparisons
Oftentimes, we are not interested in the global null hypothesis.
Rather, we formulate planned comparisons at registration time for effects of
interest

What is the scienti�c question of interest?
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Global test Contrasts

Global null vs contrasts

Image source: PNGAll.com, CC-BY-NC 4.0 4 / 45



Linear contrasts
With  groups, null hypothesis of the form

Linear combination of  
weighted group averages

K

H0 : C = c1μ1 + ⋯ + cKμK
weighted sum of subpopulation means

= a
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Examples of linear contrasts

Global mean larger than ?

Pairwise comparison

a

H0 : μ1 + ⋯ + μK ≤ a
n1

n

nK

n

H0 : μi = μj, i ≠ j
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Characterization of linear contrasts
Weights  are speci�ed by the user.
Mean response in each experimental group is estimated as sample average of
observations in that group, .
Assuming equal variance, the contrast statistic behaves in large samples like
a Student-t distribution with  degrees of freedom.

c1, … , cK

μ̂1, … , μ̂K

n − K
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Sum-to-zero constraint

If , the contrast encodes

differences between treatments

rather than information about the overall mean.

c1 + ⋯ + cK = 0
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group 1

(control)

group 2

(control)

group 3

(praise, reprove, ignore)

Arithmetic example

Setup

Hypotheses of interest

 (attention)
 (encouragement)

H01 : μpraise = μreproved

H02 : (μcontrol1
+ μcontrol2

) = μpraised
1
2
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Contrasts
With placeholders for each group, write  as

 +  +  -  + 

The sum of the coef�cient vector, , is zero.
Similarly, for 

The contrast vector is ; entries again sum to zero.
Equivalent formulation is obtained by picking 

H01 : μpraised = μreproved

0 ⋅ μcontrol1
0 ⋅ μcontrol2

1 ⋅ μpraised 1 ⋅ μreproved 0 ⋅ μignored

c = (0, 0, 1, −1, 0)

H02 : (μcontrol1
+ μcontrol2

) = μpraise
1
2

⋅ μcontrol1
+ ⋅ μcontrol2

− 1 ⋅ μpraised + 0 ⋅ μreproved + 0 ⋅ μignored
1

2

1

2

c = ( , , −1, 0, 0)1
2

1
2

c = (1, 1, −2, 0, 0)
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Contrasts in R with emmeans

library(emmeans)

linmod <- lm(score ~ group, data = arithmetic)

linmod_emm <- emmeans(linmod, specs = 'group')

contrast_specif <- list(

  controlvspraised = c(0.5, 0.5, -1, 0, 0),

  praisedvsreproved = c(0, 0, 1, -1, 0)

)

contrasts_res <- 

  contrast(object = linmod_emm, 

                    method = contrast_specif)

# Obtain confidence intervals instead of p-values

confint(contrasts_res)
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Output
contrast null.value estimate std.error df statistic p.value
control vs praised 0 -8.44 1.40 40 -6.01 <1e-04
praised vs reprove 0 4.00 1.62 40 2.47 0.018

Con�dence intervals

contrast lower upper
control vs praised -11.28 -5.61
praised vs reprove 0.72 7.28
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One-sided tests
Suppose we postulate that the contrast statistic is bigger than some value .

The alternative is  (what we are trying to prove)!
The null hypothesis is therefore  (Devil's advocate)

It suf�ces to consider the endpoint  (why?)

If we reject  in favour of , all other values of the null hypothesis are
even less compatible with the data.

a

Ha : C > a

H0 : C ≤ a

C = a

C = a C > a
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Comparing rejection regions

Rejection regions for a one-sided test (left) and a two-sided test (right).
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When to use one-sided tests?
In principle, one-sided tests are more powerful (larger rejection region on one
sided).

However, important to pre-register hypothesis
can't look at the data before formulating the hypothesis (as always)!

More logical for follow-up studies and replications.

If you postulate  and the data show the opposite with , then the -
value for the one-sided test is 1!

Ha : C > a Ĉ ≤ a p
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Multiple testing
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Post-hoc tests
Suppose you decide to look at all pairwise differences

Comparing all pairwise differences:  tests

 tests if  groups,
 tests if  groups,
 tests if  groups...

m = ( )K

2

m = 3 K = 3

m = 10 K = 5

m = 45 K = 10
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There is a catch...
Read the small prints:

If you do a single hypothesis test and 
your testing procedure is well calibrated  

(meaning the model assumptions are met), 
there is a probability  

of making a type I error 
if the null hypothesis is true.

α
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How many tests?
Dr. Yoav Benjamini looked at the number of tests performed in the Psychology
replication project
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science.
Science, 349(6251), aac4716.

The number of tests performed ranged from 4 to 700, with an average of 72.
Most studies did not account for selection.
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Scienti�st, investigate!
Consider the Cartoon Signi�cant by Randall Munroe (https://xkcd.com/882/)

It highlights two problems: lack of accounting for multiple testing and selective reporting.
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Probability of type I error
If we do  independent comparisons, each one at the level , the probability of
making at least one type I error, say , is

With 

 tests, .
 tests, .

Tests need not be independent... but one can show .

m α

α
⋆

α
⋆ = 1– probability of making no type I error = 1 − (1 − α)m.

α = 0.05

m = 4 α
⋆ ≈ 0.185

m = 72 α
⋆ ≈ 0.975

α
⋆ ≤ mα
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Statistical signi�cance at the 5% level
Why %? Essentially arbitrary...

If one in twenty does not seem high enough odds, we may, if we prefer
it, draw the line at one in �fty or one in a hundred. Personally, the writer
prefers to set a low standard of signi�cance at the 5 per cent point, and
ignore entirely all results which fails to reach this level.

Fisher, R.A. (1926). The arrangement of �eld experiments. Journal of the Ministry of Agriculture of
Great Britain, 33:503-513.

α = 5
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Family of hypothesis
Consider  tests with the corresponding null hypotheses .

The family may depend on the context, but including any hypothesis that is
scienti�cally relevant and could be reported.

Should be chosen a priori and pre-registered

Keep it small: the number of planned comparisons for a one-way ANOVA should
be less than the number of groups .

m H01, … ,H0m

K
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Notation
De�ne indicators

with

 the total number of rejections (  ).
 the number of null hypothesis rejected by mistake.

Ri = {
1 if we reject H0i

0 if we fail to reject H0i

Vi = {
1 type I error for H0i (Ri = 1 and H0i is true)
0 otherwise

R = R1 + ⋯ + Rm 0 ≤ R ≤ m

V = V1 + ⋯ + Vm
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Familywise error rate
De�nition: the familywise error rate is the probability of making at least one
type I error per family

If we use a procedure that controls for the family-wise error rate, we talk about
simultaneous inference (or simultaneous coverage for con�dence intervals).

FWER = Pr(V ≥ 1)
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Bonferroni's procedure
Consider a family of  hypothesis tests and perform each test at level .

reject th null  if the associated p-value .
build con�dence intervals similarly with  quantiles.

If the (raw) -values are reported, reject  if  (i.e., multiply reported -
values by )

m α/m

i Hi0 pi ≤ α/m

1 − α/m

p H0i m × pi ≤ α p

m
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Holm's sequential method
Order the -values of the family of  tests from smallest to largest

associated to null hypothesis .
Idea use a different level for each test, more stringent for smaller -values.
Coupling Holm's method with Bonferroni's procedure: compare  to ,  to

, etc.

Holm-Bonferroni procedure is always more powerful than Bonferroni

p m

p(1) ≤ ⋯ ≤ p(m)

H0(1), … ,H0(m)

p

p(1) α(1) = α/m p(2)

α(2) = α/(m − 1)
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Sequential Holm-Bonferroni procedure

�. order -values from smallest to largest.
�. start with the smallest -value.
�. check signi�cance one test at a time.
�. stop when the �rst non-signi�cant -value is found or

no more test.

p

p

p
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Reject smallest p-values until you
�nd one that fails, reject rest
If  but  for  (all
smaller -values)

reject 
fail to reject 

All p-values are lower than their
respective cutoff:
If  for all test 

reject 

Conclusion for Holm-Bonferroni

p(j) ≥ α(j) p(i) < α(i) i = 1, … , j − 1

p

H0(1), … ,H0(j−1)

H0(j), … ,H0(m)

p(i) ≤ α(i) i = 1, … , m

H0(1), … ,H0(m)
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Numerical example
Consider  tests with raw -values , , .

1
2
3

Reminder of Holm–Bonferroni: multiply by  the th smallest -value , compare the
product to .

m = 3 p 0.01 0.04 0.02

i p(i) Bonferroni Holm-Bonferroni

0.01 3 × 0.01 = 0.03 3 × 0.01 = 0.03

0.02 3 × 0.02 = 0.06 2 × 0.02 = 0.04

0.04 3 × 0.04 = 0.12 1 × 0.04 = 0.04

(m − i + 1) i p p(i)

α
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Why choose Bonferroni's procedure?
 must be prespeci�ed

simple and generally applicable (any design)
but dominated by sequential procedures (Holm-Bonferroni uniformly more
powerful)
low power when the number of test  is large
also controls for the expected number of false positive, , a more stringent
criterion called per-family error rate (PFER)

Careful: adjust for the real number of comparisons made (often reporter just correct only the
'signi�cant tests', which is wrong).

m

m

E(V )
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Con�dence intervals for linear contrasts
Given a linear contrast of the form

with , we build con�dence intervals as usual

Different methods provide control for FWER by modifying the critical value.
All methods valid with equal group variances and independent observations.

C = c1μ1 + ⋯ + cKμK

c1 + ⋯ cK = 0

Ĉ ± critical value × ŝe(Ĉ)
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FWER control in ANOVA
Tukey's honestly signi�cant difference (HSD) method: to compare (all)
pairwise differences between subgroups, based on the largest possible
pairwise mean differences, with extensions for unbalanced samples.
Scheffé's method: applies to any contrast (properties depends on sample
size  and number of groups , not the number of test). Better than Bonferroni
if  is large. Can be used for any design, but not powerful.
Dunnett's method: only for all pairwise contrasts relative to a speci�c
baseline (control).

Described in Dean, Voss and Draguljić (2017), Section 4.4 in more details.

n K

m
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Tukey's honest signi�cant difference
Control for all pairwise comparisons

Idea: controlling for the range

automatically controls FWER for other pairwise differences.

Critical values based on ''Studentized range'' distribution

Assumptions: equal variance, equal number of observations in each experimental condition.

max{μ1, … , μK} − min{μ1, … μK}
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Scheffé's criterion
Control for all 

possible linear contrasts

Critical value is , 
where  is the  quantile  
of the  distribution.

Allows for data snooping 
(post-hoc hypothesis)

But not powerful...

√(K − 1)F

F (1 − α)

F(K − 1, n − K)
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Adjustment for one-way ANOVA
Take home message:

same as Wald-based con�dence intervals, only with different critical values
larger cutoffs if procedure accounts for more tests

Everything is obtained using software.
Proceed only if there is a signi�cant difference between groups, i.e., if we reject
global null.
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Numerical example
With  groups and  individuals per group (arithmetic example), critical
value for two-sided test of zero difference with standardized -test statistic and 

% are

Scheffé's (all contrasts): 3.229
Tukey's (all pairwise differences): 2.856
Dunnett's (difference to baseline): 2.543
unadjusted Student's -distribution: 2.021

K = 5 n = 9

t

α = 5

t
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Sometimes, there are too many tests...
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Scaling back expectations...
A simultaneous procedure that controls family-wise error rate (FWER) ensure any
selected test has type I error .
With thousands of tests, this is too stringent a criterion.
The false discovery rate (FDR) provides a guarantee for the proportion among
selected discoveries (tests for which we reject the null hypothesis).
Why use it? the false discovery rate is scalable:

2 type I errors out of 4 tests is unacceptable.
2 type I errors out of 100 tests is probably okay.

α
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False discovery rate
Suppose that  out of  null hypothesis are true
The false discovery rate is the proportion of false discovery among rejected
nulls,

m0 m

FDR = {
R > 0 (if one or more rejection),

0 R = 0 (if no rejection).

V

R
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Controlling false discovery rate
The Benjamini-Hochberg (1995) procedure for controlling false discovery rate is:

�. Order the p-values from the  tests from smallest to largest: 
�. For level  (e.g., ), set

�. Reject .

m p(1) ≤ ⋯ ≤ p(m)

α α = 0.05

k = max{i : p(i) ≤ α}
i

m

H0(1), … ,H0(k)
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�. Plot p-values (y-axis) against their
rank (x-axis)

(the smallest p-value has rank , the
largest has rank ).

�. Draw the line 
(zero intercept, slope )

�. Reject all null hypotheses
associated to -values located
before the �rst time a point falls
above the line.

Benjamini-Hochberg in a picture

1

m

y = α/mx

α/m

p
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Recap 1
The test of equality of variance of the one-way ANOVA is seldom of interest
(too general or vague)
Rather, we care about speci�c comparisons (often linear contrasts)
Must specify ahead of time which comparisons are of interest

otherwise it's easy to �nd something signi�cant!
and multiplicity correction will be unfavorable.
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Recap 2
Researchers often carry lots of hypothesis testing tests

the more you look, the more you �nd!
One of the many reasons for the replication crisis!

Thus want to control probability of making a type I error (condemn innocent,
incorrect �nding) among all  tests performed

aka family-wise error rate (FWER)
Downside of multiplicity correction/adjustment is loss of power
upside is (more robust �ndings).

m
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Recap 3
ANOVA speci�c solutions (assuming equal variance, balanced large samples...)

Tukey's HSD (all pairwise differences),
Dunnett's method (only differences relative to a reference category)
Scheffé's method (all potential linear contrasts)

Outside of ANOVA, some more general recipes:

FWER: Bonferroni (suboptimal), Bonferroni-Holm (more powerful)
FDR: Benjamini-Hochberg

Pick the one that controls FWER, but penalizes less!
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