Complete factorial designs

Session 6

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Unbalanced designs

Multifactorial designs

Unbalanced designs

Premise

So far, we have exclusively considered balanced samples

balanced = same number of observational units in each subgroup

Most experiments (even planned) end up with unequal sample sizes.

Noninformative drop-out

Unbalanced samples may be due to many causes, including randomization (need not balance) and loss-to-follow up (dropout)

If dropout is random, not a problem

• Example of Baumann, Seifert-Kessel, Jones (1992):

Because of illness and transfer to another school, incomplete data were obtained for one subject each from the TA and DRTA group

Problematic drop-out or exclusion

If loss of units due to treatment or underlying conditions, problematic!

Rosensaal (2021) rebuking a study on the effectiveness of hydrochloriquine as treatment for Covid19 and reviewing allocation:

Of these 26, six were excluded (and incorrectly labelled as lost to follow-up): three were transferred to the ICU, one died, and two terminated treatment or were discharged

Sick people excluded from the treatment group! then claim it is better. Worst: "The index [treatment] group and control group were drawn from different centres."

Why seek balance?

Two main reasons

- 1. Power considerations: with equal variance in each group, balanced samples gives the best allocation
- 2. Simplicity of interpretation and calculations: the interpretation of the *F* test in a linear regression is unambiguous

Finding power in balance

Consider a t-test for assessing the difference between treatments *A* and *B* with equal variability

$$t = rac{ ext{estimated difference}}{ ext{estimated variability}} = rac{(\widehat{\mu}_A - \widehat{\mu}_B) - 0}{ ext{se}(\widehat{\mu}_A - \widehat{\mu}_B)}.$$

The standard error of the average difference is

$$\sqrt{rac{ ext{variance}_A}{ ext{nb of obs. in }A} + rac{ ext{variance}_B}{ ext{nb of obs. in }B}} = \sqrt{rac{\sigma^2}{n_A} + rac{\sigma^2}{n_B}}$$

Optimal allocation of ressources

The allocation of $n = n_A + n_B$ units that minimizes the std error is $n_A = n_B = n/2$.

Example: tempting fate

We consider data from Multi Lab 2, a replication study that examined Risen and Gilovich (2008) who

explored the belief that tempting fate increases bad outcomes. They tested whether people judge the likelihood of a negative outcome to be higher when they have imagined themselves [...] tempting fate [...] (by not reading before class) or not [tempting] fate (by coming to class prepared). Participants then estimated how likely it was that [they] would be called on by the professor (scale from 1, not at all likely, to 10, extremely likely).

The replication data gathered in 37 different labs focuses on a 2 by 2 factorial design with gender (male vs female) and condition (prepared vs unprepared) administered to undergraduates.

- We consider a 2 by 2 factorial design.
- The response is likelihod
- The experimental factors are condition and gender
- Two data sets: RS_unb for the full data, RS_bal for the artificially balanced one.

Load data Check balance Marginal means

```
summary_stats <-
  RS_unb |>
  group_by(condition) |>
  summarize(nobs = n(),
            mean = mean(likelihood))
```

Summary statistics				
condition	nobs	mean		
unprepared	2192	4.606		
prepared	2241	4.060		

Marginal means for condition				
condition	emmean	SE		
unprepared	4.504	0.0540		
prepared	4.022	0.0535		

Note unequal standard errors.

Explaining the discrepancies

Estimated marginal means are based on equiweighted groups:

$$\widehat{\mu}=rac{1}{4}(\widehat{\mu}_{11}+\widehat{\mu}_{12}+\widehat{\mu}_{21}+\widehat{\mu}_{22})$$

where $\widehat{\mu}_{ij} = n_{ij}^{-1} \sum_{r=1}^{n_{ij}} y_{ijr}$.

The sample mean is the sum of observations divided by the sample size.

The two coincide when $n_{11} = \cdots = n_{22}$.

Why equal weight?

- The ANOVA and contrast analyses, in the case of unequal sample sizes, are generally based on marginal means (same weight for each subgroup).
- This choice is justified because research questions generally concern comparisons of means across experimental groups.

Revisiting the *F* statistic

Statistical tests contrast competing **nested** models:

- an alternative (full) model
- a null model, which imposes restrictions (a simplification of the alternative models)

The numerator of the *F*-statistic compares the sum of square of a model with (given) main effect, etc. to a model without.

What is explained by condition?

Consider the 2 × 2 factorial design with factors A: gender and B: condition (prepared vs unprepared) without interaction.

What is the share of variability (sum of squares) explained by the experimental condition?

Comparing differences in sum of squares (1)

Consider a balanced sample

The difference in sum of squares is 141.86 in both cases.

Comparing differences in sum of squares (2)

Consider an unbalanced sample

The differences of sum of squares are respectively 330.95 and 332.34.

Orthogonality

Balanced designs yield orthogonal factors: the improvement in the goodness of fit (characterized by change in sum of squares) is the same regardless of other factors.

So effect of B and $B \mid A$ (read B given A) is the same.

- test for $B \mid A$ compares ss(A, B) ss(A)
- for balanced design, ss(A, B) = ss(A) + ss(B) (factorization).

We lose this property with unbalanced samples: there are distinct formulations of ANOVA.

Analysis of variance - Type I (sequential)

The default method in **R** with anova is the sequential decomposition: in the order of the variables *A*, *B* in the formula

- So *F* tests are for tests of effect of
 - \circ A, based on ss(A)
 - $\circ B \mid A$, based on ss(A, B) ss(A)
 - \circ AB | A, B **based on** SS(A, B, AB) SS(A, B)

Ordering matters

Since the order in which we list the variable is **arbitrary**, these *F* tests are not of interest.

Analysis of variance - Type II

Impact of

- $A \mid B$ based on ss(A, B) ss(B)
- $B \mid A$ based on ss(A, B) ss(A)
- $AB \mid A, B$ based on ss(A, B, AB) ss(A, B)
- tests invalid if there is an interaction.
- In **R**, USE car::Anova(model, type = 2)

Analysis of variance - Type III

Most commonly used approach

- Improvement due to A | B, AB, B | A, AB and AB | A, B
- What is improved by adding a factor, interaction, etc. given the rest
- may require imposing equal mean for rows for A | B, AB, etc.
 - (**requires** sum-to-zero parametrization)
- valid in the presence of interaction
- but *F*-tests for main effects are not of interest
- In **R**, USE car::Anova(model, type = 3)

ANOVA for unbalanced data

model <- lm(
 likelihood ~ condition * gender,
 data = RS_unb)
Three distinct decompositions
anova(model) #type 1
car::Anova(model, type = 2)
car::Anova(model, type = 3)</pre>

ANOVA (type I)

	Df	Sum Sq	F value	
gender	1	164.94	29.1	
condition	1	332.34	58.7	
gender:condition	1	36.55	6.5	
Residuals	4429	25086.33		

	Df	Sum Sq	F value		
gender	1	166.33	29.4		
condition	1	332.34	58.7		
gender:condition	1	36.55	6.5		
Residuals	4429	25086.33			
ANOVA (type III)					
	Df				
	Ы	Sum Sq	F value		
gender	וש 1	Sum Sq 167.71	F value 29.6		
gender condition	1 1	Sum Sq 167.71 227.88	F value 29.6 40.2		
gender condition gender:condition	1 1 1 1	Sum Sq 167.71 227.88 36.55	F value 29.6 40.2 6.5		

 $\Lambda N \cap (A (+) \cap A H)$

ANOVA for balanced data

model2 <- lm(
 likelihood ~ condition * gender,
 data = RS_bal)
anova(model2) #type 1
car::Anova(model2, type = 2)
car::Anova(model2, type = 3)
Same answer - orthogonal!</pre>

ANOVA (type I)

	Df	Sum Sq	F value	
condition	1	141.86	24.1	
gender	1	121.69	20.6	
condition:gender	1	37.88	6.4	
Residuals	2500	14733.84		

ANOVA (type II)					
	Df	Sum Sq	F value		
condition	1	141.86	24.1		
gender	1	121.69	20.6		
condition:gender	1	37.88	6.4		
Residuals	2500	14733.84			
ANOVA (type III)					
	Α (ιγμ	e m)			
	Df	Sum Sq	F value		
condition	Df	Sum Sq 141.86	F value 24.1		
condition gender	A (typ Df 1 1	Sum Sq 141.86 121.69	F value 24.1 20.6		
condition gender condition:gender	Df 1 1 1	Sum Sq 141.86 121.69 37.88	F value 24.1 20.6 6.4		

Recap

- If each observation has the same variability, a balanced sample maximizes power.
- Balanced designs have interesting properties:
 - estimated marginal means coincide with (sub)samples averages
 - $\circ\;$ the tests of effects are unambiguous
 - \circ for unbalanced samples, we work with marginal means and type 3 ANOVA
 - if empty cells (no one assigned to a combination of treatment), cannot estimate corresponding coefficients (typically higher order interactions)

Practice

From the OSC psychology replication

People can be influenced by the prior consideration of a numerical anchor when forming numerical judgments. [...] The anchor provides an initial starting point from which estimates are adjusted, and a large body of research demonstrates that adjustment is usually insufficient, leading estimates to be biased towards the initial anchor.

Replication of Study 4a of Janiszewski & Uy (2008, Psychological Science) by J. Chandler

Multifactorial designs

Beyond two factors

We can consider multiple factors A, B, C, ... with respectively n_a , n_b , n_c , ... levels and with n_r replications for each.

The total number of treatment combinations is

 $n_a imes n_b imes n_c imes \cdots$

Curse of dimensionality

Full three-way ANOVA model

Each cell of the cube is allowed to have a different mean

 $Y_{ijkr} = \mu_{ijk} + arepsilon_{ijkr}$ response cell mean error

with ε_{ijkt} are independent error term for

- row *i*
- column _j
- depth *k*
- replication *r*

Parametrization of a three-way ANOVA model

With the **sum-to-zero** parametrization with factors *A*, *B* and *C*, write the response as

 $egin{aligned} \mathsf{E}(Y_{ijkr}) &= & \mu \ ext{global mean} \ &+ lpha_i + eta_j + \gamma_k \ ext{main effects} \ &+ & (lphaeta)_{ij} + (lpha\gamma)_{ik} + (eta\gamma)_{jk} \ ext{two-way interactions} \ &+ & (lphaeta\gamma)_{ijk} \end{aligned}$

three-way interaction

global mean, row, column and depth main effects

row/col, row/depth and col/depth interactions and three-way interaction.

Example of three-way design

Petty, Cacioppo and Heesacker (1981). Effects of rhetorical questions on persuasion: A cognitive response analysis. Journal of Personality and Social Psychology.

A $2 \times 2 \times 2$ factorial design with 8 treatments groups and n = 160 undergraduates.

Setup: should a comprehensive exam be administered to bachelor students in their final year?

- **Response** Likert scale on -5 (do not agree at all) to 5 (completely agree)
- Factors
- A: strength of the argument (strong Or weak)
- B: involvement of students low (far away, in a long time) or high (next year, at their university)
- C: style of argument, either regular form or rhetorical (Don't you think?, ...)

Interaction plot

Interaction plot for a $2 \times 2 \times 2$ factorial design from Petty, Cacioppo and Heesacker (1981)

mean agreement rating

strength — strong — weak

The microwave popcorn experiment

What is the best brand of microwave popcorn?

• Factors

- brand (two national, one local)
- power: 500W and 600W
- time: 4, 4.5 and 5 minutes
- **Response**: weight, volume, number, percentage of popped kernels.
- Pilot study showed average of 70% overall popped kernels (10% standard dev), timing values reasonable
- Power calculation suggested at least r = 4 replicates, but researchers proceeded with r = 2...

Model assumptions: plots and tests are meaningless with $(n_r=2)$ replications per group...

ANOVA QQ-plot R code Interaction plot

All points fall roughly on a straight line.

time (min) — 4m — 4m30s — 5m

No evidence of three-way interaction (hard to tell with r = 2 replications).

Analysis of variance table for balanced designs

terms degrees of freedom

A	n_a-1
В	n_b-1
C	n_c-1
AB	$(n_a-1)(n_b-1)$
AC	$(n_a-1)(n_c-1)$
BC	$(n_b-1)(n_c-1)$
ABC	$(n_a-1)(n_b-1)(n_c-1)$
residual	$n_a n_b n_c (R-1)$
total	$n_a n_b n_c n_r - 1$

Analysis of variance table for microwave-popcorn

	Degrees of freedom	Sum of squares	Mean square	F statistic	p- value
brand	2	331.10	165.55	1.89	0.180
power	1	455.11	455.11	5.19	0.035
time	2	1554.58	777.29	8.87	0.002
brand:power	2	196.04	98.02	1.12	0.349
brand:time	4	1433.86	358.46	4.09	0.016
power:time	2	47.71	23.85	0.27	0.765
brand:power:time	4	47.33	11.83	0.13	0.967
Residuals	18	1577.87	87.66		

Omitting terms in a factorial design

The more levels and factors, the more parameters to estimate (and replications needed)

- Costly to get enough observations / power
- The assumption of normality becomes more critical when r = 2!

It may be useful not to consider some interactions if they are known or (strongly) suspected not to be present

• If important interactions are omitted from the model, biased estimates/output!

Guidelines for the interpretation of effects

Start with the most complicated term (top down)

- If the three-way interaction *ABC* is significative:
 - don't interpret main effects or two-way interactions!
 - \circ comparison is done cell by cell within each level
- If the *ABC* term isn't significative:
 - $\circ~$ can marginalize and interpret lower order terms
 - back to a series of two-way ANOVAs

What contrasts are of interest?

• Can view a three-way ANOVA as a series of one-way ANOVA or two-way ANOVAs...

Depending on the goal, could compare for variable A

- marginal contrast ψ_A (averaging over B and C)
- marginal conditional contrast for particular subgroup: ψ_A within c_1
- contrast involving two variables: ψ_{AB}
- contrast differences between treatment at $\psi_A \times B$, averaging over *c*.
- etc.

See helper code and chapter 22 of Keppel & Wickens (2004) for a detailed example.

Effects and contrasts for microwave-popcorn

Following preplanned comparisons

- Which combo (brand, power, time) gives highest popping rate? (pairwise comparisons of all combos)
- Best brand overall (marginal means marginalizing over power and time, assuming no interaction)
- Effect of time and power on percentage of popped kernels
- pairwise comparison of time × power
- main effect of power
- main effect of time

Preplanned comparisons using emmeans

Let *A*=brand, *B*=power, *C*=time

Compare difference between percentage of popped kernels for 4.5 versus 5 minutes, for brands 1 and 2

 $\mathscr{H}_0:(\mu_{1.2}-\mu_{1.3})-(\mu_{2.2}-\mu_{2.3})=0$

Preplanned comparisons

Compare all three times (4, 4.5 and 5 minutes)

At level 99% with Tukey's HSD method

• Careful! Potentially misleading because there is a brand * time interaction present.