Complete factorial designs

Session 6

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Unbalanced designs

Multifactorial designs

Unbalanced designs

Premise

So far, we have exclusively considered balanced samples

balanced = same number of observational units in each subgroup

Most experiments (even planned) end up with unequal sample sizes.

Noninformative drop-out

Unbalanced samples may be due to many causes, including randomization (need not balance) and loss-to-follow up (dropout)

If dropout is random, not a problem

• Example of Baumann, Seifert-Kessel, Jones (1992):

Because of illness and transfer to another school, incomplete data were obtained for one subject each from the TA and DRTA group

Problematic drop-out or exclusion

If loss of units due to treatment or underlying conditions, problematic!

Rosensaal (2021) rebuking a study on the effectiveness of hydrochloriquine as treatment for Covid19 and reviewing allocation:

Of these 26, six were excluded (and incorrectly labelled as lost to follow-up): three were transferred to the ICU, one died, and two terminated treatment or were discharged

Sick people excluded from the treatment group! then claim it is better. Worst: "The index [treatment] group and control group were drawn from different centres."

Why seek balance?

Two main reasons

- 1. Power considerations: with equal variance in each group, balanced samples gives the best allocation
- 2. Simplicity of interpretation and calculations: the interpretation of the $_{F}$ test in a linear regression is unambiguous

Finding power in balance

Consider a t-test for assessing the difference between treatments ${\scriptscriptstyle A}$ and ${\scriptscriptstyle B}$ with equal variability

$$
t = \frac{\text{estimated difference}}{\text{estimated variability}} = \frac{(\widehat{\mu}_A - \widehat{\mu}_B) - 0}{\text{se}(\widehat{\mu}_A - \widehat{\mu}_B)}.
$$

The standard error of the average difference is

$$
\sqrt{\frac{\mathrm{variance}_A}{\mathrm{nb}\;\mathrm{of}\;\mathrm{obs.}\;\mathrm{in}\;A}+\frac{\mathrm{variance}_B}{\mathrm{nb}\;\mathrm{of}\;\mathrm{obs.}\;\mathrm{in}\;B}}=\sqrt{\frac{\sigma^2}{n_A}+\frac{\sigma^2}{n_B}}
$$

Optimal allocation of ressources

The allocation of $n = n_A + n_B$ units that minimizes the std error is $n_A = n_B = n/2$.

Example: tempting fate

We consider data from Multi Lab 2, a replication study that examined Risen and Gilovich (2008) who

explored the belief that tempting fate increases bad outcomes. They tested whether people judge the likelihood of a negative outcome to be higher when they have imagined themselves [...] tempting fate [...] (by not reading before class) or not [tempting] fate (by coming to class prepared). Participants then estimated how likely it was that [they] would be called on by the professor (scale from 1, not at all likely, to 10, extremely likely).

The replication data gathered in 37 different labs focuses on a 2 by 2 factorial design with gender (male vs female) and condition (prepared vs unprepared) administered to undergraduates.

- We consider a 2 by 2 factorial design.
- The response is likelihod
- The experimental factors are condition and gender
- Two data sets: RS_unb for the full data, RS_bal for the artificially balanced one.

```
summary stats <-
  RS unb |>group by (condition) |>
  summarize(nobs = n().
            mean = mean(likelihood))
```


```
# Enforce sum-to-zero parametrization
options(contrasts = rep("contr.sum"
, 2))
# Anova is a linear model, fit using 'lm'
# 'aov' only for *balanced data*
model \leftarrow lm(
  likelihood ~ gender * condition,
  data = RS unb)
library(emmeans)
emm <- emmeans(model,
               specs = "condition")
```


Note unequal standard errors.

Explaining the discrepancies

Estimated marginal means are based on equiweighted groups:

$$
\widehat{\mu}=\frac{1}{4}\big(\widehat{\mu}_{11}+\widehat{\mu}_{12}+\widehat{\mu}_{21}+\widehat{\mu}_{22}\big)
$$

where $\widehat{\mu}_{ij} = n_{ij}^{-1} \sum_{r=1}^{n_{ij}} y_{ijr}$.

The sample mean is the sum of observations divided by the sample size.

The two coincide when $n_{11} = \cdots = n_{22}$.

Why equal weight?

- The ANOVA and contrast analyses, in the case of unequal sample sizes, are generally based on marginal means (same weight for each subgroup).
- This choice is justified because research questions generally concern comparisons of means across experimental groups.

Revisiting the $_F$ statistic \overline{F}

Statistical tests contrast competing **nested** models:

- an alternative (full) model
- a null model, which imposes restrictions (a simplification of the alternative models)

The numerator of the $_{F}$ -statistic compares the sum of square of a model with (given) main effect, etc. to a model without.

What is explained by condition?

Consider the $_{2\times 2}$ factorial design with factors $_A$: gender and $_B$: condition (prepared vs unprepared) without interaction.

What is the share of variability (sum of squares) explained by the experimental condition?

Comparing differences in sum of squares (1)

Consider a balanced sample

```
anova(lm(likelihood ~ 1, data = RS_bal),lm(likelihood ~condition, data = RS_bal))# When gender is present
anova(lm(likelihood ~ gender, data = RS_bal),
      lm(likelihood \sim gender + condition, data = RS_bal)
```
The difference in sum of squares is 141.86 in both cases.

Comparing differences in sum of squares (2)

Consider an unbalanced sample

```
anova(lm(likelihood ~ 1, data = RS_unb)),lm(likelihood ~ condition,
         data = RS_unb))
# When gender is present
anova(lm(likelihood ~square) data = RS_unb),
      lm(likelihood ~ gender + condition,
         data = RS_unb))
```
The differences of sum of squares are respectively 330.95 and 332.34.

Orthogonality

Balanced designs yield orthogonal factors: the improvement in the goodness of fit (characterized by change in sum of squares) is the same regardless of other factors.

So effect of ${}_B$ and ${}_{B\,|\,A}$ (read ${}_B$ given ${}_A$) is the same.

- test for $B \mid A$ compares $ss(A, B) ss(A)$
- for balanced design, $\text{ss}_{(A, B) =} \text{ss}_{(A) +} \text{ss}_{(B)}$ (factorization).

We lose this property with unbalanced samples: there are distinct formulations of ANOVA.

Analysis of variance - Type I (sequential)

The default method in $\mathbb R$ with anova is the sequential decomposition: in the order of the variables $_A$, $_B$ in the formula

- So $_F$ tests are for tests of effect of
	- $_A$, based on $ss(A)$
	- $B \mid A$, based on ss(A, B) ss(A)
	- $AB \mid A, B$ based on ss(A, B, AB) ss(A, B)

Ordering matters

Since the order in which we list the variable is $\operatorname{\mathsf{arbitrary}}$, these ${_F}$ tests are not of interest.

Analysis of variance - Type II

Impact of

- $A \mid B$ based on ss(A, B) ss(B)
- $B \mid A$ based on ss(A, B) ss(A)
- $AB \mid A, B$ based on ss(A, B, AB) ss(A, B)
- tests invalid if there is an interaction.
- \bullet In R, use car::Anova(model, type = 2)

Analysis of variance - Type III

Most commonly used approach

- Improvement due to $A \mid B, AB$, $B \mid A, AB$ and $AB \mid A, B$
- What is improved by adding a factor, interaction, etc. given the rest
- may require imposing equal mean for rows for $A|B$, AB , etc.
	- (requires sum-to-zero parametrization)
- valid in the presence of interaction
- but $_F$ -tests for main effects are not of interest
- \bullet In R, use car::Anova(model, type = 3)

ANOVA for unbalanced data

model $<-$ lm(likelihood \sim condition $*$ gender, $data = RS_unb)$ # Three distinct decompositions anova(model) #type 1 car::Anova(model, type = 2) car::Anova(model, type = 3)

ANOVA (type I)

ANOVA $($ type II)

ANOVA for balanced data

model2 $<-$ lm(likelihood \sim condition \star gender, $data = RS_bal)$ anova(model2) #type 1 car::Anova(model2, type = 2) car::Anova(model2, type = 3) # Same answer - orthogonal!

ANOVA (type I)

ANOVA $($ type II)

Recap

- If each observation has the same variability, a balanced sample maximizes power.
- Balanced designs have interesting properties:
	- \circ estimated marginal means coincide with (sub)samples averages
	- \circ the tests of effects are unambiguous
	- \circ for unbalanced samples, we work with marginal means and type 3 ANOVA
	- \circ if empty cells (no one assigned to a combination of treatment), cannot estimate corresponding coefficients (typically higher order interactions)

Practice

From the OSC psychology replication

People can be influenced by the prior consideration of a numerical anchor when forming numerical judgments. [...] The anchor provides an initial starting point from which estimates are adjusted, and a large body of research demonstrates that adjustment is usually insufficient, leading estimates to be biased towards the initial anchor.

Replication of Study 4a of Janiszewski & Uy (2008, [Psychological](https://osf.io/aaudl/) Science) by J. Chandler

Multifactorial designs

Beyond two factors

We can consider multiple factors ${\scriptscriptstyle A}$, ${\scriptscriptstyle B}$, ${\scriptscriptstyle C}$, $...$ with respectively ${\scriptscriptstyle n_a}$, ${\scriptscriptstyle n_b}$, ${\scriptscriptstyle n_c}$, $...$ levels and with ${}_{n_{r}}$ replications for each.

The total number of treatment combinations is

 $n_a \times n_b \times n_c \times \cdots$

Curse of dimensionality

Full three-way ANOVA model

Each cell of the cube is allowed to have a different mean

 $Y_{ijkr} \;=\; \; \mu_{ijk} \;\; + \varepsilon_{ijkr}$ response cell mean error

with $_{\varepsilon_{ijkt}}$ are independent error term for

- row i
- column j
- depth $_k$
- replication $_r$

Parametrization of a three-way ANOVA model

With the $\mathsf{sum}\text{-to}\text{-zero}$ parametrization with factors ${\scriptscriptstyle{A}}$, ${\scriptscriptstyle{B}}$ and ${\scriptscriptstyle{C}}$, write the response as

 $E(Y_{i\,ikr})$ theoretical average μ global mean $+\alpha_i + \beta_j + \gamma_k$ main effects $+(\alpha\beta)_{ij}+(\alpha\gamma)_{ik}+(\beta\gamma)_{ik}$ two-way interactions $+ \qquad (\alpha\beta\gamma)_{iik}$

three-way interaction

global mean, row, column and depth main effects

row/col, row/depth and col/depth interactions and three-way interaction.

Example of three-way design

Petty, Cacioppo and Heesacker (1981). Effects of rhetorical questions on persuasion: A cognitive response analysis. Journal of Personality and Social Psychology.

A $\scriptstyle 2 \times 2 \times 2$ factorial design with 8 treatments groups and $\scriptstyle n =$ 160 undergraduates.

Setup: should a comprehensive exam be administered to bachelor students in their final year?

- Response Likert scale on −5 (do not agree at all) to 5 (completely agree)
- Factors
- $\scriptstyle\cal A$: strength of the argument ($\scriptstyle\rm strons$ or <code>weak)</code>
- $\,$ involvement of students $\,$ l ow (far away, in a long time) or $\,$ h $\,$ igh (next year, at their university)
- c : style of argument, either <code>regular</code> form or <code>rhetorical</code> (Don't you think?, ...)

Interaction plot

Interaction plot for a $2 \times 2 \times 2$ factorial design from Petty, Cacioppo and Heesacker (1981)

mean agreement rating

strength $-$ strong $$ weak

The microwave popcorn experiment

What is the best brand of microwave popcorn?

Factors

- brand (two national, one local)
- power: 500W and 600W
- \bullet time: 4, 4.5 and 5 minutes
- Response: weight, volume, number, percentage of popped kernels.
- Pilot study showed average of 70% overall popped kernels (10% standard dev), timing values reasonable
- Power calculation suggested at least $r=4$ replicates, but researchers proceeded with $r = 2...$

```
data(popcorn, package = 'hecedsm')
# Fit model with three-way interaction
model \leq aov(percentage \sim brand*power*time,
             data = popcorn)
# ANOVA table - 'anova' is ONLY for balanced designs
anova_table <- anova(model)
# Quantile-quantile plot
car::qqPlot(model)
```
Model assumptions: plots and tests are meaningless with $(n_r=2)$ replications per group...

[ANOVA](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=anova#panelset1_anova) [QQ-plot](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=qq-plot#panelset1_qq-plot) R [code](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=r-code#panelset1_r-code) [Interaction](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=interaction-plot#panelset1_interaction-plot) plot

All points fall roughly on a straight line.

```
popcorn |>
   group_by(brand, time, power) |>
   summarize(meanp = mean(percentage)) |>
ggplot(mapping = aes(x = power,y = meanp,col = time,group = time)) +
 geom_line() +
 facet_wrap(~brand)
```
[ANOVA](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=anova#panelset1_anova) [QQ-plot](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=qq-plot#panelset1_qq-plot) R [code](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=r-code#panelset1_r-code) [Interaction](file:///home/lbelzile/Documents/website/experimental/slides/06-slides.html?panelset1=interaction-plot#panelset1_interaction-plot) plot

 $time (min)$ - 4m - 4m30s - 5m

No evidence of three-way interaction (hard to tell with $r = 2$ replications).

Analysis of variance table for balanced designs

terms degrees of freedom

Analysis of variance table for microwave-popcorn

Omitting terms in a factorial design

The more levels and factors, the more parameters to estimate (and replications needed)

- Costly to get enough observations / power
- The assumption of normality becomes more critical when $_{r \, = \, 2}$!

It may be useful not to consider some interactions if they are known or (strongly) suspected not to be present

• If important interactions are omitted from the model, biased estimates/output!

Guidelines for the interpretation of effects

Start with the most complicated term (top down)

- If the three-way interaction $_{ABC}$ is significative:
	- \circ don't interpret main effects or two-way interactions!
	- \circ comparison is done cell by cell within each level
- If the $_{ABC}$ term isn't significative:
	- \circ can marginalize and interpret lower order terms
	- back to a series of two-way ANOVAs

What contrasts are of interest?

Can view a three-way ANOVA as a series of one-way ANOVA or two-way ANOVAs...

Depending on the goal, could compare for variable $_A$

- marginal contrast $_{\psi_A}$ (averaging over ${}_B$ and ${}_C)$
- marginal conditional contrast for particular subgroup: $_{\psi_A}$ within $_{c_1}$
- contrast involving two variables: $_{\psi_{AB}}$
- contrast differences between treatment at $_{\psi_A\times B}$, averaging over $c.$
- e etc.

See helper code and chapter 22 of Keppel & Wickens (2004) for a detailed example.

Effects and contrasts for microwave-popcorn

Following preplanned comparisons

- Which combo (brand, power, time) gives highest popping rate? (pairwise comparisons of all combos)
- Best brand overall (marginal means marginalizing over power and time, assuming no interaction)
- Effect of time and power on percentage of popped kernels
- pairwise comparison of time \times power
- main effect of power
- main effect of time

Preplanned comparisons using emmeans

Let $_A$ =brand, $_B$ =power, $_C$ =time

Compare difference between percentage of popped kernels for 4.5 versus 5 minutes, for brands 1 and 2

 $\mathscr{H}_0 : (\mu_{1,2} - \mu_{1,3}) - (\mu_{2,2} - \mu_{2,3}) = 0$

```
library(emmeans)
# marginal means
emm_popcorn_AC <- emmeans(model,
                          specs = c("brand", "time")contrast_list <-
 list(
    brand12with4.5vs5min = c(0, 0, 0, 1, -1, 0, -1, 1, 0))
contrast(emm_popcorn_AC, # marginal mean (no time)
         method = contrast_list) # list of contrasts
```
Preplanned comparisons

Compare all three times (4, 4.5 and 5 minutes)

At level 99% with Tukey's HSD method

• Careful! Potentially misleading because there is a brand $*$ time interaction present.

```
# List of variables to keep go in `specs`: keep only time
emm_popcorn_C <- emmeans(model, specs = "time")
pairs(emm_popcorn_C,
      adjust = "tukev".level = 0.99,infer = TRUE)
```