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Beyond between-designs
Each subject (experimental unit) assigned to a single condition.

individuals (subjects) are nested within condition/treatment.

In many instances, it may be possible to randomly assign multiple conditions to
each experimental unit.
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Benefits of within-designs
Assign (some or) all treatments to subjects and measure the response.
Benefits:

Each subject (experimental unit) serves as its own control (greater
comparability among treatment conditions).
Filter out effect due to subject (like blocking):

increased precision
increased power (tests are based on within-subject variability)

Impact: need smaller sample sizes than between-subjects designs

5 / 32



Drawbacks of within-designs
Potential sources of bias include

Period effect (e.g., practice or fatigue).
Carryover effects.
Permanent change in the subject condition after a treatment assignment.
Loss of subjects over time (attrition).
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Minimizing sources of bias
Randomize the order of treatment conditions among
subjects
or use a balanced crossover design and include the period and carryover
effect in the statistical model (confounding or control variables to better
isolate the treatment effect).
Allow enough time between treatment conditions to reduce or eliminate
period or carryover effects.

7 / 32



One-way ANOVA with a random effect
As before, we have one experimental factor  with  levels, with

where  and  are random variables.
The errors and random effects are independent from one another.

A na
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global mean

+ αj

mean difference
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Variance components
The model parameters are , 's,  and .

The global average is .
The variance of the response  is .
The intra-class correlation between observations in group  is .

observations from the same subject are correlated
observations from different subjects are independent

This dependence structure within group is termed compound symmetry.
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Example: happy fakes
An experiment conducted in a graduate course at HEC gathered
electroencephalography (EEG) data.
The response variable is the amplitude of a brain signal measured at 170 ms
after the participant has been exposed to different faces.
Repeated measures were collected on 12 participants, but we focus only on the
average of the replications.
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The control (real) is a true image, whereas the other
were generated using a generative adversarial
network (GAN) so be slightly smiling (GAN1) or
extremely smiling (GAN2, looks more fake).
Research question: do the GAN image trigger
different reactions (pairwise difference with
control)?


 


Experimental conditions
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Models for repeated measures
If we average, we have a balanced randomized blocked design with

id (blocking factor)
stimulus (experimental factor)

This approach has a drawback: variance estimates can be negative...
We use the afex package to model the within-subject structure.
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# Set sum-to-zero constraint for factors

options(contrasts = c("contr.sum", "contr.poly"))

data(AA21, package = "hecedsm")

# Compute mean

AA21_m <- AA21 |>

  dplyr::group_by(id, stimulus) |>

  dplyr::summarize(latency = mean(latency))
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file:///home/lbelzile/Documents/website/experimental/slides/09-slides.html?panelset=load-data#panelset_load-data
file:///home/lbelzile/Documents/website/experimental/slides/09-slides.html?panelset=graph#panelset_graph
file:///home/lbelzile/Documents/website/experimental/slides/09-slides.html?panelset=anova#panelset_anova


library(ggplot2)

ggplot(data = AA21_m,

       aes(x = id,

           colour = stimulus,

           y = latency)) +

  geom_point()
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No detectable difference between
conditions.

Residual degrees of freedom: 
 for  subjects and 

 levels.

model <- afex::aov_ez(

  id = "id",           # subject id

  dv = "latency",      # response

  within = "stimulus", # within-subject

  data = hecedsm::AA21,

  fun_aggregate = mean)

anova(model, # mixed ANOVA model

      correction = "none", # sphericity

      es = "none") # effect size

# Anova Table (Type 3 tests)

# 

# Response: latency

#          num Df den Df   MSE     F Pr(>F)

# stimulus      2     22 1.955 0.496 0.6155

(na − 1) × (ns − 1) = 22 ns = 12

na = 3
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Model assumptions
The validity of the  null distribution relies on the model having the correct
structure.

Same variance per observation
equal correlation between measurements of the same subject (compound
symmetry)
normality of the random effect

F
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Sphericity
Since we care only about differences in treatment, can get away with a weaker
assumption than compound symmetry.
Sphericity: variance of difference between treatment is constant.
Typically, people test this assumption (using e.g., Mauchly's test of sphericity)

if statistically significant, use a correction
if no evidence, proceed with  tests as usualF
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Corrections for sphericity
Box suggested to multiply both degrees of freedom of  statistic by .

Three common correction factors :
Greenhouse-Geisser
Huynh-Feldt (more powerful, but can be larger than 1)
lower bound with , giving .

Another option is to go fully multivariate.

F ϵ < 1

ϵ

ν1 F(1, ν2/ν1)
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Sphericity tests with afex

summary(model)

Mauchly Tests for Sphericity

         Test statistic p-value

stimulus        0.67814 0.14341

Greenhouse-Geisser and Huynh-Feldt Corrections

 for Departure from Sphericity

          GG eps Pr(>F[GG])

stimulus 0.75651     0.5667

            HF eps Pr(>F[HF])

stimulus 0.8514944  0.5872648
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Contrasts
In within-subject designs, contrasts are obtained by computing the contrast for
every subject. Make sure to check degrees of freedom!

# Set up contrast vector

cont_vec <- list("real vs GAN" = c(1, -0.5, -0.5))

model |> emmeans::emmeans(spec = "stimulus", contr = cont_vec)

## $emmeans

##  stimulus emmean    SE df lower.CL upper.CL

##  real      -10.8 0.942 11    -12.8    -8.70

##  GAN1      -10.8 0.651 11    -12.3    -9.40

##  GAN2      -10.3 0.662 11    -11.8    -8.85

## 

## Confidence level used: 0.95 

## 

## $contrasts

##  contrast    estimate    SE df t.ratio p.value

##  real vs GAN   -0.202 0.552 11  -0.366  0.7213 18 / 32



Multivariate analysis of variance
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Motivational example
From Anandarajan et al. (2002), Canadian Accounting Perspective

This study questions whether the current or proposed Canadian
standard of disclosing a going-concern contingency is viewed as
equivalent to the standard adopted in the United States by financial
statement users. We examined loan officers’ perceptions across three
different formats
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Alternative going-concern reporting formats
Bank loan officers were selected as the appropriate financial statement users for
this study.
Experiment was conducted on the user’s interpretation of a
going-concern
contingency when it is provided in one of three
disclosure formats:

1. Integrated note (Canadian standard)
2. Stand-alone note (Proposed standard)
3. Stand-alone note plus modified report with explanatory
paragraph (standard

adopted in US and other countries)
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Multivariate response
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Why use MANOVA?
1. Control experimentwise error

do a single test, reduces type I error
2. Detect differences in combination that would not be found with univariate

tests
3. Increase power (context dependent)
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Multivariate model
Postulate the following model:

Each response  is -dimensional.
We assume multivariate measurements are independent of one another, with

the same distribution
same covariance matrix 
same mean vector  within each  experimental groups.

(randomization)

The model is fitted using multivariate linear regression.

Yij ∼ Nop(μj, Σ), j = 1, … J

Yij p

Σ

μj j = 1, … , J
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Confidence ellipses for bivariate
MANOVA with discriminant analysis.
The diagonal line is the best
separating plane between the two.
One-way analysis of variance would
have lower power to detect
differences.

Bivariate MANOVA
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Confidence intervals and confidence regions
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Model assumptions
The more complex the model, the more assumptions...

Same as ANOVA, with in addition

The data follow a multivariate normal distribution
Shapiro–Wilk test, univariate QQ-plots

The covariance matrix is the same for all subjects
Box's  test is often used, but highly sensitive to departures from the null
(other assumptions impact the test)

Normality matters more in small samples.

M
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When to use MANOVA?
In addition, for this model to make sense, you need just enough correlation
(Goldilock principle)

if correlation is weak, use univariate analyses
(no gain from multivariate approach)
less power due to additional covariance parameter estimation

if correlation is too strong, redundancy
don't use Likert scales that measure a similar dimension

Only combine elements that theoretically or conceptually make sense
together.
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Testing equality of mean vectors
The null hypothesis is  against the alternative that at least one vector
is different from the rest. The null imposes  restrictions on the
parameters.
With  (bivariate), the MANOVA test finds the best composite score with
weights for  and  that maximizes the value of the -test.
The null distribution is Hotelling's , but a modification of the test statistic can
be approximated by a  distribution.

H0 : μ1 = ⋯ = μJ

(J − 1) × p

J = 2

Yi1 Yi2 t

T 2

F
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Choice of test statistic
In higher dimensions, with , there are many statistics that can be used to test
equality of mean.
The statistics are constructed from within/between sum covariance matrices.
These are

Roy's largest root (most powerful provided all assumptions hold)
Wilk's : most powerful, most commonly used
Pillai's trace: most robust choice for departures from normality or equality of
covariance matrices

Most give similar conclusion, and they are all equivalent with .

J ≥ 3

Λ

J = 2
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Sample size for MANOVA
The number of observations must be sufficiently large.
You can use the software G*Power for power calculations.
To achieve a power of 80%, need the following number of replicates per group.

3 groups 4 groups 5 groups
effect size \ p 2 4 6 8 2 4 6 8 2 4 6 8
very large 13 16 18 21 14 18 21 23 16 21 24 27
large 26 33 38 42 29 37 44 48 34 44 52 58
medium 44 56 66 72 50 64 74 84 60 76 90 100
small 98 125 145 160 115 145 165 185 135 170 200 230

Laüter, J. (1978), Sample size requirements for the  test of MANOVA (tables for one-way
classification). Biometrical Journal, 20, 389-406.

T
2
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Post hoc testing
Researchers often conduct post hoc univariate tests using univariate ANOVA.
In R, Holm-Bonferonni's method is applied for marginal tests. You need to
correct for multiple testing!
A better option is to proceed with descriptive discriminant analysis, a method
that tries to find the linear combinations of the vector means to discriminate
between groups.
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