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Factorial designs and interactions
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Complete factorial designs?

Factorial design
study with multiple factors (subgroups)

Complete
Gather observations for every subgroup
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Motivating example
Response:

retention of information
two hours after reading a story

Population:
children aged four

experimental factor 1:
ending (happy or sad)

experimental factor 2:
complexity (easy, average or hard).
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Setup of design

complexity happy sad

complicated

average

easy
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Ef�ciency of factorial design

Cast problem
as a series of one-way ANOVA
vs simultaneous estimation

Factorial designs requires
fewer overall observations

Can study interactions
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Interaction

De�nition: when the effect of one factor
depends on the levels of another factor.

Effect together
≠

sum of individual effects
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Interaction or pro�le plot

Graphical display:
plot sample mean per category

with uncertainty measure
(1 std. error for mean

con�dence interval, etc.)
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Interaction plots and parallel lines
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Interaction plots for 2 by 2 designs
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Cell means for 2 by 2 designs
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Sharma, Tully, and Cryder (2021)
Supplementary study 5 consists of a
2 × 2 between-subject ANOVA with
factors

• debt type ( ), either "loan"
or "credit"

•  type, either
 or not ( ) No evidence of interaction

Example 1 : loans versus credit
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Maglio and Polman (2014) Study 1
uses a 4 × 2 between-subject ANOVA
with factors

• subway , one of Spadina,
St. George, Bloor-Yonge and
Sherbourne

•  of travel, either east or
west Clear evidence of interaction

(symmetry?)

Example 2 - psychological distance
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https://doi.org/10.1177/0956797614530571
https://doi.org/10.1177/0956797614530571


Tests for two-way ANOVA
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Analysis of variance = regression
An analysis of variance model is simply a linear regression with categorical
covariate(s).

• Typically, the parametrization is chosen so that parameters re�ect
differences to the global mean (sum-to-zero parametrization).

• The full model includes interactions between all combinations of factors
◦ one average for each subcategory
◦ one-way ANOVA!
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Formulation of the two-way ANOVA
Two factors: A (complexity) and B (ending) with na = 3 and nb = 2 levels, and
their interaction.
Write the average response Yijr of the rth measurement in group (ai, bj) as

E(Yijr)average response = μijsubgroup mean

where Yijr are independent observations with a common std. deviation σ.

• We estimate μij by the sample mean of the subgroup (i, j), say μ̂ij.
• The �tted values are ŷijr = μ̂ij.
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One average for each subgroup
B

A
b
1

 ( ) b
2

 ( ) row mean

a1 ( ) μ11 μ12 μ1.

a2 ( ) μ21 μ22 μ2.

a3 ( ) μ31 μ32 μ3.

column mean μ.1 μ.2 μ
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• Mean of Ai (average of row i):

μi . =

μi1 + ⋯ + μinb

nb

• Mean of Bj (average of column j):

μ . j =

μ1j + ⋯ + μnaj

na

• Overall average:

μ =

∑
na
i= 1
∑
nb
j= 1
μij

nanb

• Row, column and overall averages are
equiweighted combinations of the cell
means μij.

• Estimates are obtained by replacing μij in
formulas by subgroup sample mean.

Row, column and overall average
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Vocabulary of effects
• simple effects: difference between levels of one in a �xed combination of

others (change in dif�culty for happy ending)
• main effects: differences relative to average for each condition of a factor

(happy vs sad ending)
• interaction effects: when simple effects differ depending on levels of

another factor
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Main effects are comparisons
between row or column averages
Obtained by marginalization, i.e.,
averaging over the other dimension.
Main effects are not of interest if
there is an interaction.

happy sad

column means μ.1 μ.2

complexity
row
means

complicated μ1.

average μ2.

easy μ3.

Main effects
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Simple effects are comparisons
between cell averages within a given
row or column

happy sad

means (easy) μ13 μ23

complexity
mean
(happy)

complicated μ11

average μ21

easy μ31

Simple effects
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Contrasts
We collapse categories to obtain a one-way ANOVA with categories A
(complexity) and B (ending).
Q: How would you write the weights for contrasts for testing the

• main effect of A: complicated vs average, or complicated vs easy.
• main effect of B: happy vs sad.
• interaction A and B: difference between complicated and average, for happy

versus sad?

The order of the categories is (a1, b1), (a1, b2), …, (a3, b2).
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Contrasts
Suppose the order of the coef�cients is factor A (complexity, 3 levels,
complicated/average/easy) and factor B (ending, 2 levels, happy/sad).

test μ
11
μ
12
μ
21
μ
22
μ
31
μ
32

main effect A (complicated vs average) 1 1 −1 −1 0 0

main effect A (complicated vs easy) 1 1 0 0 −1 −1

main effect B (happy vs sad) 1 −1 1 −1 1 −1

interaction AB (comp. vs av, happy vs sad) 1 −1 −1 1 0 0

interaction AB (comp. vs easy, happy vs sad) 1 −1 0 0 −1 1
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Global hypothesis tests

Main effect of factor A

H0: μ1. = ⋯ = μna .  vs Ha: at least two marginal means of A are different

Main effect of factor B

H0: μ.1 = ⋯ = μ .nb
 vs Ha: at least two marginal means of B are different

Interaction

H0: μij = μi ⋅ + μ ⋅ j (sum of main effects) vs Ha: effect is not a combination of
row/column effect. 25 / 39



Comparing nested models
Rather than present the speci�cs of ANOVA, we consider a general hypothesis
testing framework which is more widely applicable.
We compare two competing models

• the alternative or full model Ha
• the simpler null model H0, which imposes ν restrictions on the full model
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Intuition behind F-test for ANOVA
The more complex �ts better (it is necessarily more �exible), but requires
estimation of more parameters.

• Test compares the goodness-of-�t and attempts to determine what is the
improvement that would occur by chance, if the null model was correct,
given ν additional parameters.
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Testing linear restrictions in linear models
If the alternative model has p parameters for the mean, and we impose ν linear
restrictions under the null hypothesis to the model estimated based on n
independent observations, the test statistic is

F =
(RSS0 − RSSa) /ν

RSSa / (n − p)

• The numerator is the difference in residuals sum of squares, denoted RSS,
from models �tted under H0 and Ha, divided by degrees of freedom ν.

• The denominator is an estimator of the variance, obtained under Ha (termed
mean squared error of residuals)

• The benchmark for tests in linear models is Fisher's F(ν, n − p). 28 / 39



Analysis of deviance
For other generalized linear models with parameters θ, we proceed similarly,
but we use the log likelihood function, ℓ(θ) as goodness-of-�t measure.

• The higher the (log) likelihood, the better the �t.
• Obtain parameter estimates θ̂0 under the null hypothesis and θ̂a under the

alternative by maximum likelihood estimation.
• Consider the likelihood ratio statistic

R = 2{ℓ(θ̂a) − ℓ(θ̂0)}

• Under regularity conditions, we compare R to a chi-square distribution with
ν degrees of freedom, χ2

ν
. 29 / 39



Analysis of variance table
term degrees of freedom mean square F

A na − 1 MSA = SSA / (na − 1) MSA /MSres

B nb − 1 MSB = SSB / (nb − 1) MSB /MSres

AB (na − 1)(nb − 1) MSAB = SSAB /{(na − 1)(nb − 1)} MSAB /MSres

residuals n − nanb MSresid = RSSa / (n − ab)

total n − 1

Read the table backward (starting with the interaction).

• If there is a signi�cant interaction, the main effects are not of interest and
potentially misleading.

30 / 39



Intuition behind degrees of freedom
The model always includes an overall average μ. There are

• na − 1 free row means since naμ = μ1. + ⋯ + μna .

• nb − 1 free column means as nbμ = μ.1 + ⋯ + μ .nb

• nanb − (na − 1) − (nb − 1) − 1 interaction terms

B

A
b
1

 ( ) b
2

 ( ) row mean

a1 ( ) μ11 X μ1.

a2 ( ) μ21 X μ2.

a3 ( ) X X X

column mean μ.1 X μ

Terms with X are fully determined by row/column/total averages
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Example 1
The interaction plot suggested that the two-way interaction wasn't signi�cant.
The F test con�rms this.
There is a signi�cant main effect of both  and .

term SS df F stat p-value
purchase 752.3 1 98.21 0.000
debttype 92.2 1 12.04 0.001
purchase:debttype 13.7 1 1.79 0.182
Residuals 11467.4 1497
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Example 2
There is a signi�cant interaction between  and , so follow-up
by looking at simple effects or contrasts.
The tests for the main effects are not of interest! Disregard other entries of the
ANOVA table

term SS df F stat p-value
station 75.2 3 23.35 0.000
direction 0.4 1 0.38 0.541
station:direction 52.4 3 16.28 0.000
Residuals 208.2 194
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Main effects for Example 1
We consider differences between debt type labels.
Participants are more likely to consider the offer if it is branded as  than
loan. The difference is roughly 0.5 (on a Likert scale from 1 to 9).
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Toronto subway station

Simpli�ed depiction of the Toronto metro stations used in the experiment,
based on work by Craftwerker on Wikipedia, distributed under CC-BY-SA 4.0.
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Reparametrization for Example 2
Set  as −2, −1, +1, +2 to indicate station distance, with negative signs
indicating stations in opposite direction of travel
The ANOVA table for the reparametrized models shows no evidence against the
null of symmetry (interaction).

term SS df F stat p-value
stdist 121.9 3 37.86 0.000
direction 0.4 1 0.35 0.554
stdist:direction 5.7 3 1.77 0.154
Residuals 208.2 194
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Interaction plot for reformated data

37 / 39



Custom contrasts for Example 2
We are interested in testing the perception of distance, by looking at
H0: μ −1 = μ + 1, μ −2 = μ + 2.
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Estimated marginal means and contrasts
Strong evidence o�fferences in perceived distance depending on direction of travel.
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