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Factorial designs and interactions

3 / 34



Complete factorial designs?

Factorial design 
study with multiple factors (subgroups)

Complete  
Gather observations for every subgroup
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Motivating example
Response: 

retention of information  
two hours after reading a story

Population:
children aged four

experimental factor 1: 
ending (happy or sad)

experimental factor 2:
complexity (easy, average or hard).
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Setup of design

complexity happy sad

complicated

average

easy

Factors are crossed
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Ef�ciency of factorial design

Cast problem
as a series of one-way ANOVA  

vs simultaneous estimation

Factorial designs requires 
fewer overall observations

Can study interactions
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Interaction

De�nition: when the effect of one factor 
depends on the levels of another factor.

Effect together
  

sum of individual effects
≠
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Interaction or pro�le plot

Graphical display:  
plot sample mean per category

with uncertainty measure 
(1 std. error for mean 

con�dence interval, etc.)
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Interaction: lines are not parallel
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No interaction: parallel lines
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Interaction plot for 2 by 2 design

12 / 34



Model formulation
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Formulation of the two-way ANOVA
Two factors:  (complexity) and  (ending) with  and  levels.
Write the average response  of the th measurement in group  as

where

 is the th replicate for th level of factor  and th level of factor 
 are independent error terms with mean zero and variance .

A B na nb

Yijr r (ai, bj)

Yijr

response

= μij

subgroup mean

+ εijr
error term

Yijr r i A j B

εijr σ2
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One average for each subgroup
 ending 

 complexity  (happy)  (sad) row mean

 (complicated)
 (average)
 (easy)

column mean

B

A
b1 b2

a1 μ11 μ12 μ1.

a2 μ21 μ22 μ2.

a3 μ31 μ32 μ3.

μ.1 μ.2 μ
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Mean of  (average of row ):

Mean of  (average of column ):

Overall average (overall all rows
and columns):

Row, column and overall average

Ai i

μi. =
μi1 + ⋯ + μinb

nb

Bj j

μ.j =
μ1j + ⋯ + μnaj

na

μ =

∑
na

i=1
∑

nb

j=1
μij

nanb
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De�nitions

simple effects: difference
between levels of one in a �xed
combination of others (change in
dif�culty for happy ending)
main effects: differences relative
to average for each condition of a
factor (happy vs sad ending)
interaction effects: when simple
effects differ depending on levels
of another factor

What it means relative to the table

simple effects are comparisons
between cell averages within a
given row or column

main effects are comparisons
between row or column averages

interaction effects are difference
relative to the row or column
average

Vocabulary of effects
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happy sad

column means
complexity

row
means

complicated

average

easy

Marginal effects

μ.1 μ.2

μ1.

μ2.

μ3.
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happy sad

means (easy)
complexity

mean
(happy)

complicated

average

easy

Simple effects

μ1. μ2.

μ11

μ21

μ31
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Contrasts
Suppose the order of the coef�cients is factor  (complexity, 3 levels,
complicated/average/easy) and factor  (ending, 2 levels, happy/sad).

test
main effect  (complicated vs average)
main effect  (complicated vs easy)
main effect  (happy vs sad)
interaction  (comp. vs av, happy vs sad)
interaction  (comp. vs easy, happy vs sad)

A

B

μ11 μ12 μ21 μ22 μ31 μ32

A 1 1 −1 −1 0 0

A 1 1 0 0 −1 −1

B 1 −1 1 −1 1 −1

AB 1 −1 −1 1 0 0

AB 1 −1 0 0 −1 1
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Hypothesis tests for main effects
Generally, need to compare multiple effects at once

Main effect of factor 

:  vs : at least two marginal means of  are different

Main effect of factor 

:  vs : at least two marginal means of  are different.

A

H0 μ1. = ⋯ = μna. Ha A

B

H0 μ.1 = ⋯ = μ.nb Ha B
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Equivalent formulation of the two-way ANOVA
Write the model for a response variable  in terms of two factors , .

where

mean of level  minus overall mean.

mean of level  minus overall mean.

the interaction term for  and .

Y ai bj

Yijr = μ + αi + βj + (αβ)ij + εijr

αi = μi. − μ

ai

βj = μ.j − μ

bj

(αβ)ij = μij − μi. − μ.j + μ

ai bj
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One average for each subgroup
 ending 

 complexity  (happy)  (sad) row mean

 (complicated)
 (average)
 (easy)

column mean

More parameters than data cells!

The model in terms of ,  and  is overparametrized.

B

A
b1 b2

a1 μ + α1 + β1 + (αβ)11 μ + α1 + β2 + (αβ)12 μ + α1

a2 μ + α2 + β1 + (αβ)21 μ + α2 + β2 + (αβ)22 μ + α2

a3 μ + α3 + β1 + (αβ)31 μ + α3 + β2 + (αβ)32 μ + α3

μ + β1 μ + β2 μ

α β (αβ)
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Sum-to-zero parametrization
Too many parameters!

Impose sum to zero constraints

which imposes  constraints.

na

∑
i=1

αi = 0,
nb

∑
j=1

βj = 0,
nb

∑
j=1

(αβ)ij = 0,
na

∑
i=1

(αβ)ij = 0.

1 + na + nb
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Why use the sum to zero parametrization?
Testing for main effect of :

Testing for main effect of :

Testing for interaction between  and :

In all cases, alternative is that at least two coef�cients are different.

A

H0 : α1 = ⋯ = αna = 0

B

H0 : β1 = ⋯ = βnb
= 0

A B

H0 : (αβ)11 = ⋯ = (αβ)nanb
= 0
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Seeking balance

Balanced sample 
(equal nb of obs per group)

With  replications per subgroup, 
total sample size is .

nr

n = nanbnr
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Why balanced design?
With equal variance, this is the optimal allocation of treatment unit.

maximize power

Estimated means for main and total effects correspond to marginal averages.

equiweighting

Unambiguous decomposition of effects of ,  and interaction.

orthogonality
A B
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Rewriting observations
(yijr − μ̂)

obs vs grand mean  (total)

= (μ̂i. − μ̂)
row mean vs grand mean(A)

+ (μ̂.j − μ̂)
col mean vs grand mean(B)

+ (μ̂ij − μ̂i. − μ̂.j + μ̂)
cell mean vs additive effect(AB)

+ (yijr − μ̂ij)
obs vs cell mean (resid)
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Decomposing variability
Constructing statistics as before by decomposing variability into blocks.
We can square both sides and sum over all observations.
With balanced design, all cross terms cancel, leaving us with the sum of square
decomposition

SStotal = SSA + SSB + SSAB + SSresid.
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Sum of square decomposition
The sum of square decomposition

is an estimator of the population variance decomposition

where , , etc.

Take ratio of variability (effect relative to residual) and standardize numerator
and denominator to build an  statistic.

SStotal = SSA + SSB + SSAB + SSresid.

σ2
total

= σ2
A

+ σ2
B

+ σ2
AB

+ σ2
resid

.

σ2
A = n−1

a ∑
na

i=1 α2
i σ2

AB = (nanb)−1 ∑
na

i=1 ∑
nb

j=1(αβ)2
ij

F
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Analysis of variance table
term degrees of freedom mean square

residuals
total

Read the table backward (starting with the interaction).

If there is a signi�cant interaction, the main effects are not of interest and
potentially misleading.

F

A na − 1 MSA = SSA/(na − 1) MSA/MSres

B nb − 1 MSB = SSB/(nb − 1) MSB/MSres

AB (na − 1)(nb − 1) MSAB = SSAB/{(na − 1)(nb − 1)} MSAB/MSres

n − nanb MSresid = SSres/(n − ab)

n − 1

31 / 34



Intuition behind degrees of freedom
 ending 

 complexity  (happy)  (sad) row mean

 (complicated)
 (average)
 (easy)

column mean
Terms with  are fully determined by row/column/total averages

B

A
b1 b2

a1 μ11 X μ1.

a2 μ21 X μ2.

a3 X X X

μ.1 X μ

X
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Multiplicity correction
With equal sample size and equal variance, usual recipes for ANOVA hold.
Correction depends on the effect: e.g., for factor , the critical values are

Bonferroni:  quantile of 
Tukey: Studentized range (qtukey)

level ,  groups,  degrees of freedom.
Scheffé: critical value is 

 is  quantile of .

Software implementations available in emmeans in R.

A

1 − α/(2m) St(n − nanb)

1 − α/2 na n − nanb

{(na − 1)f1−α
}1/2

f1−α
1 − α F(ν1 = na − 1, ν2 = n − nanb)
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Numerical example
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