Introduction to mixed models

Session 10

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Fixed effects

All experiments so far treated factors as **fixed** effects.

• We estimate a mean parameter for each factor (including blocking factors in repeated measures).

Change of scenery

Assume that the levels of a factor form a random sample from a large population.

We are interested in making inference about the **variability** of the factor.

- measures of performance of employees
- results from different labs in an experiment
- subjects in repeated measures

We treat the factor as a **random** effect.

Fixed vs random effects

There is no consensual definition, but Gelman (2005) lists a handful, of which:

When a sample exhausts the population, the corresponding variable is fixed; when the sample is a small (i.e., negligible) part of the population the corresponding variable is random [Green and Tukey (1960)].

Effects are fixed if they are interesting in themselves or random if there is interest in the underlying population (e.g., Searle, Casella and McCulloch [(1992), Section 1.4])

Random effect model

Consider a one-way model

 $Y_{ij} = \mu + lpha_j + arepsilon_{ij} + arepsilon_{ij} \, .$ response global mean random effect error term

where

- $\alpha_j \sim No(0, \sigma_{\alpha}^2)$ is normal with mean zero and variance σ_{α}^2 .
- ε_{ij} are independent No(0, σ_{ε}^2)

Fictional example

Consider the weekly number of hours spent by staff members at HEC since September.

We collect a random sample of 40 employees and ask them to measure the number of hours they work from school for 8 consecutive weeks.

Fitting mixed models in **R**

We use the lme4 package in **R** to fit the models.

The ImerTest package provides additional functionalities for testing.

• Imer function fits linear mixed effect regression

Random effects are specified using the notation (1 | factor).

Model fit

```
library(lmerTest) # also loads lme4
rmod <- lmer(time ~ (1 | id), data = hecedsm::workhours)
summary_rmod <- summary(rmod)</pre>
```

```
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 38.63 6.215
Residual 5.68 2.383
Number of obs: 320, groups: id, 40
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 23.3016 0.9917 39.0000 23.5 <2e-16 ***</pre>
```

Intra-class correlation

We are interested in the variance of the **random effect**, σ_{α}^2 .

Measurements from the same individuals are correlated. The intra-class correlation between measurements Y_{ij} and Y_{ik} from subject i at times $j \neq k$ is

$$ho = rac{\sigma_lpha^2}{\sigma_lpha^2 + \sigma_arepsilon^2}$$

In the example, $\widehat{\sigma}_{\alpha}^2 = 38.63$, $\widehat{\sigma}_{\varepsilon}^2 = 5.68$ and $\hat{\rho} = 0.87$.

The mean number of working hours on the premises is $\hat{\mu} = 23.3$ hours.

Confidence intervals

We can use confidence intervals for the parameters.

Those are based on profile likelihood methods (asymmetric).

(conf <- confint(rmod, oldNames = FALSE))</pre>

##		2.5 %	97.5 %
##	<pre>sd_(Intercept) id</pre>	4.978127	7.799018
##	sigma	2.198813	2.595272
##	(Intercept)	21.335343	25.267782

The variability of the measurements and between employees is very different from zero.

Mixed models

Mixed models include both fixed effects and random effects.

- Fixed effects for experimental manipulations
- Random effects for subject, lab factors

Mixed models make it easier to

- handle correlations between measurements and
- account for more complex designs.

Theory

Full coverage of linear mixed models and general designs is beyond the scope of the course, but note

- Estimation is performed via restricted maximum likelihood (REML)
- Testing results may differ from repeated measure ANOVA
- Different approximations for *F* degrees of freedom (either Kenward-Roger (costly) or Satterthwaite approximation)

Structure of the design

It is important to understand how data were gathered.

Oelhert (2010) guidelines

- 1. Identify sources of variation
- 2. Identify whether factors are crossed or nested
- 3. Determine whether factors should be fixed or random
- 4. Figure out which interactions can exist and whether they can be fitted.

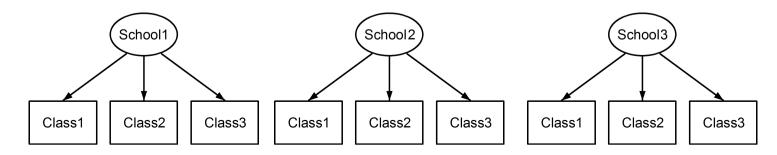
Crossed vs nested effects

Nested effects if a factor appears only within a particular level of another factor.

Crossed is for everything else (typically combinations of factors are possible).

Example of nested random effects: class nested within schools

• class 1 is not the same in school 1 than in school 2



Formulae in **R**

R uses the following notation

• group1/group2 means group2 is nested within group1.

The formula expands to group1 + group1:group2.

• group1*group2 means group and group2 are **crossed**

The formula is a shorthand for group1 + group2 + group1:group2. To fit the model, identifiers of subjects must be declared as factors (categorical variables).

Specifying interactions

Consider factors A, B and C.

- If factor *A* is treated as random, interactions with *A* must be random too.
- There must be repeated measurements to estimate variability of those interactions.
- Testing relies on the variance components.

Data structure

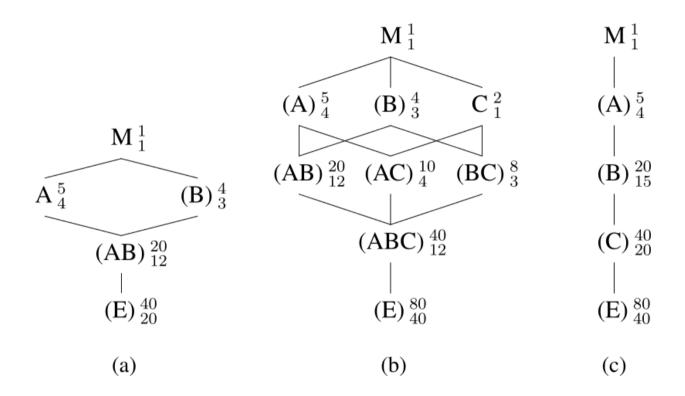


Figure 12.1: Hasse diagrams: (a) two-way factorial with A fixed and B random, A and B crossed; (b) three-way factorial with A and B random, C fixed, all factors crossed; (c) fully nested, with B fixed, A and C random. In all cases, A has 5 levels, B has 4 levels, and C has 2 levels.

Example: Curley et al. (2022)

Two variables were manipulated within participants: (a) evidence anchor (strong-first versus weak-first); (b) verdict system (two- versus three-verdict systems). Total pre-trial bias score was used as a covariate in the analysis (this score is based on the PJAQ and is explained further in the Materials section). Participants were also given two vignettes (Vignette 1 and Vignette 2); thus, the vignette variable was included in the data analysis [...]

The dependent variable was the final belief of guilt score, which was measured on an accumulated scale from 0–14, with 0 representing no belief of guilt and 14 representing a total belief that the person is guilty

Example: chocolate rating

Example from L. Meier, adapted from Oehlert (2010)

A group of 10 rural and 10 urban raters rated 4 different chocolate types. Every rater got to eat two samples from the same chocolate type in random order.