
Introduction to mixed
models

Session 10
MATH 80667A: Experimental Design and Statistical Methods

HEC Montréal
1 / 37



Outline

Blocking

Mixed effects

2 / 37



Blocking
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Block

Source of variation, but of no interest
known and controllable

Example

timing
lab technician

machine

Noise factor

Under which setting is response least
affected?

Example

temperature
processing

Terminology for nuisance
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Design experiment to reduce the
effect of uncontrolled variations

In general, increases the power of
the  test for treatment effects.

Group units in sets as alike as
possible.

(Often) compare only treatments,
so interactions are not included.

Why blocking?

F
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Assignment to treatment

Divide subjects within each block

Randomly allocate to treatment within block

(strati�ed sampling)
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Block-treatment design
Without interaction,

Compromise between

• reduced variability for residuals,
• loss of degrees of freedom due to estimation of 's.

Yij

response

= μ
global mean

+ αi

treatment

+ βj

blocking

+ εij

error

β
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Example: Resting metabolic rate
From Dean, Voss and Draguljić (2017), Example 10.4.1 (p. 311)

experiment that was run to compare the effects of inpatient and
outpatient protocols on the in-laboratory measurement of resting
metabolic rate (RMR) in humans. A previous study had indicated
measurements of RMR on elderly individuals to be 8% higher using an
outpatient protocol than with an inpatient protocol. If the
measurements depend on the protocol, then comparison of the results
of studies conducted by different laboratories using different protocols
would be dif�cult. The experimenters hoped to conclude that the
effect on RMR of different protocols was negligible.
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Fitting the complete block design

This is de facto a repeated measure design.
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Load Fit Plot

file:///home/lbelzile/Documents/Personnel/MEGAsync/Website/experimental/slides/10-slides.html?panelset_001=load#panelset_001_load
file:///home/lbelzile/Documents/Personnel/MEGAsync/Website/experimental/slides/10-slides.html?panelset_001=load#panelset_001_load


Interaction plot
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Impact of blocking

Analysis of variance table - with blocking
Degrees of

freedom
Sum of

squares
Mean

square
F

statistic
p-

value
subject 8 23.12 2.89 37.42 0.000
protocol 2 0.04 0.02 0.23 0.795
Residuals 16 1.24 0.08
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ANOVA table (with blocking) ANOVA table (without blocking)

file:///home/lbelzile/Documents/Personnel/MEGAsync/Website/experimental/slides/10-slides.html?panelset_002=anova-table-(with-blocking)#panelset_002_anova-table-(with-blocking)
file:///home/lbelzile/Documents/Personnel/MEGAsync/Website/experimental/slides/10-slides.html?panelset_002=anova-table-(with-blocking)#panelset_002_anova-table-(with-blocking)


Random effects and mixed models
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Fixed effects
All experiments so far treated factors as �xed effects.

• We estimate a mean parameter for each factor (including blocking factors in
repeated measures).

Change of scenery
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Change of scenery
Assume that the levels of a factor form a random sample from a large
population.
We are interested in making inference about the variability of the factor.

• measures of performance of employees
• results from different labs in an experiment
• subjects in repeated measures

We treat these factors as random effects.
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Fixed vs random effects
There is no consensual de�nition, but Gelman (2005) lists a handful, of which:

When a sample exhausts the population, the corresponding variable is
�xed; when the sample is a small (i.e., negligible) part of the
population the corresponding variable is random [Green and Tukey
(1960)].
Effects are �xed if they are interesting in themselves or random if there
is interest in the underlying population (e.g., Searle, Casella and
McCulloch [(1992), Section 1.4])
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Random effect model
Consider a one-way model

where

•  is normal with mean zero and variance .
•  are independent 

Yij
response

= μ
global mean

+ αj

random effect

+ εij
error term

.

αj ∼ Normal(0, σ2
α) σ2

α

εij Normal(0, σ2
ε )
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Fictional example
Consider the weekly number of hours spent by staff members at HEC since
September.
We collect a random sample of 40 employees and ask them to measure the
number of hours they work from school (as opposed to remotely) for eight
consecutive weeks.
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Fitting mixed models in R
We use the  package in R to �t mixed models.
The  package provides additional functionalities for testing.

•  function �ts linear mixed effect regression

Random effects are speci�ed using the notation .

18 / 37



Model �t

Note that std. dev is square root of variance 19 / 37



Intra-class correlation
We are interested in the variance of the random effect, .
Measurements from the same individuals are correlated. The intra-class
correlation between measurements  and  from subject  at times 
is

In the example, ,  and .

The mean number of working hours on the premises is  hours.

σ2
α

Yij Yik i j ≠ k

ρ = .
σ2

α

σ2
α + σ2

ε

σ̂
2
α = 38.63 σ̂

2
ε = 5.68 ρ̂ = 0.87

μ̂ = 23.3
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Con�dence intervals
We can use con�dence intervals for the parameters.
Those are based on pro�le likelihood methods (asymmetric).

The variability of the measurements and the week-to-week correlation of
employee measures are different from zero.
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Shrinkage

Predictions of random effects are shrunk towards global mean, more so for larger values and when there are fewer measurements.
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Mixed models
Mixed models include both �xed effects and random effects.

• Fixed effects for experimental manipulations
• Random effects for subject, lab factors

Mixed models make it easier to

• handle correlations between measurements and
• account for more complex designs.
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Repeated measures ANOVA using mixed model
Data need to be in long format, i.e., one response per line with an id column.

Illustration by Garrick Adden-Buie 24 / 37



Example: two-way ANOVA
We consider a repeated measure ANOVA (2 by 2 design, within-between) from
Hatano et al. (2022).
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https://doi.org/10.1037/xge0001255
https://doi.org/10.1037/xge0001255
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Repeated measures with linear mixed models
Results are the same as for repeated measures ANOVA if the correlation
estimate between observations of the same id are nonnegative.
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Theory
Full coverage of linear mixed models and general designs is beyond the scope
of the course, but note

• Estimation is performed via restricted maximum likelihood (REML)
• Testing results may differ from repeated measure ANOVA
• Different approximations for  degrees of freedom, either

◦ Kenward–Roger (costly) or
◦ Satterthwaite's approximation

F
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Structure of the design
It is important to understand how data were gathered.
Oelhert (2010) guidelines

�. Identify sources of variation
�. Identify whether factors are crossed or nested
�. Determine whether factors should be �xed or random
�. Figure out which interactions can exist and whether they can be �tted.
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Nested effects if a factor appears only within a
particular level of another factor.
Crossed is for everything else (typically
combinations of factors are possible).

Crossed vs nested effects

Example of nested random effects: class nested within schools

• class 1 is not the same in school 1 than in school 2
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Formulae in R
R uses the following notation

•  means  is nested within .

The formula expands to .

•  means  and  are crossed

The formula is a shorthand for .
To �t the model, identi�ers of subjects must be declared as factors (categorical variables).
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Specifying interactions
Consider factors ,  and .

• If factor  is treated as random, interactions with  must be random too.
• There must be repeated measurements to estimate variability of those

interactions.
• Testing relies on the variance components.

A B C

A A
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Example: happy fakes

Jittered scatterplot of measurements per participant and stimulus type.
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Interaction with random and �xed effect
Add student  as random effect,  as �xed effect and their interaction
as random effect (since one parent is random)
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Data structure
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Example: Curley et al. (2022)
Two variables were manipulated within participants: (a) evidence anchor (strong-�rst
versus weak-�rst); (b) verdict system (two- versus three-verdict systems). Total pre-trial
bias score was used as a covariate in the analysis (this score is based on the PJAQ and is
explained further in the Materials section). Participants were also given two vignettes
(Vignette 1 and Vignette 2); thus, the vignette variable was included in the data analysis
[...]
The dependent variable was the �nal belief of guilt score, which was measured on an
accumulated scale from 0–14, with 0 representing no belief of guilt and 14 representing a
total belief that the person is guilty
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Example: chocolate rating
Example from L. Meier, adapted from Oehlert (2010)

A group of 10 rural and 10 urban raters rated 4 different chocolate
types. Every rater got to eat two samples from the same chocolate type
in random order.
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