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Outline

Hypothesis tests for ANOVA

Model assumptions
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F-test for one way ANOVA

Global null hypothesis
No difference between treatments

•  (null): all of the  treatment groups have the same average 
•  (alternative): at least two treatments have different averages

Tacitly assume that all observations have the same standard deviation .

H0 K μ
Ha

σ
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null model alternative model added variability

Building a statistic
•  is observation  of group 
•  are sample averages of groups 
•  is the overall sample mean

Decomposing variability into bits
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F-test statistic

Omnibus test
With  groups and  observations, the statistic isK n

F =

=

between-group variability

within-group variability

between sum of squares/(K − 1)

within sum of squares/(n − K)
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Ratio of variance

Data with equal mean (left) and different mean per group (right).
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What happens under the null regime?
If all groups have the same mean, both numerator and denominator are
estimators of , thus

• the  ratio should be 1 on average if there are no mean differences.
• but the numerator is more variable because it is based on  observations

◦ benchmark is skewed to the right.

σ2

F
K
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Null distribution and degrees of freedom
The null distribution (benchmark) is a Fisher distribution .

The parameters  are called degrees of freedom.
For the one-way ANOVA:

•  is the number of constraints imposed by the null (number of
groups minus one)

•  is the number of observations minus number of mean
parameters estimated under alternative

F(ν1, ν2)

ν1, ν2

ν1 = K − 1

ν2 = n − K
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Fisher distribution

Note: the  distribution is indistinguishable from  for  large.F(ν1, ν2) χ2(ν1) ν2
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Impact of encouragement on teaching
From Davison (2008), Example 9.2

In an investigation on the teaching of arithmetic, 45 pupils were
divided at random into �ve groups of nine. Groups A and B were taught
in separate classes by the usual method. Groups C, D, and E were
taught together for a number of days. On each day C were praised
publicly for their work, D were publicly reproved and E were ignored. At
the end of the period all pupils took a standard test.
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Formulating an hypothesis
Let  denote the population average (expectation) score for the
test for each experimental condition.
The null hypothesis is

against the alternative  that at least one of the population average is
different.

μA, … , μE

H0 : μA = μB = ⋯ = μE

Ha
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F statistic

term df sum of square mean square statistic p-value
group 4 722.67 180.67 15.27 < 1e-04
Residuals 40 473.33 11.83
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The p-value gives the probability of
observing an outcome as extreme if
the null hypothesis was true.

Probability that a  exceeds
15.27.

P-value

F(4, 40)
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Model assumptions
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Quality of approximations
• The null and alternative hypothesis of the analysis of variance only specify

the mean of each group
• We need to assume more to derive the behaviour of the statistic

All statements about p-values
are approximate.

Read the �ne print conditions!
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Additivity and linearity

Independence

Equal variance

Large sample size

Model assumptions

16 / 42



Alternative representation
Write th observation of th experimental group as

where, for  and ,

•  (mean zero) and
•  (equal variance)
• errors are independent from one another.

i k

Yik
observation

= μk
mean of group

+ εik
error term

,

i = 1, … , nk k = 1, … , K

E(εik) = 0
Va(εik) = σ2
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# 1: Additivity
Additive decomposition reads:

• each unit is unaffected by the treatment of the other units
• average effect of the treatment is constant

( quantity depending

on the treatment used
) + ( quantity depending only 

on the particular unit
)
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Diagnostic plots for additivity
Plot group averages  against residuals , where .

By construction, sample mean of  is always zero.

{μ̂k} {eik} eik = yik − μ̂k

eik
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Lack of additivity
Less improvement for scores of stronger students.

Plot and context suggests multiplicative structure. Tempting to diagnose unequal variance.
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Interpretation of residual plots

Look for potential patterns
on the -axis only!y
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Multiplicative structure
Multiplicative data of the form

tend to have higher variability when the response is larger.

( quantity depending

on the treatment used
) × ( quantity depending only 

on the particular unit
)
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Fixes for multiplicative data
A log-transformation of response makes the model additive.
For responses bounded between  and , reduce warping effects via

Careful with transformations:

• lose interpretability
• change of meaning (different scale/units).

a b

ln{ }x − a + δ

b + δ − x
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Interactions
Plot residuals against other explanatories.
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A note about interactions
An interaction occurs when the effect of experimental group depends on
another variable.
In principle, randomization ensures we capture the average marginal effect
(even if misleading/useless).
We could incorporate the interacting variable in the model capture it's effect
(makes model more complex), e.g. using a two-way ANOVA.
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# 2: Equal variance

Each observation
has the same

standard deviation .

ANOVA is quite sensitive to this assumption!

σ
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Graphical diagnostics
Plot standardized ( ) or studentized residuals ( ) against �tted
values.
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Test diagnostics
Can use a statistical test for .

• Bartlett's test (assumes normal data)
• Levene's test: a one-way ANOVA for 
• Brown–Forsythe test: a one-way ANOVA for  (more robust)
• Fligner-Killeen test: based on ranks

Different tests may yield different conclusions

H0 : σ1 = ⋯ = σK

|yik − μ̂k|
|yik − mediank|
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Example in R

Fail to reject the null: no evidence of unequal variance
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Box's take
To make the preliminary test on variances is rather like putting to sea
in a rowing boat to �nd out whether conditions are suf�ciently calm for
an ocean liner to leave port!

Box, G.E.P. (1953). Non-Normality and Tests on Variances. Biometrika 40 (3)-4: 318–335.
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Solutions
• In large sample, power is large so probably always reject

.
• If heterogeneity only per experimental condition, use Welch's ANOVA

(  in R).
• This statistic estimates the std. deviation of each group separately.
• Could (should?) be the default when you have large number of observations,

or enough to reliably estimate mean and std. deviation.

H0 : σ1 = ⋯ = σK
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What can go wrong? Spurious �ndings!

Reject null hypothesis more often even if no difference in mean! 32 / 42



More complex heterogeneity patterns
• Variance-stabilizing transformations (e.g., log for counts)
• Explicit model for trend over time, etc. may be necessary in more complex

design (repeated measure) where there is a learning effect.
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# 3: Independence

No visual diagnostic or test available.

Rather, infer from context.

As a Quebecer, I am not allowed to talk about this topic.
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Checking independence
• Repeated measures are not independent
• Group structure (e.g., people performing experiment together and

exchanging feedback)
• Time dependence (time series, longitudinal data).
• Dependence on instrumentation, experimenter, time of the day, etc.

Observations close by tend to be more alike (correlated).
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# 4: Sample size (normality?)

Where does the -distribution come from?

Normality of group average

This holds (in great generality)
because of the

central limit theorem

F
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Central limit theorem
In large samples, the sample mean is approximately normally distributed.

Top row shows data generating mechanism and a sample, bottom row shows the distribution of the
sample mean of  and  observations.n = 30 n = 50 37 / 42



How large should my sample be?

Rule of thumb: 20 or 30 per group

Gather suf�cient number of observations.
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Assessing approximate normality
The closer data are to being normal, the better the large-sample distribution
approximation is.
Can check normality via quantile-quantile plot with standardized residuals :

• on the -axis, the theoretical quantiles  of the
residuals, where  is the normal quantile function.

• on the -axis, the empirical quantiles 

ri

x F̂
−1

{rank(ri)/(n + 1)}
F −1

y ri

In R, use functions  or  to produce the plots.
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More about quantile-quantile plots
The ordered residuals should align on a straight line.

Normal quantile-quantile plot (left) and Tukey's mean different QQ-plot (right).
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Recap 1

• One-way analysis of variance compares average of
experimental groups

• Null hypothesis: all groups have the same average
• Easier to detect when the null hypothesis is false if:
◦ large differences group average
◦ small variability
◦ large samples
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Recap 2

• Model assumes independent observations, additive
structure and equal variability in each group.

• All statements are approximate, but if model
assumptions are invalid, can lead to spurious results
or lower power.

42 / 42


