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Premise
So far, we have exclusively considered balanced samples

balanced = same number of observational
units in each subgroup

Most experiments (even planned) end up with unequal sample sizes.
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Noninformative drop-out
Unbalanced samples may be due to many causes, including randomization
(need not balance) and loss-to-follow up (dropout)
If dropout is random, not a problem

• Example of Baumann, Seifert-Kessel, Jones (1992):

Because of illness and transfer to another school, incomplete data
were obtained for one subject each from the TA and DRTA group
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Problematic drop-out or exclusion
If loss of units due to treatment or underlying conditions, problematic!
Rosensaal (2021) rebuking a study on the effectiveness of hydrochloriquine as
treatment for Covid19 and reviewing allocation:

Of these 26, six were excluded (and incorrectly labelled as lost to
follow-up): three were transferred to the ICU, one died, and two
terminated treatment or were discharged

Sick people excluded from the treatment group! then claim it is better.
Worst: "The index [treatment] group and control group were drawn from
different centres."
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Why seek balance?
Two main reasons

�. Power considerations: with equal variance in each group, balanced samples
gives the best sample allocation (easier to detect true differences in mean)
by minimizing variability.

�. Simplicity of interpretation and calculations: the interpretation of the  test
in a linear regression is unambiguous

F
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Finding power in balance
Consider a t-test for assessing the difference between treatments  and 
with equal variability

The standard error of the average difference is

A B

t = = .
estimated difference

estimated variability

(μ̂A − μ̂B) − 0

se(μ̂A − μ̂B)

√ + = √ +
varianceA

nb of obs. in A

varianceB

nb of obs. in B

σ2

nA

σ2

nB
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Optimal allocation of ressources

The allocation of  units that minimizes the std error is .n = nA + nB nA = nB = n/2
9 / 46



Example: tempting fate
We consider data from Multi Lab 2, a replication study that examined Risen and
Gilovich (2008) who

explored the belief that tempting fate increases bad outcomes. They tested whether
people judge the likelihood of a negative outcome to be higher when they have imagined
themselves [...] tempting fate [...] (by not reading before class) or not [tempting] fate (by
coming to class prepared). Participants then estimated how likely it was that [they] would
be called on by the professor (scale from 1, not at all likely, to 10, extremely likely).

The replication data gathered in 37 different labs focuses on a 2 by 2 factorial
design with gender (male vs female) and condition (prepared vs unprepared)
administered to undergraduates.
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Example - loading data
• We consider a 2 by 2 factorial design.
• The response is 
• The experimental factors are  and 
• Two data sets:  for the full data,  for the arti�cially balanced

one.
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Summary statistics
condition nobs mean
unprepared 2192 4.606
prepared 2241 4.060

Checking balance
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Marginal means for condition
condition emmean SE
unprepared 4.504 0.0540
prepared 4.022 0.0535

Note unequal standard errors.

Marginal means
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Explaining the discrepancies
Estimated marginal means are based on equiweighted groups:

where .

The sample mean is the sum of observations divided by the sample size.
The two coincide when .

μ̂ = (μ̂11 + μ̂12 + μ̂21 + μ̂22)
1

4

μ̂ij = n−1
ij ∑

nij

r=1 yijr

n11 = ⋯ = n22
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Why equal weight?
• The ANOVA and contrast analyses, in the case of unequal sample sizes, are

generally based on marginal means (same weight for each subgroup).
• This choice is justi�ed because research questions generally concern

comparisons of means across experimental groups.
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Revisiting the  statistic
Statistical tests contrast competing nested models:

• an alternative model, sometimes termed "full model"
• a null model, which imposes restrictions (a simpli�cation of the alternative

model)

The numerator of the -statistic compares the sum of square of a model with
(given) main effect, etc., to a model without.

F

F
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What is explained by condition?
Consider the  factorial design with factors :  and : 
(prepared vs unprepared) without interaction.
What is the share of variability (sum of squares) explained by the experimental
condition?

2 × 2 A B
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Comparing differences in sum of squares (1)
Consider a balanced sample

The difference in sum of squares is 141.86 in both cases.
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Comparing differences in sum of squares (2)
Consider an unbalanced sample

The differences of sum of squares are respectively 330.95 and 332.34.
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Orthogonality
Balanced designs yield orthogonal factors: the improvement in the goodness of
�t (characterized by change in sum of squares) is the same regardless of other
factors.
So effect of  and  (read  given ) is the same.

• test for  compares 
• for balanced design,  (factorization).

We lose this property with unbalanced samples: there are distinct formulations
of ANOVA.

B B ∣ A B A

B ∣ A SS(A, B) − SS(A)
SS(A, B) = SS(A) + SS(B)
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Analysis of variance - Type I (sequential)
The default method in R with  is the sequential decomposition: in the
order of the variables ,  in the formula

• So  tests are for tests of effect of
◦ , based on 
◦ , based on 
◦  based on 

Ordering matters

Since the order in which we list the variable is arbitrary, these  tests are not
of interest.

A B

F
A SS(A)
B ∣ A SS(A, B) − SS(A)
AB ∣ A, B SS(A, B, AB) − SS(A, B)

F
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Analysis of variance - Type II
Impact of

•  based on 
•  based on 
•  based on 
• tests invalid if there is an interaction.
• In R, use 

A ∣ B SS(A, B) − SS(B)
B ∣ A SS(A, B) − SS(A)
AB ∣ A, B SS(A, B, AB) − SS(A, B)
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Analysis of variance - Type III
Most commonly used approach

• Improvement due to ,  and 
• What is improved by adding a factor, interaction, etc. given the rest
• may require imposing equal mean for rows for , etc.

◦ (requires sum-to-zero parametrization)
• valid in the presence of interaction
• but -tests for main effects are not of interest
• In R, use 

A ∣ B, AB B ∣ A, AB AB ∣ A, B

A ∣ B, AB

F
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ANOVA (type I)
Df Sum Sq F value

gender 1 164.94 29.1
condition 1 332.34 58.7
gender:condition 1 36.55 6.5
Residuals 4429 25086.33

ANOVA (type II)
Df Sum Sq F value

gender 1 166.33 29.4
condition 1 332.34 58.7
gender:condition 1 36.55 6.5
Residuals 4429 25086.33

ANOVA (type III)
Df Sum Sq F value

gender 1 167.71 29.6
condition 1 227.88 40.2
gender:condition 1 36.55 6.5
Residuals 4429 25086.33

ANOVA for unbalanced data
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ANOVA (type I)
Df Sum Sq F value

condition 1 141.86 24.1
gender 1 121.69 20.6
condition:gender 1 37.88 6.4
Residuals 2500 14733.84

ANOVA (type II)
Df Sum Sq F value

condition 1 141.86 24.1
gender 1 121.69 20.6
condition:gender 1 37.88 6.4
Residuals 2500 14733.84

ANOVA (type III)
Df Sum Sq F value

condition 1 141.86 24.1
gender 1 121.69 20.6
condition:gender 1 37.88 6.4
Residuals 2500 14733.84

ANOVA for balanced data
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Recap
• If each observation has the same variability, a balanced sample maximizes

power.
• Balanced designs have interesting properties:

◦ estimated marginal means coincide with (sub)samples averages
◦ the tests of effects are unambiguous
◦ for unbalanced samples, we work with marginal means and type 3 ANOVA
◦ if empty cells (no one assigned to a combination of treatment), cannot

estimate corresponding coef�cients (typically higher order interactions)
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Practice
From the OSC psychology replication

People can be in�uenced by the prior consideration of a numerical
anchor when forming numerical judgments. [...] The anchor provides an
initial starting point from which estimates are adjusted, and a large
body of research demonstrates that adjustment is usually insuf�cient,
leading estimates to be biased towards the initial anchor.

Replication of Study 4a of Janiszewski & Uy (2008, Psychological Science) by J. Chandler
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Repeated measures ANOVA
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Beyond between-designs
Each subject (experimental unit) assigned to a single condition.

• individuals (subjects) are nested within condition/treatment.

In many instances, it may be possible to randomly assign multiple conditions to
each experimental unit.
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Bene�ts of within-designs
Assign (some or) all treatments to subjects and measure the response.
Bene�ts:

• Each subject (experimental unit) serves as its own control (greater
comparability among treatment conditions).

• Filter out effect due to subject (like blocking):
◦ increased precision
◦ increased power (tests are based on within-subject variability)

Impact: need smaller sample sizes than between-subjects designs

30 / 46



Drawbacks of within-designs
Potential sources of bias include

• Period effect (e.g., practice or fatigue).
• Carryover effects.
• Permanent change in the subject condition after a treatment assignment.
• Loss of subjects over time (attrition).
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Minimizing sources of bias
• Randomize the order of treatment conditions among subjects
• or use a balanced crossover design and include the period and carryover

effect in the statistical model (confounding or control variables to better
isolate the treatment effect).

• Allow enough time between treatment conditions to reduce or eliminate
period or carryover effects.
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One-way ANOVA with a random effect
As before, we have one experimental factor  with  levels, with

where  and  are random
variables.
The errors and random effects are independent from one another.

A na

Yij

response

= μ

global mean

+ αj

mean difference

+ Si

random effect for subject

+ εij

error

Si ∼ Normal(0, σ
2
s ) εij ∼ Normal(0, σ

2
e )
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Variance components
The model parameters includes two measures of variability  and .

• The variance of the response  is .
• The intra-class correlation between observations in group  is

.
◦ observations from the same subject are correlated
◦ observations from different subjects are independent

This dependence structure within group is termed compound symmetry.

σ
2
s σ

2
e

Yij σ
2
s + σ

2
e

i
ρ = σ

2
s /(σ

2
s + σ

2
e )
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Example: happy fakes
An experiment conducted in a graduate course at HEC gathered
electroencephalography (EEG) data.
The response variable is the amplitude of a brain signal measured at 170 ms
after the participant has been exposed to different faces.
Repeated measures were collected on 12 participants, but we focus only on the
average of the replications.
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The control ( ) is a true image, whereas the
other were generated using a generative
adversarial network (GAN) so be slightly smiling
( ) or extremely smiling ( , looks more fake).
Research question: do the GAN image trigger
different reactions (pairwise difference with
control)?

Experimental conditions
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Models for repeated measures
If we average, we have a balanced randomized blocked design with

•  (blocking factor)
•  (experimental factor)

We use the  package to model the within-subject structure.
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Load data
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Graph
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• No detectable difference between
conditions.

• Residual degrees of freedom:
 for

 subjects and  levels.

ANOVA

(na − 1) × (ns − 1) = 22
ns = 12 na = 3
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Model assumptions
The validity of the  null distribution relies on the model having the correct
structure.

• Same variance per observation
• equal correlation between measurements of the same subject (compound
symmetry)

• normality of the random effect

F
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Sphericity
Since we care only about differences in treatment, can get away with a weaker
assumption than compound symmetry.
Sphericity: variance of difference between treatment is constant.
Typically, Mauchly's test of sphericity is used to test this assumption

• if statistically signi�cant, use a correction (later)
• if no evidence, proceed with  tests as usual with  benchmark

distribution.
F F(ν1, ν2)
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Sphericity tests with 

• -value for Mauchly's test is large, no evidence that sphericity is violated.

• Report the -value of the -test: .

p

p F F(2, 22) = 0.6155
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Corrections for sphericity
If we reject the hypothesis of sphericity (small -value for Mauchly's test), we
need to change our reference distribution.
Box suggested to multiply both degrees of freedom of  statistic by  and
compare to  distribution instead

• Three common correction factors :
◦ Greenhouse‒Geisser
◦ Huynh‒Feldt (more powerful)
◦ take , giving .

Another option is to go fully multivariate (MANOVA tests).

p

F ϵ < 1
F(ϵν1, ϵν2)

ϵ

ϵ = 1/ν1 F(1, ν2/ν1)
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Corrections for sphericity tests with 
The estimated corrections  are reported by default with -values. Use only if
sphericity fails to hold, or to check robustness.

Note:  can be larger than 1, replace by the upper bound 1 if it happens

ϵ̂ p
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Contrasts
In within-subject designs, contrasts are obtained by computing the contrast for
every subject. Make sure to check degrees of freedom!
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