Introduction to experimental design

Session 1

MATH 80667A: Experimental Design and Statistical Methods HEC Montréal

Outline

Class details

Motivation

Key concepts in experimental designs

Class details

Course content

Content

- Basics of experimental design
- Statistical inference
- Completely randomized designs
- Analysis of variance
- Blocked designs
- Analysis of covariance
- Intro to mixed models
- Intro to causal inference
- Linear mediation analysis

Cross-disciplinary skills

- Scientific workflow
- Peer-review
- Reporting
- Statistical fallacies
- Reproducibility

Prerequisites

Math skills

Basic algebra

Computer science

None

Statistics

At the level of OpenIntro Statistics (Chapter 1)

Motivation

History

Experiments on agricultural trials in Rothamsted ongoing since 1843

ECN ROTHAMSTED

Rothamsted (Latitude 51° 48' 34.44" N; Longitude 0° 21' 22.76" W) is located about 35 km North of London, UK. It covers about 330 ha, all of which is included within the Rothamsted ECN site. The estate contains several ecosystems, including managed arable and grassland fields, naturally regenerated and ancient woodland, the river Ver and more recently energy crops e.g. short rotation coppice willow and miscanthus grass. The Park Grass Hay Experiment (est. 1856) is the principal target sample site (TSS) for the majority of the ECN protocols at Rothamsted. This experiment is widely acknowledged to be the oldest continuing agro-ecological experiment in the world; it is recognised internationally as an important site for long-term studies on biodiversity and ecology. The experimental plot on Park Grass of most interest to the ECN, in relation to physical and atmospheric inputs is Plot 3, Section d (Plot 3d). This plot receives no inorganic or organic inputs apart from atmospheric deposition.

Modern experiments: A/B testing

	♀ 204	1,63	n 🔿	1,8 k	₾	Vous po
	Afficher cett	e discussion				
tl	Twitter Desig	n a retweeté				
3	Joey Banks I think one of opportunity shared patte	@joeyabanks - f the most exc to create align erns. With toda	11 août iting challenges i ment between pl y's visual update	n design syster atforms when i e, the compone	m work is an it comes to nts powering	
	Twitter's reve	enue & develop	er products rece	eived a redesig	n, too! 🔆	
	C Age 300 - 5	Module title	Economy Chinary New Company	Cattor Analy Cattor Analy Cattor Analytics and to per	National Nutrienton-context	Voir plus
		Remined later From input last	Ad proofs Ad group details Compression Other	0 - Eber Lines End I New Lines End I Lines	anten Oofwahl butten Large butten Inten Default butten Large butten Mitter Oofwahl butten	Co qui c
	Calcut description X placed two,	The description.	nn Devices en Custon auforces nn Tegering hatures n Pacamente	Cyclin ree Opt	ter ter an	
	Calvad description X placed here. X Golout description X placed here. X	Title The description.	Creatives Creatives	Module title	Engelsen: V Later Value	Looking at
		Dialog header			/ Value	Taliban

Evidence-based policy

RAND health insurance study

Student Teacher Achievement Ratio (STAR)

Nobel memorial prize

Business

3 share Nobel Prize in economics for 'experimental approach' to solving poverty

The Washington Post

Democracy Dies in Darkness

Esther Duflo, who at 46 is the award's youngest winner, shares the hor fellow MIT economist Abhijit Banerjee and Harvard's Michael Kremer

Pioneers in fight against poverty win 2019 Nobel economics prize

ABDUL LATIF JAMEEL POVERTY ACTION LAB

Massachusetts Institute of Technology (MIT) ② @MIT · 5h Professors Esther Duflo and Abhijit Banerjee, co-directors of MIT's @JPAL , receive congratulations on the big news this morning. They share in the #NobelPrize in economic sciences "for their experimental approach to alleviating global poverty."

Photo: Bryce Vickmark

+

Review

Population and sampling

Defining a target population

Sampling frame

Where to draw sample from

Sampling procedure

Randomness

Convenience samples and non-response bias

Sampling scheme

Simple random sampling

Stratified sampling

Cluster sampling

Multi-stage sampling

Judging the quality of a sample

Summary statistics

Raw data

Pre-testing

Experiments as gold-standard

BIDG An International Journal of Obstetrics and Gynaecology

BJOG Research Methods Guides | 🙃 Free Access

Randomised controlled trials – the gold standard for effectiveness research

Study design: randomised controlled trials

Eduardo Hariton, Joseph J Locascio

First published: 19 June 2018 | https://doi.org/10.1111/1471-0528.15199 | Citations: 121

Randomised controlled trials (RCTs) are the reference standard for studying **causal relationships** between interventions and outcomes as randomisation eliminates much of the bias inherent with other study designs.

Study type versus sampling

ideal Random No random observation experiment assignment assignment studies	most						
assignment assignment studies	observational	No random	ideal Random				
	studies	assignment	assignment	experiment			
Random sampling Causal conclusion, generalized to the whole population. No causal conclusion, correlation statement generalized to the whole population. Causal conclusion, correlation statement generalized to the whole population.	, t ole Generalizability	No causal conclusion, correlation statement generalized to the whole population.	Causal conclusion, generalized to the whole population.	Random sampling			
No random sampling Causal conclusion, only for the sample. No causal conclusion, correlation statement only for the sample.	ny No generalizability	No causal conclusion, correlation statement only for the sample.	Causal conclusion, only for the sample.	No random sampling			
most Causation Correlation bad observation	bad observational	Correlation	Causation	most experiments			

Experimental versus observational

How the Illinois Wellness Program Affected ...

Source: What Do Workplace Wellness Programs Do? Evidence from the Illinois Workplace Wellness Study

Key concepts in experimental design

Technical vocabulary

Experimental unit

Observational unit

Factor

Impact of encouragement on teaching

From Davison (2008), Example 9.2

In an investigation on the teaching of arithmetic, 45 pupils were divided at random into five groups of nine. Groups A and B were taught in separate classes by the usual method. Groups C, D, and E were taught together for a number of days. On each day C were praised publicly for their work, D were publicly reproved and E were ignored. At the end of the period all pupils took a standard test.

Exercise

In pairs, identify

- the experimental and observational units
- the factor levels
- the response variable

Comparing groups (factor levels)

- Without any intervention, variability in output from one observation to the next.
- Differences between groups are **comparatively stable**.

Choices in experimental designs

- factor levels being compared
- observations to be made (number of repetitions, etc.)
- experimental units

Requirements for good experiments

- 1. Absence of systematic error
- 2. Precision
- 3. Range of validity
- 4. Simplicity of the design

Absence of systematic error

- Achieved via randomization
- Controlling the environment

Precision

Precision

- depends on the intrinsic variability
- function of
 - 1. accuracy of experimental work
 - 2. number of experimental units / repetitions per unit
 - 3. design and methods of analysis

Range of validity

- What is population?
- Identify restrictions
- Extrapolation
 - if proper random sampling scheme
 - range of validity

Simplicity of the design

 Simple designs lead to simple statistical analyses

STATISTICS TIP: ALWAYS TRY TO GET DATA THAT'S GOOD ENOUGH THAT YOU DON'T NEED TO DO STATISTICS ON IT