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Welcome

These notes by Léo Belzile (HEC Montréal) are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

This course is about statistical modelling.

A famous quote attributed to George Box claims that
All models are wrong, but some are useful.

This standpoint is reductive: Peter McCullagh and John Nelder wrote in the preamble of
their book (emphasis mine)

Modelling in science remains, partly at least, an art. Some principles do exist,
however, to guide the modeller. The first is that all models are wrong; some,
though, are better than others and we can search for the better ones. At the
same time we must recognize that eternal truth is not within our grasp.

And this quote by David R. Cox adds to the point:

...it does not seem helpful just to say that all models are wrong. The very word
model implies simplification and idealization. The idea that complex physical,
biological or sociological systems can be exactly described by a few formulae
is patently absurd. The construction of idealized representations that capture
important stable aspects of such systems is, however, a vital part of general
scientific analysis and statistical models, especially substantive ones, do not
seem essentially different from other kinds of model.

Why use models? Paul Krugman wrote in 2010 in his blog

The answer I'd give is that models are an enormously important tool for clar-
ifying your thought. You don't have to literally believe your model — in fact,
you're a fool if you do — to believe that putting together a simplified but com-
plete account of how things work, with all the eyes crossed and teas dotted or
something, helps you gain a much more sophisticated understanding of the real
situation. People who don’t use models end up relying on slogans that are much
more simplistic than the models


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://krugman.blogs.nytimes.com/2010/11/18/debt-deleveraging-and-the-liquidity-trap/
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There are two main data type: experimental data are typically collected in a control envi-
ronment following a research protocol with a particular experimental design: they serve to
answer questions specified ahead of time. This approach is highly desirable to avoid the
garden of forking paths (researchers unfortunately tend to refine or change their hypothesis
in light of data, which invalidates their findings — preregistration alleviates this somewhat).
While experimental data are highly desirable, it is not always possible to collect experi-
mental data: for example, an economist cannot modify interest rates to see how it impacts
consumer savings. When data have been collected beforehand without intervention (for
other purposes), these are called observational. These will be the ones most frequently
encountered.

A stochastic model will comprise two ingredients: a distribution for the random data and
a formula linking the parameters or the conditional expectation of a response variable Y
to a set of explanatories X. A model can serve to either predict new outcomes (predictive
modelling) or else to test research hypothesis about the effect of the explanatory variables
on the response (explanatory model). These two objectives are of course not mutually
exclusive even if we distinguish in practice inference and prediction.

A predictive model gives predictions of Y for different combinations of explanatory variables
or future data. For example, one could try to forecast the enery consumption of a house as
a function of weather, the number of inhabitants and its size. Black boxes used in machine
learning are often used solely for prediction: these models are not easily interpreted and
they often ignore the data structure.

By constrast, explicative models are often simple and interpretable: regression models are
often used for inference purpose and we will focus on these. The following examples will be
covered in class or as part of the exercices:

* Are sequential decisions in online shop (buying or not, then selecting the quantity)
preferable to integrated decisions (Duke and Amir 2023)?

¢ Determining what is the most distracting for road users: talking on a cellphone, texting
or checking your smartwatch (Brodeur et al. 2021)?

* What is the impact of inconsistencies between product description and the displayed
image (Lee and Choi 2019)?

* Is the price of gasoline more expensive in the Gaspé peninsula than in the rest of
Quebec? A report of the Régie de I'énergie examines the question

* Are driving tests in the UK easier if you live in a rural area? An analysis of The Guardian
hints that it is the case.

* What is the environmental perception of a package that includes cardboard over a
plastic container (Sokolova, Krishna, and Déring 2023)?


http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
https://ici.radio-canada.ca/nouvelle/1463520/prix-essence-gaspesie-rapport-regie-energie
https://www.theguardian.com/world/2019/aug/23/an-easy-ride-scottish-village-fuels-debate-driving-test-pass-rates
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* What is the psychological impact of suggested amounts on donations (Moon and

VanEpps 2023)?
* What are the benefits of face-to-face meetings, rather than via videoconference tools?

Brucks and Levav (2022) suggests a decrease in the number of creative ideas and
interactions when meeting online.






1 Introduction

This chapter reviews some basic notions of probability and statistics that are normally
covered in undergraduate or college.

1.1 Population and samples

Statistics is the science of uncertainty quantification: of paramount importance is the
notion of randomness. Generally, we will seek to estimate characteristics of a population
using only a sample (a sub-group of the population of smaller size).

The population of interest is a collection of individuals which the study targets. For
example, the Labour Force Survey (LFS) is a monthly study conducted by Statistics Canada,
who define the target population as “all members of the selected household who are 15 years
old and older, whether they work or not.” Asking every Canadian meeting this definition
would be costly and the process would be long: the characteristic of interest (employment)
is also a snapshot in time and can vary when the person leaves a job, enters the job market
or become unemployed.

In general, we therefore consider only samples to gather the information we seek to obtain.
The purpose of statistical inference is to draw conclusions about the population, but using
only a share of the latter and accounting for sources of variability. George Gallup made this
great analogy between sample and population:

One spoonful can reflect the taste of the whole pot, if the soup is well-stirred

A sample is a random sub-group of individuals drawn from the population. Creation
of sampling plans is a complex subject and semester-long sampling courses would be
required to evens scratch the surface of the topic. Even if we won'’t be collecting data, keep
in mind the following information: for a sample to be good, it must be representative of the
population under study. Selection bias must be avoided, notably samples of friends or of
people sharing opinions.

Because the individuals are selected at random to be part of the sample, the measurement
of the characteristic of interest will also be random and change from one sample to the next.
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However, larger samples of the same quality carry more information and our estimator
will be more precise. Sample size is not guarantee of quality, as the following example
demonstrates.

Example 1.1 (Polling for the 1936 USA Presidential Election). The Literary Digest surveyed
10 millions people by mail to know voting preferences for the 1936 USA Presidential Election.
A sizeable share, 2.4 millions answered, giving Alf Landon (57%) over incumbent President
Franklin D. Roosevelt (43%). The latter nevertheless won in a landslide election with 62% of
votes cast, a 19% forecast error. Biased sampling and differential non-response are mostly
responsible for the error: the sampling frame was built using “phone number directories,
drivers’ registrations, club memberships, etc.”, all of which skewed the sample towards rich
upper class white people more susceptible to vote for the GOP.

In contrast, Gallup correctly predicted the outcome by polling (only) 50K inhabitants. Read
the full story here.

1.1.1 Variable type

¢ a variable represents a characteristic of the population, for example the sex of an
individual, the price of an item, etc.
e an observation is a set of measures (variables) collected under identical conditions

for an individual or at a given time.

Table 1.1: First lines of the renfe database, which contains the price of 10K train tickets
between Madrid and Barcelona. The columns price and duration represent
continuous variables, all others are categorical.

price type class fare dest duration wday
143.4 AVE Preferente Promo Barcelona-Madrid 190 6
181.5 AVE Preferente Flexible Barcelona-Madrid 190 2
86.8 AVE Preferente Promo Barcelona-Madrid 165 7
86.8 AVE Preferente Promo Barcelona-Madrid 190 7
69.0 AVE- Preferente Promo Barcelona-Madrid 175 4
TGV

The choice of statistical model and test depends on the underlying type of the data collected.
There are many choices: quantitative (discrete or continuous) if the variables are numeric,
or qualitative (binary, nominal, ordinal) if they can be described using an adjective; I prefer
the term categorical, which is more evocative.


https://www.jstor.org/stable/2749114
https://www.jstor.org/stable/2749114
https://ozanozbey.medium.com/two-lessons-of-sampling-bias-from-1936-us-election-e4e96bd42be
https://ozanozbey.medium.com/two-lessons-of-sampling-bias-from-1936-us-election-e4e96bd42be

1.2 Random variable

Most of the models we will deal with are so-called regression models, in which the mean of
a quantitative variable is a function of other variables, termed explanatories. There are two
types of numerical variables

* adiscrete variable takes a finite or countable number of values, prime examples being
binary variables or count variables.

* acontinuous variable can take (in theory) an infinite possible number of values, even
when measurements are rounded or measured with a limited precision (time, width,
mass). In many case, we could also consider discrete variables as continuous if they
take enough distinct values (e.g., money).

Categorical variables take only a finite of values. They are regrouped in two groups,

e nominal if there is no ordering between levels (sex, color, country of origin) or
e ordinal if they are ordered (Likert scale, salary scale) and this ordering should be
reflected in graphs or tables.

We will bundle every categorical variable using arbitrary encoding for the levels: for mod-
elling, these variables taking K possible values (or levels) must be transformed into a set of
K — 1binary 0/1 variables, the omitted level corresponding to a baseline. Failing to declare
categorical variables in your favorite software is a common mistake, especially when these
are saved in the database using integers rather than strings.

1.2 Random variable

Suppose we wish to describe the behaviour of a stochastic phenomenon. To this effect,
one should enumerate the set of possible values taken by the variable of interest and their
probability: this is what is encoded in the distribution.

Random variables are denoted using capital letters: for example Y ~ normal(y, o2) indicates
that Y follows a normal distribution with parameters ;. and o > 0. If the values of the latter
are left unspecified, we talk about the family of distributions. When the values are given, for
example ¢ = 0 and o = 1, we deal with a single distribution for which a function encode
the probability of the underlying variable.

Definition 1.1 (Distribution function, mass function and density). The (cumulative) distri-
bution function F'(y) gives the cumulative probability that an event doesn’t exceed a given
numerical value y, F(y) = Pr(Y <y).

If Y is discrete, then it has atoms of non-zero probability and we call f the mass function,
and f(y) = Pr(Y = y) gives the probability of each outcome y. In the continuous case,
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no numerical value has non-zero probability and so we consider intervals instead. The
density function f(x) is non-negative and satisfies [, f(z)dz = 1: the integral over a set B
(the area under the curve) gives the probability of Y falling inside B € R. It follows that the
distribution function of a continuous random variable is simply F'(y) = [Y__ f(z)dz.

distribution
distribution
0.7 09

0.0 04 0.8

0.5

0.4

0.10

density
mass function

0.00
0.0 0.2

y Y

Figure 1.1: (Cumulative) distribution functions (top) and density/mass functions (bottom)
of continuous (left) and discrete (right) random variables.

One of the first topics covered in introductory statistics is descriptive statistics such as the
mean and standard deviation. These are estimators of (centered) moments, which charac-
terise a random variable. In the case of the standard normal distribution, the expectation
and variance fully characterize the distribution.

Definition 1.2 (Moments). Let Y be a random variable with density (or mass) function
f(z). The expectation (or theoretical mean) of a continuous random variable Y is

E(Y) :/Ra:f(w)dzv.

In the discrete case, we set rather u = E(Y) = > .y 2Pr(X = z), where X denotes the
support of Y, the set of numerical values at which the probability of Y is non-zero. More
generally, we can look at the expectation of a function g(x) for Y, which is nothing but
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the integral (or sum in the discrete case) of g(z) weighted by the density or mass function
of f(x), meaning [ g(x)f(x)dz. In the same fashion, provided the integral is finite, the
variance is

Va(Y) = E{Y —E(Y)}? = /R(x — )2 f(2)de.

The standard deviation is the square root of the variance, sd(Y) = y/Va(Y): it units are the
same as those of Y and are thus more easily interpreted.

Example 1.2. Consider a discrete random variable Y giving the sum of two fair dice throws.
The expected value of g(Y) = Y2 is then

E(Y?) = (22 + 122) x 3—16+(32+112) X 3%+(42+102)
3 4 5
2 (5249 x — 4+ (62 4+8%) x —

6 _ 329

2 x —
TOX36T 6

The notion of moments can be extended to higher dimensions. Consider a column vector
of size n Y. In the regression setting, the response Y would usually comprise repeated
measures on an individual, or even observations from a group of individuals.

The expected value (theoretical mean) of the vector Y is calculated componentwise, i.e.,

-
E(Y)=p=(EV1) - E(Y,))
whereas the second moment of Y is encoded in the n x n covariance matrix

Va(Y1> CO(E, YQ) s CO(Yl, Yn)
Va(Y) —y_ CO(YQ,Yl) Va(Yg)
Co(Y;L, Y1) Co(Yn., Ys) - Va (Yn)

The ith diagonal element of 3, 0;; = JZ, is the variance of Y;, whereas the off-diagonal
entries 0;; = 0;; (i # j) are the covariance of pairwise entries, with

Co(Y;,Y;) = /}R2 (yi — 1) (Y5 — 15) i, v; (Yi y5)dyidy;.
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The covariance matrix X is thus symmetric. It is customary to normalize the pairwise
dependence so they do not depend on the component variance. The linear correlation
between Y; and Y; is

Co(Y:,Y;) oy
Va(¥;),/Va(y;)  7i%

pij = Cor(Y;,Yj) =

The correlation matrix of Y is an n x n symmetric matrix with ones on the diagonal and the
pairwise correlations off the diagonal,

I pi2 p13 - P

p21 1 pag - poy

Cor(Y)=|[p31 p32 1 "o p3y
Pnl  Pn2 Pn3 " 1

One of the most important parts of modelling correlated (or longitudinal) data is the need to
account for within-group correlations. This basically comes down to modelling a covariance
matrix for observations within the same group (or within the same individual in the case of
repeated measures), which is the object of Chapter 5.

Definition 1.3 (Pearson linear correlation). The linear correlation between random vari-
ables X; and X}, denoted r; ;, measures the strength of the linear relationship between
the two variables, i.e., it measures how close the observations are from a line. The sample
correlation coefficient is

R Co(X;, X1)
TET Va(X;)Va(Xg) } 12

Properties of the linear correlation coefficient r include:

1) -1<r<1;

2) r =1 (r = —1) if and only if the n observations fall exactly on a positively (negatively)
sloped line. In other words, there exist two constants a and b > 0 (b < 0) such that
y; = a + bx; for any i.

More generally,

* The sign of the correlation coefficient determines the orientation of the slope (positive
of negative).

* The closer the correlation is from 1 (in absolute value), the more the points tend to be
aligned.

10
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* A correlation of zero does not imply that there is no relationship between the two
variables. It only means that there is no linear dependence between the two variables.

Figure 1.2 clearly illustrates the last point: these datasets have near zero linear correlation,
and thus the slope is close to flat, but they are not independent since dinosaurs or stars do

not arise from independent observations.

dino slant up star

S > 3
. .--: '. Q& r
;o - s :,
. b4 o > 13
. :' . o % .:'. ‘: o0 © oo o® .
* -"‘. 4 ° v hd ®
2 (KN d ’ .‘ ..:g \..\,
.- ..--. -... .::. .- ..
. .l o ® . ; .' F 2 .
LL I -. ¢ ¢ .l.. .. ! 2
o ® ° ° ° o ° & o
Kl s .. d o e 2 0N,
o l-.. o ¢ ’
..:...l ° -'.. ." , ]
LI 4

Figure 1.2: Three datasets from the datasauRus dozen, each with a sample linear correlation
of —0.06 and descriptive statistics (mean, std. deviation, etc.) that are identical.

Definition 1.4 (Bias). The bias of an estimator § for a parameter 6 is
bias(f) = E(A) — 0
The estimator is unbiased if its bias is zero.

Example 1.3 (Unbiased estimators). The unbiased estimator of the mean and the variance
of Y are
n
Y,=n""! Z Y;
i=1
n

Sp=(n-1""> (;-Y)

=1

11
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While unbiasedness is a desirable property, there may be cases where no unbiased estimator
exists for a parameter! Often, rather, we seek to balance bias and variance: recall that an
estimator is a function of random variables and thus it is itself random: even if it is unbiased,
the numerical value obtained will vary from one sample to the next.

Definition 1.5. We often seek an estimator that minimises the mean squared error,
MSE(A) = E{(d — 0)?} = Va(d) + {E(0)}>.

The mean squared error is an objective function consisting of the sum of the squared bias
and the variance.

Most estimators we will considered are so-called maximum likelihood estimator. These
estimator are asymptotically efficient, in the sense that they have the lowest mean squared
error of all estimators for large samples. Other properties of maximum likelihood estimators
also make them attractive default choice for estimation.

1.3 Discrete distributions

Many distributions for discrete random variables have a simple empirical justification,
stemming from simple combinatorial arguments (counting). We revisit the most common
ones.

Definition 1.6 (Bernoulli distribution). We consider a binary event such as coin toss
(heads/tails). In general, the two events are associated with success/failure. By convention,
failures are denoted by zeros and successes by ones, the probability of success being p so
Pr(Y =1) =pand Pr(Y = 0) = 1 — p (complementary event). The mass function of the
Bernoulli distribution is thus

Pr(Y =y) =p'(1-p)'™%, y=0,1.
A rapid calculation shows that E(Y') = pand Va(Y) = p(1 — p). Indeed,
E(Y)=E(Y?)=p-1+(1—-p)-0=p.

Many research questions have binary responses, for example:

* did a potential client respond favourably to a promotional offer?
¢ is the client satisfied with service provided post-purchase?
 will a company go bankrupt in the next three years?

12


https://en.wikipedia.org/wiki/Bernoulli_distribution

1.3 Discrete distributions

* did a study participant successfully complete a task?

Oftentimes, we will have access to aggregated data.

Definition 1.7 (Binomial distribution). If we consider the sum of independent and identi-
cally distributed Bernoulli events, the number of successes Y out of m trials is binomial,
denoted Bin(m, p); the mass function of the binomial distribution is

Pr(Y =y) = <7;>py(1 -p)mY, y=0,1,...,m.

The likelihood of a sample from a binomial distribution is (up to a normalizing constant that
doesn’t depend on p) the same as that of m independent Bernoulli trials. The expectation of
the binomial random variable is E(Y') = mp and its variance Va(Y) = mp(1 — p).

As examples, we could consider the number of successful candidates out of m who passed
their driving license test or the number of customers out of m total which spent more than
10$ in a store.

More generally, we can also consider count variables whose realizations are integer-valued,
for examples the number of

e insurance claims made by a policyholder over a year,
e purchases made by a client over a month on a website,
e tasks completed by a study participant in a given time frame.

Definition 1.8 (Poisson distribution). If the probability of success p of a Bernoulli event is
small in the sense that mp — A when the number of trials m increases, then the number of
success follows approximately a Poisson distribution with mass function

L exp(=A)N
Pr(Y =y) = W?

where I'(-) denotes the gamma function. The parameter X of the Poisson distribution is
both the expectation and the variance of the distribution, meaning E(Y') = Va(Y) = A.

y=20,1,2,...

Definition 1.9 (Negative binomial distribution). The negative binomial distribution arises
if we consider the number of Bernoulli trials with probability of success p until we obtain
m success. Let Y denote the number of failures: the order of success and failure doesn’t
matter, except for the latest trial which must be a success. The mass function of the negative
binomial is

m—1+y

Pdey)=< y

)ﬂWl—pW-

13
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The negative binomial distribution also appears as the unconditional distribution of a two-
stage hierarchical gamma-Poisson model, in which the mean of the Poisson distribution
is random and follows a gamma distribution. In notation, thisisY | A = A ~ Po(\) and A
follows a gamma distribution with shape r and scale §, whose density is

fl@) = 072" exp(~2/0)/T(r).
The unconditional number of success is then negative binomial.

In the context of generalized linear models, we will employ yet another parametrisation of
the distribution, with the mass function

L(y +7r) ( r >’”< i )y
Pr(Y =y) = =0,1,...

where I' is the gamma function and the parameter » > 0 is not anymore integer valued.
The expectation and variance of Y are E(Y) = p et Va(Y) = p + ku?, where k = 1/r. The
variance of the negative binomial distribution is thus higher than its expectation, which
justifies the use of the negative binomial distribution for modelling overdispersion.

1.4 Continuous distributions

We will encounter many continuous distributions that arise as (asymptotic) null distribution
of test statistics because of the central limit theorem, or that follow from transformation of
Gaussian random variables.

Definition 1.10 (Beta distribution). The beta distribution Beta(«, 3) is a distribution sup-
ported on the unit interval [0, 1] with shape parameters « > 0 and g > 0. It's density
is
T'(a)l
(@)0(8) a1y _ yios

T@=Ta+p"

The case o = 5 = 1, also denoted unif (0, 1), corresponds to a standard uniform distribution.

x € [0,1].

Definition 1.11 (Exponential distribution). The exponential distribution plays a prominent
role in the study of waiting time of Poisson processes, and in survival analysis. One carac-
teristic of the distribution is it’s absence of memory: Pr(Y > y+u | Y > u) = Pr(Y > u) for
y,u > 0.

The distribution function of the exponential distribution with scale A > 0, denoted
Y ~ Exp()), is F(x) = 1 — exp(—z/A) and the corresponding density function is
f(x) = X texp(—z/\) for z > 0. The expected value of Y is simply \.

14
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uniform density beta(2, 0.75) density
1.25

0.75

f(x)
f(x)

0.5

0.25

0.0 0.4 08 0.0 0.4 08

Figure 1.3: Density fonction of uniform (left) and beta(2, 3/4) random variables on the unit
interval.

Definition 1.12 (Normal distribution). Ths most well known distribution, the normal
distribution is ubiquitous in statistics because of the central limit theorem (CLT), which
describes the behaviour of the sample mean in large sample.The parameters ;and o > 0
that fully characterize the distribution of the normal distribution and they correspond to
the expectation and standard deviation. The density of a normal distribution is symmetric
around p, while o describes the dispersion around this mode. The bell-shaped density
function is

202

flx) = (27702)_1/2exp{—(x_'u)2}, zeR.

The distribution function of the normal distribution is not available in closed-form. The
normal distribution is a location-scale distribution: if Y ~ normal(y,0?), then Z = (Y —
@) /o ~ normal(0, 1). Conversely, if Z ~ normal(0,1), then Y = i + 0Z ~ normal(u, o?).

We will also encounter the multivariate normal distribution; for a d dimensional vector
Y ~ normaly(u, X),! the density is

f(e) = r) P P exp { =S (@ - 0= e - )}

All vectors are column vectors unless otherwise indicated.

15
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0.44 0.84
0.3 0.6
0.2 X 04
0.1 0.2-
0.04 0.0
-4 -2 0 2 ;1 -4 -2 0 2 4

Figure 1.4: Densities of normal distributions with different mean parameters (left) and
different scale parameters (right).

The mean vector u is the vector of expectation of individual observations, whereas X is the
d x d covariance matrix of Y. A unique property of the multivariate normal distribution is
the link between independence and the covariance matrix: if ¥; and Y; are independent,
the (¢, 7) off-diagonal entry of ¥ is zero.

Definition 1.13 (Chi-square distribution). The chi-square distribution with » > 0 degrees
of freedom, denoted x? or chi — square(v). It’s density is

1

f(st):m

2"/ >Vexp(—x/2), x> 0.

It can be obtained for v integer by considering the following: if we consider k£ independent
and identically distributed standard normal variables, ¥; ~ normal(0,1), then 3%, V2
follows a chi-square distribution with & degrees of freedom, denote x?2. The square of a
standard normal variate likewise follows a x7 distribution. The expectation of x7 random
variable is k.

If we consider a sample of n normally distributed observations, the scaled sample variance
(n—1)8%/0 ~ x5

16



1.4 Continuous distributions

Definition 1.14 (Student-¢ distribution). The Student-¢ distribution with » > 0 degrees of
freedom is a location-scale family. The standard version is denoted by Student(v).

The name “Student” comes from the pseudonym used by William Gosset in Gosset (1908),
who introduced the asymptotic distribution of the ¢-statistic. The density of the standard T’
with v degrees of freedom is

LH _V;—l
fly;v) = Fr(g)i/u)? (1 + f)

the distribution has polynomial tails, is symmetric around 0 and unimodal. As v — oo,
the Student distribution converges to a normal distribution. It has heavier tails than the
normal distribution and only the first v — 1 moments of the distribution exist, so a Student
distribution with v = 2 degrees of freedom has infinite variance.

For normally distributed data, the centered sample mean divided by the sample variance,
(Y — p)/S? follows a Student-t distribution with n — 1 degrees of freedom, which explains
the terminology ¢-tests.

-5.0

Figure 1.5: Comparison between the Student-¢ density for varying degrees of freedom, with
v = 2 (dotted), v = 10 (dashed) and the normal density (v = ).

Definition 1.15 (Fisher distribution). The Fisher or F’ distribution is used to determine the
large sample behaviour of test statistics for comparing different group averages (in analysis
of variance) assuming data are normally distributed.

The F distribution, denoted Fisher(v4,14), is obtained by dividing two independent chi-
square random variables with respective degrees of freedom v; and v». Specifically, if
Y1~ x2 and Y5 ~ x2 , then

_ Y1/
Y /o

~ Fisher(v1, 19)
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1 Introduction

The Fisher distribution tends to a x2, when v, — co.

1.5 Graphs

This section reviews the main graphical representation of random variables, depending on
their type.

The main type of graph for representing categorical variables is bar plot (and modifications
thereof). In a bar plot, the frequency of each category is represented in the y-axis as a func-
tion of the (ordered) levels on the z-axis. This representation is superior to the ignominious
pie chart, a nuisance that ought to be banned (humans are very bad at comparing areas
and a simple rotation changes the perception of the graph)!

6000 75001

4000 1 5000 A

counts
counts

2000 1

0_- I

Preferente  Turista  TuristaPlus  TuristaSolo AVE AVE-TGV REXPRESS
class train type

25001

—— 0

Figure 1.6: Bar plot of ticket class for Renfe tickets data

Continuous variables can take as many distinct values as there are observations, so we
cannot simply count the number of occurences by unique values. Instead, we bin them into
distinct intervals so as to obtain an histogram. The number of class depends on the number
of observations: as a rule of thumb, the number of bins should not exceed /n, where n
is the sample size. We can then obtain the frequency in each class, or else normalize the
histogram so that the area under the bands equals one: this yields a discrete approximation
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1.5 Graphs

of the underlying density function. Varying the number of bins can help us detect patterns
(rounding, asymmetry, multimodality).

Since we bin observations together, it is sometimes difficult to see where they fall. Adding
rugs below or above the histogram will add observation about the range and values taken,
where the heights of the bars in the histogram carry information about the (relative) fre-
quency of the intervals.

0.04 1

0.031

density

0.014

0.004 J _— — —

[ 1 1 1 Y A | [
50 100 150
price of Promo fare tickets (in euros)

Figure 1.7: Histogram of Promo tickets for Renfe ticket data

If we have a lot of data, it sometimes help to focus only on selected summary statistics.

Definition 1.16 (Box-and-whiskers plot). A box-and-whiskers plot (or boxplot) represents
five numbers

* The box gives the quartiles ¢, ¢2, g3 of the distribution. The middle bar ¢, is thus the
median, so 50% of the observations are smaller or larger than this number.

* The length of the whiskers is up to 1.5 times the interquartiles range g3 — ¢; (the
whiskers extend until the latest point in the interval, so the largest observation that is
smaller than ¢3 + 1.5(¢3 — q1), etc.)

e Observations beyond the whiskers are represented by dots or circles, sometimes
termed outliers. However, beware of this terminology: the larger the sample size, the
more values will fall outside the whiskers. This is a drawback of boxplots, which was
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conceived at a time where the size of data sets was much smaller than what is current

standards.
interquartile range
IQR =¢q3 —q1
median
a2
o I | o o
q1 — 1.51QR q3 + 1.51QrR
41 a3
25 percentile 75 percentile

Figure 1.8: Box-and-whiskers plot

We can represent the distribution of a response variable as a function of a categorical
variable by drawing a boxplot for each category and laying them side by side. A third
variable, categorical, can be added via a color palette, as shown in Figure 1.9.

1504

1004

price (in euros)

50

Preferente Turista TuristaPlus TuristaSolo
class

train type AVE AVE-TGV

Figure 1.9: Box-and-whiskers plots for Promo fare tickets as a function of class and type for
the Renfe tickets data.

Scatterplots are used to represent graphically the co-variation between two continuous

variables: each tuple gives the coordinate of the point. If only a handful of large values are
visible on the graph, a transformation may be useful: oftentimes, you will encounter graphs
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1.5 Graphs

where the z- or y-axis is on the log-scale when the underlying variable is positive. If the
number of data points is too large, it is hard to distinguish points because they are overlaid:
adding transparency, or binning using a two-dimensional histogram with the frequency
represented using color are potential solutions. The left panel of Figure 1.10 shows the 100
simulated observations, whereas the right-panel shows a larger sample of 10 000 points
using hexagonal binning, an analog of the bivariate density.
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Figure 1.10: Scatterplot (left) and hexagonal heatmap of bidimensional bin counts (right)
of simulated data.

Models are (at best) an approximation of the true data generating mechanism and we will
want to ensure that our assumptions are reasonable and the quality of the fit decent.

Definition 1.17 (Quantiles-quantiles plots). Quantile-quantile plots are graphical goodness-
of-fit diagnostics that are based on the following principle: if Y is a continuous random
variable with distribution function F, then the mapping F(Y') ~ unif(0, 1) yields standard
uniform variables. Similarly, the quantile transform applied to a uniform variable provides
amean to simulating samples from F, viz. F~1(U). Consider then a random sample of size
n from the uniform distribution ordered from smallest to largest, with Uy < -+ < Ugy,.
One can show these ranks have marginally a Beta distribution, U ;) ~ beta(k,n + 1 — k) with
expectation k/(n + 1).

In practice, we don’t know F' and, even if we did, one would need to estimate the parame-
ters. We consider some estimator F' for the model and apply the inverse transform to an
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1 Introduction

approximate uniform sample {i/(n + 1)} ;. The quantile-quantile plot shows the data as a
function of the (first moment) of the transformed order statistics:

* on the z-axis, the theoretical quantiles F~{rank(y;)/(n + 1)}
¢ on the y-axis, the empirical quantiles y;

If the model is adequate, the ordered values should follow a straight line with unit slope
passing through the origin.

1.00

0.75

empirical
o
(o))
o
empirical

0.25

0.00

0.00 0.25 0.50 0.75 1.00 -2 -1 0 1 2
theoretical theoretical

Figure 1.11: Probability-probability plot (left) on uniform margins, and normal quantile-
quantile plot (right) for the same dataset.

Even if we knew the true distribution of the data, the sample variability makes it very
difficult to spot if deviations from the model are abnormal or compatible with the model. A
simple point estimate with no uncertainty measure can lead to wrong conclusions. As such,
we add approximate pointwise or simultaneous confidence intervals. The simplest way to
do this is by simulation, by repeating the following steps B times:

1. simulate a sample {Y;(b)}(z‘ =1,...,n) fromA}AW
2. re-estimate the parameters of I to obtain F{;)
3. calculate and save the plotting positions ﬁ(;)l {i/(n+1)}.

The result of this operation is an n x B matrix of simulated data. We obtain a symmetric
(1 — ) confidence interval by keeping the empirical quantile of order /2 and 1 — «/2 from
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1.6 Laws of large numbers

each row. The number B should be larger than 999, say, and be chosen so that B/« is an
integer.

For the pointwise interval, each order statistic from the sample is a statistic and so the
probability of any single one falling outside the confidence interval is approximately a.
However, order statistics are not independent (they are ordered), so its common to see
neighbouring points falling outside of their respective intervals. The intervals shown in
Figure 1.11 are pointwise and derived (magically) using a simple function. The uniform
order statistics have larger variability as we move away from 0.5, but the uncertainty in the
quantile-quantile plot largely depends on F.

Interpretation of quantile-quantile plots requires practice and experience: this post by
Glen_b on StackOverflow nicely summarizes what can be detected (or not) from them.

1.6 Laws of large numbers

An estimator for a parameter 6 is consistent if the value obtained as the sample size in-
creases (to infinity) converges to the true value of . Mathematically speaking, this translates

into convergence in probability, meaning 6 2% 0. In common language, we say that the
probability that 6 and 6 differ becomes negligible as n gets large.

Consistency is the a minima requirement for an estimator: when we collect more informa-
tion, we should approach the truth. The law of large number states that the sample mean
of n (independent) observations with common mean p, say Y ,,, converges to p, denoted
Y, — p. Roughly speaking, our approximation becomes less variable and asymptotically
unbiased as the sample size (and thus the quantity of information available for the param-
eter) increases. The law of large number is featured in Monte Carlo experiments: we can
approximate the expectation of some (complicated) function g(z) by simulating repeatedly
independent draws from Y and calculating the sample meann= """, ¢(Y;).

If the law of large number tells us what happens in the limit (we get a single numerical value),
the result doesn’t contain information about the rate of convergence and the uncertainty at
finite levels.

1.7 Central Limit Theorem

The central limit theorem gives the approximate large sample distribution of the sample
mean. Consider a random sample of size n {Y;}!_; of independent random variables with
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1 Introduction
common expectation p and variance 0. The sample meanY = n~! 3>, ¥; converges to u
by the law of large number, but we also have that

* the estimator Y is centered around p,

e the standard error is o /,/n; the rate of convergence is thus y/n. For a sample of size
100, the standard error of the sample mean will be 10 times smaller than that of the
underlying random variable.

 the sample mean, once properly scaled, follows approximately a normal distribution

Mathematically, the central limit theorem states \/n(Y — u) 4 normal(0, 02). If n is large
(a rule of thumb is n > 30, but this depends on the underlying distribution of Y), then
Y ~ normal(u,o?/n).

How do we make sense of this result? Let us consider the mean travel time of high speed
Spanish trains (AVE) between Madrid and Barcelona that are operated by Renfe.
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frequency
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Figure 1.12: Empirical distribution of travel times of high speed trains.

Our exploratory data analysis showed previously that the duration is the one advertised on
the ticket: there are only 15 unique travel time. Based on 9603 observations, we estimate
the mean travel time to be 170 minutes and 41 seconds. Figure 1.12 shows the empirical
distribution of the data.

Consider now samples of size n = 10, drawn repeatedly from the population: in the first
sample, the sample mean is 169.3 minutes, whereas we get an estimate of 167 minutes in
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1.7 Central Limit Theorem

our second , 157.9 minutes in the third, etc.
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Figure 1.13: Graphical representation of the central limit theorem. The upper left panel
shows a sample of 20 observations with its sample mean (vertical red). The
three other panels show the histograms of the sample mean from repeated
samples of size 5 (top right), 20 (bottom left) and 20, 50 and 100 overlaid, with
the density approximation provided by the central limit theorem.

We draw B = 1000 different samples, each of size n = 5, from two millions records, and
calculate the sample mean in each of them. The top right panel of Figure 1.13 is a histogram
of the sample means when n = 5, whereas the bottom left panel shows the same thingfor
n = 20. The last graph of Figure 1.13 shows the impact of the increase in sample size:
whereas the normal approximation is okay-ish for n = 5, it is indistinguishable from the
normal approximation for n = 20. As n increases and the sample size gets bigger, the quality
of the approximation improves and the curve becomes more concentrated around the true
mean. Even if the distribution of the travel time is discrete, the mean is approximately
normal.

We considered a single distribution in the example, but you could play with other distri-
butions and vary the sample size to see when the central limit theorem kicks in usng this
applet.

The central limit theorem underlies why scaled test statistics which have sample mean
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1 Introduction

zero and sample variance 1 have a standard null distribution in large sample: this is what
guarantees the validity of our inference!
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2 Statistical inference

In most applied domains, empirical evidences drive the advancement of the field and data
from well designed experiments contribute to the built up of science. In order to draw
conclusions in favour or against a theory, researchers turn (often unwillingly) to statistics
to back up their claims. This has led to the prevalence of the use of the null hypothesis
statistical testing (NHST) framework. One important aspect of the reproducibility crisis is
the misuse of p-values in journal articles: falsification of a null hypothesis is not enough to
provide substantive findings for a theory.

Because introductory statistics course typically present hypothesis tests without giving
much thoughts to the underlying construction principles of such procedures, users often
have a reductive view of statistics as a catalogue of pre-determined procedures. To make
a culinary analogy, users focus on learning recipes rather than trying to understand the
basics of cookery. This chapter focuses on understanding of key ideas related to testing.

! Important

Learning objectives:

Understanding the role of uncertainty in decision making.

Understanding the importance of signal-to-noise ratio as a measure of evidence.
Knowing the basic ingredients of hypothesis testing and being capable of cor-
rectly formulating and identifying these components in a paper.

Correctly interpreting p-values and confidence intervals for a parameter.

The first step of a design is formulating a research question. Generally, this hypothesis will
specify potential differences between population characteristics due to some intervention
(a treatment) that the researcher wants to quantify. This is the step during which researchers
decide on sample size, choice of response variable and metric for the measurement, write
down the study plan, etc.

It is important to note that most research questions cannot be answered by simple tools.
Researchers wishing to perform innovative methodological research should contact experts
and consult with statisticians before they collect their data to get information on how best
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2 Statistical inference

to proceed for what they have in mind so as to avoid the risk of making misleading and false
claims based on incorrect analysis or data collection.

TO DO SCIENCE, | | BUT HOW DO GREAT QUESTION. HOW DO
YOU GENERATE | | YOU GENERATE | | ¥OU THINK YOU DO (T?

A HYPOTHESIS, | | A HYPOTHESIS? WELL MAYBE YOU—
THEN TEST 1T, :

AND THERE

YOU HAVE 17!

\

Figure 2.1: xkcd comic 2569 (Hypothesis generation) by Randall Munroe. Alt text: Frazzled
scientists are requesting that everyone please stop generating hypotheses for a
little bit while they work through the backlog. Cartoon reprinted under the CC
BY-NC 2.5 license.

2.1 Sampling variability

Given data, a researcher will be interested in estimating particular characteristics of the
population. We can characterize the set of all potential values their measurements can take,
together with their frequency, via a distribution.

The purpose of this section is to illustrate how we cannot simply use raw differences between
groups to make meaningful comparisons: due to sampling variability, samples will be alike
even if they are generated in the same way, but there will be always be differences between
their summary statistics. Such differences tend to attenuate (or increase) as we collect more
sample. Inherent to this is the fact that as we gather more data (and thus more information)
about our target, the portrait becomes more precise. This is ultimately what allows us to
draw meaningful conclusions but, in order to do so, we need first to determine what is
likely or plausible and could be a stroke of luck, and what is not likely to occur solely due to
randomness.

We call numerical summaries of the data statistics. Its important to distinguish between
procedures/formulas and their numerical values. An estimator is a rule or formula used
to calculate an estimate of some parameter or quantity of interest based on observed data
(like a recipe for cake). Once we have observed data we can actually compute the sample
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2.1 Sampling variability

mean, that is, we have an estimate — an actual value (the cake), which is a single realization
and not random. In other words,

* an estimand is our conceptual target, like the population characteristic of interest
(population mean).

* an estimator is the procedure or formula telling us how to transform the sample data
into a numerical summary that is a proxy of our target.

* an estimate is a number, the numerical value obtained once we apply the formula to
observed data.

Ingredients Mett

150g u

2large eggs

(b) Estimator

(a) Estimand (c) Estimate

Figure 2.2: Estimand (left), estimator (middle) and estimate (right) illustrated with cakes
and based on an original idea of Simon Grund. Cake photos shared under CC
BY-NC 2.0 license.

For example, we may use as estimand the population average of Y7, .. ., say u. The estimator
will be sample mean, i.e., the sum of the elements in the sample divided by the sample size,

Y = (Y1 +--- +Y,)/n. The estimate will be a numerical value, say 4.3.

Because the inputs of the estimator are random, the output is also random and change
from one sample to the next: even if you repeat a recipe, you won't get the exact same result
every time, as in Figure 2.3.

To illustrate this point, Figure 2.4 shows five simple random samples of size n = 10 drawn
from an hypothetical population with mean i and standard deviation o, along with their
sample mean 7. Because of the sampling variability, the sample means of the subgroups will
differ even if they originate from the same distribution. You can view sampling variability
as noise: our goal is to extract the signal (typically differences in means) but accounting for
spurious results due to the background noise.

The astute eye might even notice that the sample means (thick horizontal segments) are less
dispersed around the full black horizontal line representing the population average x than
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2 Statistical inference

LEFT HAND BLOOD LEFT HAND BLOOD LEFT HAND BLOOD
L-ISE rfl*;"ggﬂf VOLUME: 21.81 mL | | | VOLUME: 2186 mL | | |VOLUME: 22.09 mL
i HUH, ITS GOING OH WEIRD NOW IT'S GOING WY UP! /5
OH. COOL. NOT SURE DOWN. T GUESS IT'5 GOING UP MY HAND EXPLODING?!
HOW TO INTERPRET THAT HAPPENS, HIGHER THAN AND NO
THAT, BUT GOOD TO OW My PULSE
" o, T \ BEFORE. I5 RISING! AAAAA!!!
GUESS, 9 /
3 / 5 ' 7 50 SORRY. u/t
V& [ MAYBE You - WE
T GUESS: /\ MHM. SHOULDNT WILL TREASURE
i LOOK AT— YOUR MEMORY.

Figure 2.3: xkcd comic 2581 (Health Stats) by Randall Munroe. Alt text: You will live on

10

forever in our hearts, pushing a little extra blood toward our left hands now and
then to give them a squeeze. Cartoon reprinted under the CC BY-NC 2.5 license.
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Figure 2.4: Five samples of size n = 10 drawn from a common population with mean p

(horizontal line). The colored segments show the sample means of each sample.

are the individual measurements. This is a fundamental principle of statistics: information
accumulates as you get more data.

Values of the sample mean don't tell the whole picture and studying differences in mean
(between groups, or relative to a postulated reference value) is not enough to draw conclu-
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2.1 Sampling variability

sions. In most settings, there is no guarantee that the sample mean will be equal to it’s true
value because it changes from one sample to the next: the only guarantee we have is that
it will be on average equal to the population average in repeated samples. Depending on
the choice of measurement and variability in the population, there may be considerable
differences from one observation to the next and this means the observed difference could
be a fluke.

To get an idea of how certain something is, we have to consider the variability of an obser-
vation Y;. This variance of an observation drawn from the population is typically denoted
o2 and it’s square root, the standard deviation, by o.

The standard deviation of a statistic is termed standard error; it should not be confused with
the standard deviation o of the population from which the sample observations Y7, ...,Y,
are drawn. Both standard deviation and standard error are expressed in the same units as
the measurements, so are easier to interpret than variance. Since the standard error is a
function of the sample size, it is however good practice to report the estimated standard
deviation in reports.

Example 2.1 (Sample proportion and uniform draws). To illustrate the concept of sampling
variability, we follow the lead of Matthew Crump and consider samples from a uniform
distribution on {1, 2,...,10} each number in this interval is equally likely to be sampled.
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Figure 2.5: Histograms for 10 random samples of size n = 20 from a discrete uniform
distribution.
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Even if they are drawn from the same population, the 10 samples in Figure 2.5 look quite
different. The only thing at play here is the sample variability: since there are n = 20
observations in total, there should be on average 10% of the observations in each of the 10
bins, but some bins are empty and others have more counts than expected. This fluctuation
is due to randomness, or chance.

How can we thus detect whether what we see is compatible with the model we think
generated the data? The key is to collect more observations: the bar height is the sample
proportion, an average of 0/1 values with ones indicating that the observation is in the bin
and zero otherwise.

Consider now what happens as we increase the sample size: the top panel of Figure 2.6
shows uniform samples for increasing samples size. The scaled bar plot looks more and
more like the true underlying distribution (flat, each bin with equal frequency) as the
sample size increases. The sample distribution of points is nearly indistinguishable from the
theoretical one (straight line) when n = 10000.! The bottom panel, on the other hand, isn’t
from a uniform distribution and larger samples come closer to the population distribution.
We couldn'’t have spotted this difference in the first two plots, since the sampling variability
is too important; there, the lack of data in some bins could have been attributed to chance,
as they are comparable with the graph for data that are truly uniform. This is in line
with most practical applications, in which the limited sample size restricts our capacity to
disentangle real differences from sampling variability. We must embrace this uncertainty:
in the next section, we outline how hypothesis testing helps us disentangle the signal from
the noise.

2.2 Hypothesis testing

An hypothesis test is a binary decision rule used to evaluate the statistical evidence provided
by a sample to make a decision regarding the underlying population. The main steps
involved are:

¢ define the model parameters

 formulate the alternative and null hypothesis

* choose and calculate the test statistic

e obtain the null distribution describing the behaviour of the test statistic under .7
e calculate the p-value

e conclude (reject or fail to reject .7%) in the context of the problem.

The formula shows that the standard error decreases by a tenfold every time the sample size increases by a
factor 100.
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Figure 2.6: Bar plots of data from a uniform distribution (top) and non-uniform (bottom)
with increasing sample sizes of 10, 100, 1000 and 10 000 (from left to right).

A good analogy for hypothesis tests is a trial for murder on which you are appointed juror.

* The judge lets you choose between two mutually exclusive outcome, guilty or not
guilty, based on the evidence presented in court.

» The presumption of innocence applies and evidences are judged under this optic: are
evidence remotely plausible if the person was innocent? The burden of the prooflies
with the prosecution to avoid as much as possible judicial errors. The null hypothesis
) is not guilty, whereas the alternative 7, is guilty. If there is a reasonable doubt,
the verdict of the trial will be not guilty.

* The test statistic (and the choice of test) represents the summary of the proof. The
more overwhelming the evidence, the higher the chance the accused will be declared
guilty. The prosecutor chooses the proof so as to best outline this: the choice of
evidence (statistic) ultimately will maximise the evidence, which parallels the power
of the test.

* The final step is the verdict. This is a binary decision, guilty or not guilty. For an
hypothesis test performed at level «, one would reject (guilty) if the p-value is less
than a.

The above description provides some heuristic, but lacks crucial details.
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2 Statistical inference
2.3 Hypothesis

In statistical tests we have two hypotheses: the null hypothesis (/%) and the alternative
hypothesis (7). Usually, the null hypothesis is the ‘status quo’ and the alternative is
what we're really interested in testing. A statistical hypothesis test allows us to decide
whether or not our data provides enough evidence to reject .7 in favour of 7, subject
to some pre-specified risk of error. Usually, hypothesis tests involve a parameter, say 0,
which characterizes the underlying distribution at the population level ans whose value is
unknown. A two-sided hypothesis test regarding a parameter 6 has the form

I 0 =0 versus I, 2 0 # 0.

We are testing whether or not 6 is precisely equal to the value 6. The hypotheses are a
statistical representation of our research question.

A common example of two-sided test is one for the regression coefficient 5; associated to
an explanatory variable X, for which the null and alternative hypothesis are

My By =P versus P # B,

where 6? is some value that reflects the research question of interest. For example, if ﬁ? =0,
the underlying question is: is covariate X; impacting the response Y linearly once other
variables have been taken into account?

Note that we can impose direction in the hypotheses and consider alternatives of the form
o 0 > 0gor 0 < 6.

2.4 Test statistic

A test statistic 7" is a function of the data that summarise the information contained in
the sample for . The form of the test statistic is chosen such that we know its underlying
distribution under .77, that is, the potential values taken by 7" and their relative probability
if 7% is true. Indeed, Y is a random variable and its value change from one sample to the
next. This allows us to determine what values of T" are likely if .7 is true. Many statistics we
will consider are Wald statistic, of the form

T = =
se(6)

where 6 is an estimator of 6, 6, is the postulated value of the parameter and se(f) is an
estimator of the standard deviation of the test statistic 6.
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2.5 Null distribution and p-value

For example, to test whether the mean of a population is zero, we set
J0 =0, I 1 # 0,

and the Wald statistic is

and the standard error (of the mean) X is S,,/y/n; the sample variance S, is an estimator of
the standard deviation o,

S? =

LS x - X
;=1

n—1
(A

2.5 Null distribution and p-value

The p-value allows us to decide whether the observed value of the test statistic 7" is plausible
under 7. Specifically, the p-value is the probability that the test statistic is equal or more
extreme to the estimate computed from the data, assuming /% is true. Suppose that based
on arandom sample Y7, ..., Y,, we obtain a statistic whose value 7' = ¢. For a two-sided test
Ay 0 = 0y vs. A, : 0 # 0y, the p-value is Pro(|T| > [t]).2

How do we determine the null distribution given that the true data generating mechanism
is unknown to us? We ask a statistician! In simple cases, it might be possible to enumerate
all possible outcomes and thus quantity the degree of outlyingness of our observed statistic.
In more general settings, we can resort to simulations or to probability theory: the central
limit theorem says that the sample mean behaves like a normal random variable with mean
w1 and standard deviation o /+/n for n large enough. The central limit theorem has broader
applications since most statistics can be viewed as some form of average or transformation
thereof, a fact used to derive benchmarks for most commonly used tests. Most software use
these approximations as proxy by default: the normal, Student’s ¢, 2 and F distributions
are the reference distributions that arise the most often.

Figure 2.7 shows the distribution of p-values for two scenarios: one in which there are no
differences and the null is true, the other under an alternative. The probability of rejection

%If the distribution of T is symmetric around zero, the p-value reduces to p = 2 x Pro(T > [t|).
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2 Statistical inference

is obtained by calculating the area under the density curve between zero and « = 0.1, here
0.1 on the left. Under the null, the model is calibrated and the distribution of p-values is
uniform (i.e., a flat rectangle of height 1), meaning all values in the unit interval are equally
likely. Under the alternative (right), small p-values are more likely to be observed.

5 5

0 01 025 05 0.75 1 0 01 025 05 0.75 1
probability level probability level

Figure 2.7: Density of p-values under the null hypothesis (left) and under an alternative
with a signal-to-noise ratio of 0.5 (right).

There are generally three ways of obtaining null distributions for assessing the degree of
evidence against the null hypothesis

* exact calculations
* large sample theory (aka ‘asymptotics’ in statistical lingo)
* simulation

While desirable, the first method is only applicable in simple cases (such as counting
the probability of getting two six if you throw two fair die). The second method is most
commonly used due to its generality and ease of use (particularly in older times where
computing power was scarce), but fares poorly with small sample sizes (where ‘too small’
is context and test-dependent). The last approach can be used to approximate the null
distribution in many scenarios, but adds a layer of randomness and the extra computations
costs sometimes are not worth it.

Consider the example of a two-sided test involving the population mean /% : i = 0 against
the alternative 77 : u # 0. Assuming the random sample comes from a normal (population)
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normal(u, 02), it can be shown that if /% is true (that is, if . = 0), the test statistic

X

S/

follows a Student- ¢ distribution with n — 1 degrees of freedom. This allows us to calculate the

p-value (either from a table, or using some statistical software). By virtue of the symmetry,
the p-value is P = 2 x Pr(T" > |t|), where T' ~ Student(n — 1).

T

2.6 Confidence intervals

A confidence interval is an alternative way to present the conclusions of an hypothesis
test performed at significance level o. It is often combined with a point estimator § plus or
minus a margin of error designed to give an indication of the variability of the estimation
procedure. Wald-based (1 — «) confidence intervals for a scalar parameter ¢ are of the
form

~ o~ ~

[§+ qa/QSe( )7 0+ d1—a/2 X Se( )]

where q,,/, is the a/2 quantile of the null distribution of the Wald statistic IV

)

-0
se(f)

)

and where 0 represents the postulated value for the fixed, but unknown value of the param-
eter. The critical values for a symmetric interval, chosen so that the probability of being
more extreme is «, are the «/2 and 1 — /2 quantiles of the null distribution.

For example, for a random sample X, ..., X,, from a normal distribution normal(u, o), the
(1 — «) confidence interval for the population mean y is

— S

X+ ZL/nfl,oz/Q %

where t,,_; /o is the 1 — /2 quantile of a Student-t distribution with n — 1 degrees of
freedom.

The bounds of the confidence intervals are random variables, since both estimators of
the parameter and its standard error, § and se(f), are random: their values will vary from
one sample to the next. Before the interval is calculated, there is a 1 — a probability that
¢ is contained in the random interval (6 — q, /2 se(0),0 + qq /2 se(6)), where 8 denotes the
estimator. Once we obtain a sample and calculate the confidence interval, there is no more
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2 Statistical inference

notion of probability: the true value of the parameter 6 is either in the confidence interval
or not. We can interpret confidence intervals as follows: if we were to repeat the experiment
multiple times, and calculate a 1 — o confidence interval each time, then roughly 1 — « of
the calculated confidence intervals would contain the true value of § in repeated samples
(in the same way, if you flip a coin, there is roughly a 50-50 chance of getting heads or tails,
but any outcome will be either). Our confidence is in the procedure we use to calculate
confidence intervals and not in the actual values we obtain from a sample.

replicate study

fails to cover —— covers

Figure 2.8: 95% confidence intervals for the mean of a standard normal population for 100
random samples. On average, 5% of these intervals fail to include the true mean
value of zero (in red).

If we are only interested in the binary decision rule reject/fail to reject .74, the confidence
interval is equivalent to a p-value since it leads to the same conclusion. Whereas the 1 — «
confidence interval gives the set of all values for which the test statistic doesn’t provide
enough evidence to reject /7 at level «, the p-value gives the probability under the null
of obtaning a result more extreme than the postulated value and so is more precise for
this particular value. If the p-value is smaller than «, our null value 6 will be outside of the
confidence interval and vice-versa.
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2.7 Conclusion

The p-value allows us to make a decision about the null hypothesis. If 7 is true, the
p-value follows a uniform distribution. Thus, if the p-value is small, this means observing
an outcome more extreme than 7" = ¢ is unlikely, and so we're inclined to think that 7% is
not true. There’s always some underlying risk that we’re making a mistake when we make a
decision. In statistic, there are two type of errors:

e type Il error: we reject 74 when 77 is true,
e type Il error: we fail to reject 74 when .77 is false.

These hypothesis are not judged equally: we seek to avoid error of type I (judicial errors,
corresponding to condemning an innocent). To prevent this, we fix the level of the test, «,
which captures our tolerance to the risk of committing a type I error: the higher the level
of the test «, the more often we will reject the null hypothesis when the latter is true. The
value of « € (0, 1) is the probability of rejecting .74 when % is in fact true,

a = Prg(reject 7).

where the subscript Pr indicates the probability under the null model. The level « is fixed
beforehand, typically 1%, 5% or 10%. Keep in mind that the probability of type I error
is a only if the null model for 7 is correct (sic) and correspond to the data generating
mechanism.

The focus on type I error is best understood by thinking about medical trial: you need
to prove a new cure is better than existing alternatives drugs or placebo, to avoid extra
costs or harming patients (think of Didier Raoult and his unsubstantiated claims that
hydrochloroquine, an antipaludean drug, should be recommended treatment against
Covid19).

Decision \ true model I I,
fail to reject ¢ v type Il error
reject % type I error v

To make a decision, we compare our p-value P with the level of the test a:

e if P < a, we reject .7;
e if P > «, we fail to reject 4.
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Do not mix up level of the test (probability fixed beforehand by the researcher) and the
p-value. If you do a test at level 5%, the probability of type I error is by definition « and
does not depend on the p-value. The latter is conditional probability of observing a more
extreme likelihood given the null distribution .77 is true.

O Caution

The American Statistical Association (ASA) published a list of principles guiding
(mis)interpretation of p-values, some of which are reproduced below:

(2) P-values do not measure the probability that the studied hypothesis
is true.

(3) Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

(4) P-values and related analyses should not be reported selectively.

(5) p-value, or statistical significance, does not measure the size of an
effect or the importance of a result.

2.8 Power

There are two sides to an hypothesis test: either we want to show it is not unreasonable
to assume the null hypothesis, or else we want to show beyond reasonable doubt that a
difference or effect is significative: for example, one could wish to demonstrate that a new
website design (alternative hypothesis) leads to a significant increase in sales relative to the
status quo. Our ability to detect these improvements and make discoveries depends on the
power of the test: the larger the power, the greater our ability to reject 7% when the latter is
false.

Failing to reject % when 7, is true corresponds to the definition of type II error, the
probability of which is 1 — power, say. The power of a test is the probability of rejecting .74
when 7 is false, i.e.,

Pr,(reject 74),

i.e., the probability under the alternative model of falling in the rejection region. Depending
on the alternative models, it is more or less easy to detect that the null hypothesis is false
and reject in favor of an alternative.
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Figure 2.9: Comparison between null distribution (full curve) and a specific alternative
for a ¢-test (dashed line). The power corresponds to the area under the curve
of the density of the alternative distribution which is in the rejection area (in
white). The middle panel shows an increase in power due to an increase in the
mean difference, whereas the right panel shows the change due to a decrease in

variability of increase in the sample size.

We want a test to have high power, i.e., that the power should be as close to 1 as possible.
Minimally, the power of the test should be « because we reject the null hypothesis « fraction

of the time even when 7% is true. Power depends on many criteria, notably

¢ the effect size: the bigger the difference between the postulated value for 6, under
4 and the observed behavior, the easier it is to detect it, as in the middle panel of

Figure 2.9;

e variability: the less noisy your data, the easier it is to detect differences between the
curves (big differences are easier to spot, as the right panel of Figure 2.9 shows);
 the sample size: the more observation, the higher our ability to detect significative
differences because the standard error decreases with sample size n at a rate (typically)
of n~1/2. The null distribution also becomes more concentrated as the sample size

increase.
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 the choice of test statistic: for example, rank-based statistics discard information
about the actual values and care only about relative ranking. Resulting tests are less
powerful, but are typically more robust to model misspecification and outliers. The
statistics we will choose are standard and amongst the most powerful: as such, we
won'’t dwell on this factor.

To calculate the power of a test, we need to single out a specific alternative hypothesis. In
very special case, analytic derivations are possible but typically we compute the power
of a test through Monte Carlo methods. For a given alternative, we simulate repeatedly
samples from the model, compute the test statistic on these new samples and the associated
p-values based on the postulated null hypothesis. We can then calculate the proportion
of tests that lead to a rejection of the null hypothesis at level o, namely the percentage of
p-values smaller than .

2.9 Examples

Example 2.2 (Gender inequality and permutation tests). We consider data from Rosen and
Jerdee (1974), who look at sex role stereotypes and their impacts on promotion and opportu-
nities for women candidates. The experiment took place in 1972 and the experimental units,
which consisted of 95 male bank supervisors, were submitted to various memorandums
and asked to provide ratings or decisions based on the information provided.

We are interested in Experiment 1 related to promotion of employees: managers were
requested to decide on whether or not to promote an employee to become branch manager
based on recommendations and ratings on potential for customer and employee relations.

The authors intervention focused on the description of the nature (complexity) of the
manager’s job (either simple or complex) and the sex of the candidate (male or female): all
files were otherwise similar.

We consider for simplicity only sex as a factor and aggregate over job for the n = 93 replies.
Table 2.2 shows the counts for each possibility.

Table 2.2: Promotion recommandation to branch manager based on sex of the applicant.

male female

promote 32 19
hold file 12 30
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The null hypothesis of interest here that sex has no impact, so the probability of promotion
is the same for men and women. Let p,, and p,, denote these respective probabilities; we
can thus write mathematically the null hypothesis as 7% : pm = pw against the alternative
M pm F Pw-

The test statistic typically employed for contingency tables is a chi-square test?, which
compares the overall proportions of promoted to that in for each subgroup. The sample
proportion for male is 32/44 = ~73%, compared to 19/49 or ~49% for female. While it seems
that this difference of 16% is large, it could be spurious: the standard error for the sample
proportions is roughly 3.2% for male and 3.4% for female.

If there was no discrimination based on sex, we would expect the proportion of people
promoted to be the same overall; this is 51/93 =0.55 for the pooled sample. We could simply
do a test for the mean difference, but rely instead on the Pearson contingency X (aka
chi-square) test, which compares the expected counts (based on equal promotion rates) to
the observed counts, suitably standardized. If the discrepancy is large between expected
and observed, than this casts doubt on the validity of the null hypothesis.

If the counts of each cell are large, the null distribution of the chi-square test is well approx-
imated by a x? distribution. The output of the test includes the value of the statistic, 10.79,
the degrees of freedom of the x? approximation and the p-value, which gives the probability
that a random draw from a x? distribution is larger than the observed test statistic assuming
the null hypothesis is true. The p-value is very small, 0.001, which means such a result is
quite unlikely to happen by chance if there was no sex-discrimination.

Another alternative to obtain a benchmark to assess the outlyingness of the observed odds
ratio is to use simulations: permutation tests are well illustrated by Jared Wilber. Consider
a database containing the raw data with 93 rows, one for each manager, with for each an
indicator of action and the sex of the hypothetical employee presented in the task.

Table 2.3: First five rows of the database in long format for experiment 1 of Rosen and Jerdee.

action sex

promote male
hold file female
promote male
hold file female
hold file male

31If you have taken advanced modelling courses, this is a score test obtained by fitting a Poisson regression
with sex and action as covariates; the null hypothesis corresponding to lack of interaction term between
the two.
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Under the null hypothesis, sex has no incidence on the action of the manager. This means
we could get an idea of the “what-if” world by shuffling the sex labels repeatedly. Thus, we
could obtain a benchmark by repeating the following steps multiple times:

1. permute the labels for sex,
2. recreate a contingency table by aggregating counts,
3. calculate a test statistic for the simulated table.

As test statistic, we use odds ratio: the odds of an event is the ratio of the number of success
over failure: in our example, this would be the number of promoted over held files. The
odds of promotion for male is 32 /12, whereas that of female is 19/30. The odds ratio for male
versus female is thus OR = (32/12)/(19/30) = 4.21. Under the null hypothesis, 7% : OR =1
(same probability of being promoted) (why?)

1500

1000

count

500

o | ;

odds ratio

Figure 2.10: Histogram of the simulated null distribution of the odds ratio statistic obtained
using a permutation test; the vertical red line indicates the sample odds ratio.

The histogram in Figure 2.10 shows the distribution of the odds ratio based on 10 000

permutations. Reassuringly, we again get roughly the same approximate p-value, here
0.002.*

The article concluded (in light of the above and further experiments)

“The p-value obtained for the permutation test would change from one run to the next since it’s input is
random. However, the precision of the proportion statistic is sufficient for decision making purposes.
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Results confirmed the hypothesis that male administrators tend to discrimi-
nate against female employees in personnel decisions involving promotion,
development, and supervision.

Recap

* Model parameters: probability of promotion for men and women, respectively py,
and py.

* Hypotheses: no discrimination based on gender, meaning equal probability of pro-

motion (null hypothesis .74 : pm = pw, versus alternative hypothesis .77, : pm # pw).

Test statistic: (1) chi-square test for contingency tables and (2) odds ratio.

p-value: (1) .0010 and (2) .0024 based on permutation test.

Conclusion: reject null hypothesis, as there is evidence of a gender-discrimination

with different probability of promotion for men and women.

Following the APA guidelines, the y? statistic would be reported as x?(1,n = 93) = 10.79,
p = .001 along with counts and sample proportions.

Example 2.3 (“The Surprise of Reaching Out”). Liu et al. (2023) studies social interactions
and the impact of surprise on people reaching out if this contact is unexpected. Experiment
1 focuses on questionnaires where the experimental condition is the perceived appreciation
of reaching out to someone (vs being reached to). The study used a questionnaire adminis-
tered to 200 American adults recruited on the Prolific Academic platform. The response
index consists of the average of four questions measured on a Likert scale ranging from 1 to
7, with higher values indicating higher appreciation.

We can begin by inspecting summary statistics for the sociodemographic variables (gender
and age) to assess whether the sample is representative of the general population as a whole.
The proportion of other (including non-binary people) is much higher than that of the
general census, and the population skews quite young according to Table 2.4.

Table 2.4: Summary statistics of the age of participants, and counts per gender

gender min max mean n

male 18 78 32.0 105
female 19 68 365 92
other 24 30 27.7 3
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Table 2.5: Mean ratings, standard deviation and number of participants per experimental
condition.

role mean sd n

initiator 5,50 1.28 103
responder 5.87 127 97

Since there are only two groups, initiator and responder, we are dealing with a pairwise
comparison. The logical test one could use is a two sample ¢-test, or a variant thereof. Using
Welch two sample ¢-test statistic, both group average and standard deviation are estimated
using the data provided.

The software returns ¢(197.52) = —2.05, p = .041, which leads to the rejection of the null
hypothesis of no difference in appreciation depending on the role of the individual (initiator
or responder). The estimated mean difference is AM = —0.37, 95% CI [—0.73, —0.01]; since
0 is not included in the confidence interval, we also reject the null hypothesis at level 5%.
The estimate suggests that initiators underestimate the appreciation of reaching out.’

Recap

* Model parameters: average expected appreciation score y; and p, of initiators and
responder, respectively

Hypothesis: expected appreciation score is the same for initiator and responders,
H i = py against alternative J7;, : p; # p, that they are different.

Test statistic: Welch two sample ¢-test

p-value: 0.041

Conclusion: reject the null hypothesis, average appreciation score differs depending
on the role

Example 2.4 (Virtual communication curbs creative idea generation). A Nature study
performed an experiment to see how virtual communications teamwork by comparing the
output both in terms of ideas generated during a brainstorming session by pairs and of
the quality of ideas, as measured by external referees. The sample consisted of 301 pairs of
participants who interacted via either videoconference or face-to-face.

The authors compared the number of creative ideas, a subset of the ideas generated with
creativity score above average. The mean number of the number of creative ideas for
face-to-face 7.92 ideas (sd 3.40) relative to videoconferencing 6.73 ideas (sd 3.27).

SAssuming that the variance of each subgroup were equal, we could have used a two-sample ¢-test instead.
The difference in the conclusion is immaterial, with a nearly equal p-value.
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Brucks and Levav (2022) used a negative binomial regression model: in their model, the
expected number creative ideas generated is

E(ncreative) = exp(fy + S1video)

where video = 0 if the pair are in the same room and video = 1 if they interact instead via
videoconferencing.

The mean number of ideas for videoconferencing is thus exp(3; ) times that of the face-to-
face: the estimate of the multiplicative factor is exp (/) is 0.85 95% CI [0.77, 0.94].

No difference between experimental conditions translates into the null hypothesis as
0 b1 = 0vs G f1 # 0 or equivalently .7 : exp(81) = 1. The likelihood ratio test
comparing the regression model with and without video the statistic is R = 9.89 (p-value
based on x? of .002). We conclude the average number of ideas is different, with summary
statistics suggesting that virtual pairs generate fewer ideas.

If we had resorted to a two sample ¢-test, we would have found a mean difference in the
number of creative idea of AM = 1.19, 95% CI [0.43, 1.95], £(299) = 3.09, p = .002.

Both tests come with slightly different sets of assumptions, but yield similar conclusions:
there is evidence of a smaller number of creative ideas when people interact via videocon-
ferencing.

Example 2.5 (Price of Spanish high speed train tickets). The Spanish national railway
company, Renfe, manages regional and high speed train tickets all over Spain and The
Gurus harvested the price of tickets sold by Renfe. We are interested in trips between
Madrid and Barcelona and, for now, ask the question: are tickets more expensive one way
or another? To answer this, we consider a sample of 8059 AVE tickets sold at Promo rate.
Our test statistic will again be the mean difference between the price (in euros) for a train
ticket for Madrid-Barcelona (1) and the price for Barcelona—Madrid (u2), i.e., u1 — p2. The
null hypothesis is that there are no difference in price, so 74 : 1 — p2 = 0.

We use Welch'’s ¢ test statistic for two samples: the sample mean of the price of Barcelona-
Madrid tickets is 82.15 euros, that of Madrid-Barcelona tickets is 82.54 euros and the Welch
statistic is worth -1.15. If we use a normal approximation, the p-value is 0.25.

Rather than use the asymptotic distribution, whose validity stems from the central limit
theorem, we could consider another approximation under the less restrictive assumption
that the data are exchangeable: under the null hypothesis, there is no difference between
the two destinations and so the label for destination (a binary indicator) is arbitrary. The
reasoning underlying permutation tests is as follows: to create a benchmark, we will con-
sider observations with the same number in each group, but permuting the labels. We then
compute the test statistic on each of these datasets. If there are only a handful in each group
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(fewer than 10), we could list all possible permutations of the data, but otherwise we can
repeat this procedure many times, say 9999, to get a good approximation. This gives an
approximate distribution from which we can extract the p-value by computing the rank of
our statistic relative to the others.

0.4
0.3
>
@021
(]
©
0.14
0.0
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Figure 2.11: Permutation-based approximation to the null distribution of Welch two-sample
t-test statistic (histogram and black curve) with standard normal approximation
(dashed curve) for the price of AVE tickets at promotional rate between Madrid
and Barcelona. The value of the test statistic calculated using the original
sample is represented by a vertical line.

The so-called bootstrap approximation to the p-value of the permutation test, 0.186, is the
proportion of statistics that are more extreme than the one based on the original sample. Itis
nearly identical to that obtained from the Satterthwaite approximation, 0.249 (the Student-¢
distribution is numerically equivalent to a standard normal with that many degrees of
freedom), as shown in Figure 2.11. Even if our sample is very large (n = 8059 observations),
the difference is not statistically significative. With a bigger sample (the database has more
than 2 million tickets), we could estimate more precisely the average difference, up to 1/100
of an euro: the price difference would eventually become statistically significative, but this
says nothing about practical difference: 0.28 euros relative to an Promo ticket priced on
average 82.56 euros is a negligible amount.
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This chapter is dedicated to the basics of statistical modelling using likelihood-based
inference, arguably the most popular estimation paradigm in statistics.

! Important
Learning objectives:

* Learn the terminology associated with likelihood-based inference

* Derive closed-form expressions for the maximum likelihood estimator in simple
models

» Using numerical optimization, obtain parameter estimates and their standards
errors using maximum likelihood

» Use large-sample properties of the likelihood to derive confidence intervals and
tests

* Use information criteria for model selection

A statistical model starts with the specification of a data generating mechanism. We postu-
late that the data has been generated from a probability distribution with p-dimensional
parameter vector 6. The sample space is the set in which the n vector observations lie, while
the parameter space ® C R? is the set in which the parameter takes values.

As motivating example, consider the time a passenger must wait at the Université de Mon-
tréal station if that person arrives at 17:59 sharp every weekday, just in time for the metro
train. The measurements in waiting represent the time in seconds before the next train
leaves the station. The data were collected over three months and can be treated as an inde-
pendent sample. The left panel of Figure 3.1 shows an histogram of the n = 62 observations,
which range from 4 to 57 seconds. The data are positive, so our model must account for this
feature.

Example 3.1 (Exponential model for waiting times). To model the waiting time, we may
consider for example an exponential distribution with scale A (Definition 1.11), which rep-
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Figure 3.1: Histogram of waiting time with rugs for the observations (left) and exponential
log likelihood function for the waiting time, with the maximum likelihood esti-
mate at dashed vertical line (right).

resents the theoretical mean. Under independence!, the joint density for the observations
Yly -, Yn IS

n

P =[] F) = [[ A" exp(—us/A) = A" exp (—iw)
=1

i=1 i=1
The sample space is R = [0, c0)™, while the parameter space is (0, co).
To estimate the scale parameter )\ and obtain suitable uncertainty measures, we need a

modelling framework. We turn to likelihood-based inference.

3.1 Maximum likelihood estimation

For any given value of 8, we can obtain the probability mass or density of the sample
observations, and we use this to derive an objective function for the estimation.

'Recall that, if A and B are independent random variables, the joint probability is the product of the probability
of the events, Pr(A U B) = Pr(A) Pr(B). The same holds for density or mass function, since the latter are
defined as the derivative of the distribution function.
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3.1 Maximum likelihood estimation

Definition 3.1 (Likelihood). The likelihood L(6) is a function of the parameter vector
that gives the probability (or density) of observing a sample under a postulated distribution,
treating the observations as fixed,

L(6;y) = f(y;0),

where f(y;0) denotes the joint density or mass function of the n-vector containing the
observations.

If the latter are independent, the joint density factorizes as the product of the density of
individual observations, and the likelihood becomes

LO;y) =[] fi(i:0) = fr(y1:0) x -+ X fu(yn; 6).
=1

The corresponding log likelihood function for independent and identically distributions
observations is

((0;y) = Zn:hlf(yi;@)
i=1

Example 3.2 (Dependent data). The joint density function only factorizes for independent
data, but an alternative sequential decomposition can be helpful. For example, we can
write the joint density f(y1, ..., y,) using the factorization

f) = flyr) X fly2 lyr) X oo fyn [ Y155 yn)

in terms of conditional. Such a decomposition is particularly useful in the context of
time series, where data are ordered from time 1 until time n» and models typically relate
observation y, to it’s past. For example, the AR(1) process, statesthatV; | Y;_; = y;—1 ~
normal(a + By;—1,02%) and we can simplify the log likelihood using the Markov property,
which states that the current realization depends on the past, Y; | Y7,...,Y;_1, only through
the most recent value Y;_;. The log likelihood thus becomes

n

£0) =1In f(y1) + Zf(yi | Yie1).

=2

Definition 3.2 (Maximum likelihood estimator). The maximum likelihood estimator 0 is
the vector value that maximizes the likelihood,

6 = argmaxgcgqL(0;y).
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The natural logarithm In is a monotonic transformation, so the maximum likelihood esti-
mator @ for likelihood L(8; y) is the same as that of the log likelihood ¢(8; y) = In L(8; y).?

If our model is correct, we expect to observe whatever was realized. In that sense, it makes
sense to find the parameter vector that makes the sample the most likely to have been
generated by our model. Several properties of maximum likelihood estimator makes it
appealing for inference. The maximum likelihood estimator is efficient, meaning it has
the smallest asymptotic mean squared error. The maximum likelihood estimator is also
consistent, i.e., it converges to the correct value as the sample size increase (asymptotically
unbiased).

We can resort to numerical optimization routines to find the value of the maximum like-
lihood estimate, or sometimes derive closed-form expressions for the estimator, starting
from the log likelihood. The right panel of Figure 3.1 shows the exponential log likelihood,
which attains a maximum at A = 28.935 second, the sample mean of the observations. The
function decreases to either side of these values as the data become less compatible with
the model. Given the values achieved here with a small sample, it is easy to see that direct
optimization of the likelihood function (rather than it’s natural logarithm) could lead to
numerical underflow, since already exp(—270) ~ 5.5 x 1071¥ and log values smaller than
—746 would be rounded to zero.

Example 3.3 (Calculation of the maximum likelihood of an exponential distribution). As
Figure 3.1 reveals that the exponential log likelihood function is unimodal and thus achieves
a single maximum, we can use calculus to derive an explicit expression for A based on the
log likelihood

1 n
((\)=—nln\— X;y

Taking first derivative and setting the result to zero, we find

n 1 &
o T At

Rearranging this expression by taking —n /A to the right hand side of the equality and
multiplying both sides by A2 > 0, we find that A = 32", y;/n. The second derivative of the
log likelihood is d?/()\)/dA\? = n(A~2 — 2A737), and plugging \ = 7 gives —n /72, which is
negative. Therefore, ) is indeed a maximizer.

2Since in most instances we deal with a product of densities, taking the log leads to a sum of log density
contributions, which facilitates optimization.
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3.1 Maximum likelihood estimation

Example 3.4 (Normal samples). Suppose we have an independent normal sample of size
n with mean p and variance o2, where Y; ~ normal(y, 02) are independent. Recall that the
density of the normal distribution is

flysp,0®) = (27“712)1/26Xp{ ! (z — M)Q} .

202
For an simple random sample of size n, whose realization is y1, . . . , y,, the likelihood is
n 1 1

L(p, 02;y) = 1;[1 WGXD{—M(% - M)Q}

1 n
_ 2y-n/2 _ Y
=(2mo”) exp{ 5,7 Zlzgl(yz 0] }
and the log likelihood is

(0% y) = —5 n(2m) = S(0?) = 55 > (i — )™

ZZ:?:

The fact that the estimator of the theoretical mean . is the sample mean is fairly intuitive and
one can show the estimator is unbiased for n.. The (unbiased) sample variance estimator,

LS -1y
=1

S? =
n—1

Since 52 = (n — 1)/nS?, it follows that the maximum likelihood estimator of o2 is biased,
but both estimators are consistent and will thus get arbitrarily close to the true value o for
n sufficiently large.

Proposition 3.1 (Invariance of maximum likelihood estimators). Ifg(6) : R? R” fork < p

is a function of the parameter vector, then g(0) is the maximum likelihood estimator of the
function.

The invariance property explains the widespread use of maximum likelihood estimation.
For example, having estimated the parameter )\, we can now use the model to derive other
quantities of interest and get the “best” estimates for free. For example, we could compute
the maximum likelihood estimate of the probability of waiting more than one minute,
Pr(T > 60) = exp(—60/X) = 0.126, or using R built-in distribution function pexp.
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3 Likelihood-based inference

# Note: default R parametrization for the exponential is
# in terms of rate, i.e., the inverse scale parameter
pexp(q = 60, rate = 1/mean(waiting), lower.tail = FALSE)
#> [1] 0.126

Another appeal of the invariance property is the possibility to compute the MLE in the
most suitable parametrization, which is convenient if the support is restricted. If g is a
one-to-one function of 0, for example if § > 0, taking g(f) = Inf or, if 0 < § < 1, by
maximizing ¢(f) = In(f) — In(1 — #) € R removes the support constraints for the numerical
optimization.

Definition 3.3 (Score and information matrix). Let £(0), 8 € ® C RP, be the log likelihood
function. The gradient of the log likelihood U (8) = 0¢(6)/06 is termed score function.
The observed information matrix is the hessian of the negative log likelihood

_0%(6;y)

e —
7(0;y) 5000

evaluated at the maximum likelihood estimate 8, so j(). Under regularity conditions, the
expected information, also called Fisher information matrix, is

i(0) =E{UO:;Y)U(6;Y) } =E{j(6;Y)}
Both the Fisher (or expected) and the observed information matrices are symmetric and

encode the curvature of the log likelihood and provide information about the variability of
0.

Example 3.5 (Information for the exponential model). The observed and expected infor-

mation of the exponential model for a random sample Y7, . ..,Y,,, parametrized in terms of
scale ), are
(N n 2 <
A = = § i
j( ,y) ON2 )\2+n)\3 Yy

since E(Y;) = X and expectation is a linear operator.

We find i(\) = j(\) = n/7>.
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3.1 Maximum likelihood estimation

The exponential model may be restrictive for our purposes, so we consider for the purpose
of illustration and as a generalization a Weibull distribution.

Definition 3.4 (Weibull distribution). The distribution function of a Weibull random vari-
able with scale A > 0 and shape a > 0 is

F(z; A\, a) =1—exp{—(z/\)"}, z>0,A>0a>0,
while the corresponding density is

flz; N\ a) = %xa—l exp{—(z/\)}, x>0,A>0,a>0.

The quantile function, the inverse of the distribution function, is Q(p) = A{—1In(1 — p)} /.
The Weibull distribution includes the exponential as special case when « = 1. The expected
value of Y ~ Weibull(\, o) is E(Y) = AT(1 + 1/a).

Example 3.6 (Score and information of the Weibull distribution). The log likelihood for a
simple random sample whose realizations are y, . . . , y,, of size n from a Weibull(\, ") model
is

(N ) =nln(a) —naln(N) + (o —1) znzln yi — A Zn:ylo‘

The score, which is the gradient of the log likelihood, is easily obtained by differentiation?

20(\)
U a) = (agm)
oo

( —{-Oé)\ a IZ 1yz >
+ 37 11n<yz/k) i1 ()7 xIn (%)

and the observed information is the 2 x 2 matrix-valued function

; 822(?2@) 82%’“) A Jra
]()\,Oé) = - 823(/\,04) 6§£()\?&) = Y A

JadN 9a? Ine Jona

whose entries are

Jax = A2 {—noé +a(a+1) zn:(yi/)\)a}

=1

ra = A 1i 1 (/N {1+ aln(yi/N)]

Jo,a = na”? + Z Yi /) {In( yz/)‘)}
=1

3Using for example a symbolic calculator.
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3 Likelihood-based inference

To compute the expected information matrix, we need to compute expectation of
E{(Y/N)}, E[(Y/N)*In{(Y/\)*}] and E[(Y/A\)* In%{(Y/A)*}]. By definition,

E(V/) = [ @/ e e (/)
— /OO sexp(—s)ds =1
0

making a change of variable S = (Y/\)® ~ Exp(1). The two other integrals are tabulated
in Gradshteyn and Ryzhik (2014), and are equal to 1 — v and v? — 2y + 72 /6, respectively,
where v ~ 0.577 is the Euler-Mascherroni constant. The expected information matrix of
the Weibull distribution has entries

ixx=nA"2a{(a+1)—1}
ira = —nA (1 —7)
oo = non(l + 4% =2y + 7T2/6)

The information of an independent and identically distributed sample of size n is n times
that of a single observation, so information accumulates at a linear rate.

Proposition 3.2 (Gradient-based optimization). To obtain the maximum likelihood esti-
mator, we will typically find the value of the vector 0 that solves the score vector, meaning
U (5) = 0,. This amounts to solving simultaneously a p-system of equations by setting the
derivative with respect to each element of @ to zero. If j (5) is a positive definite matrix (i.e.,
all of it’s eigenvalues are positive), then the vector 8 is the maximum likelihood estimator:

We can use a variant of Newton—-Raphson algorithm if the likelihood is thrice differentiable
and the maximum likelihood estimator does not lie on the boundary of the parameter space.
If we consider an initial value 0", then a first order Taylor series expansion of the score
likelihood in a neighborhood 0 of the MLE 8 gives

o) 924(6)
O =U10)= "5~ o—ot 00007

= U(6") - j(6")(0 - o)

(60"
0=0"

and solving this for @ (provided thep x p matrix j(8) is invertible), we get
600+ (6Nh U6,
which suggests an iterative procedure from a starting value ' in the vicinity of the mode

until the gradient is approximately zero. If the value is far from the mode, then the algorithm
may diverge to infinity. To avoid this, we may multiply the term j—' (01U (8") by a damping
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3.1 Maximum likelihood estimation

factor ¢ < 1. Avariant of the algorithm, termed Fisher scoring, uses the expected or Fisher
information i(0) in place of the observed information, j(0), for numerical stability and to
avoid situations where the latter is not positive definite. This is the optimization routine used
in the glm function in R.

Example 3.7 (Maximum likelihood of a Weibull sample). We turn to numerical optimization
to obtain the maximum likelihood estimate of the Weibull distribution, in the absence of
closed-form expression for the MLE. To this end, we create functions that encode the log
likelihood, here taken as the sum of log density contributions. The functionnll_weibull
below takes as argument the vector of parameters, pars, and returns the negative of the
log likelihood which we wish to minimize* We also code the gradient, although we can
resort to numerical differentiation at little additional costs. We then use optim, the default
optimization routine in R, to minimize n11_weibull. The function returns a list containing
a convergence code (0 indicating convergence), the MLE in par, the log likelihood é(@) and
the Hessian matrix, which is the matrix of second derivatives of the negative log likelihood
evaluated at 6. The log likelihood surface, for pairs of scale and shape vectors 8 = (), a),
are displayed in Figure 3.4. We can see that the maximum likelihood value has converged,

o~

and check that the score satisfies U(6) = 0 at the returned optimum value.

# Load data vector
data(waiting, package = "hecstatmod")
# Negative log likelihood for a Weibull sample
nll_weibull <- function(pars, y){
# Handle the case of negative parameter values
if (isTRUE(any(pars <= 0))){ # parameters must be positive
return(lel0) # large value (not infinite, to avoid warning messages)
}
- sum(dweibull(x = y, scale = pars[1], shape = pars[2], log = TRUE))
}
# Gradient of the negative Weibull log likelihood
gr_nll_weibull <- function(pars, y){
scale <- pars[1]
shape <- pars[2]
n <- length(y)
grad_11 <- c(scale = -n*shape/scale + shape*scale” (-shape-1)*sum(y~shape),
shape = n/shape - n*log(scale) + sum(log(y)) -
sum(log(y/scale)*(y/scale) “shape))

*Most optimization algorithms minimize functions with respect to their arguments, so we minimize the
negative log likelihood, which is equivalent to maximizing the log likelihood.
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3 Likelihood-based inference

return(- grad_11)
b
# Use exponential submodel MLE as starting parameters
start <- c(mean(waiting), 1)
# Check gradient function is correctly coded!
# Returns TRUE if numerically equal to tolerance
isTRUE(all.equal (numDeriv: :grad(nll_weibull, x = start, y = waiting),
gr_nll _weibull(pars = start, y = waiting),
check.attributes = FALSE))
#> [1] TRUE
# Numerical minimization using optim
opt_weibull <- optim(
par = start, # starting values
fn = nll_weibull, # pass function, whose first argument is the parameter vector
gr = gr_nll_weibull, # optional (if missing, numerical derivative)
method = "BFGS", # gradient-based algorithm, common alternative is '"Nelder"
y = waiting, # vector of observations, passed as additional argument to fn
hessian = TRUE) # return matrix of second derivatives evaluated at MLE
# Alternative using pure Newton
# nlm(f = nll_weibull, p = start, hessian = TRUE, y = waiting)
# Parameter estimates - MLE
(mle_weibull <- opt_weibull$par)
#> [1] 32.6 2.6
# Check gradient for convergence
gr_nll_weibull(mle_weibull, y = waiting)
#> scale shape
#> 0.0000142 0.0001136
# Is the Hessian of the negative positive definite (all eigenvalues are positive)
# If so, we found a maximum and the matrix is invertible
isTRUE(all(eigen(opt_weibull$hessian)$values > 0))
#> [1] TRUE

3.2 Sampling distribution
The sampling distribution of an estimator 6 is the probability distribution induced by the

underlying data, given that the latter inputs are random.

For simplicity, suppose we have a simple random sample, so the log likelihood is a sum of
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3.2 Sampling distribution

n terms and information accumulates linearly with the sample size: the data carry more
information about the unknown parameter vector, whose true value we denote 6,. Under
suitable regularity conditions, cf. Section 4.4.2 of Davison (2003), for large sample size n, we
can perform a Taylor series of the score vector and apply the central limit theorem. Since
U(6) and i(0) are the sum of n independent random variables, and that E{U(0)} = 0,,, and
Var{U(0)} = i(0), application of the central limit theorem yields

i(60)"Y2U(6¢) ~ normal,(0,T,).

We can use this to obtain approximations to the sampling distribution of 8, given that
6 ~ normal,{6y,i"1(6)}

where the covariance matrix is the inverse of the Fisher information. In practice, since the
true parameter value 6, is unknown, we replace it with either i~!(8) or the inverse of the
observed information j~!(8), as both of these converge to the true value.

As the sample size grows, the 6 becomes centered around the value 6, that minimizes the
discrepancy between the model and the true data generating process. In large samples, the
sampling distribution of the maximum likelihood estimator is approximately quadratic.

Example 3.8 (Covariance matrix and standard errors for the Weibull distribution). We use
the output of our optimization procedure to get the observed information matrix and the
standard errors for the parameters of the Weibull model. The latter are simply the square
root of the diagonal entries of the inverse Hessian matrix, [diag{;j 1 (6)}]'/2.

# The Hessian matrix of the negative log likelihood
# evaluated at the MLE (observed information matrix)
obsinfo_weibull <- opt_weibull$hessian

vmat_weibull <- solve(obsinfo_weibull)

# Standard errors

se_weibull <- sqrt(diag(vmat_weibull))

From these, one can readily Wald-based confidence intervals for parameters from 6.

Proposition 3.3 (Asymptotic normality and transformations). The asymptotic normality
result can be used to derive standard errors for other quantities of interest. If = g(0) isa
differentiable function of @ whose gradient does not vanish at 6 then ¢ ~ normal(¢o, V),
withVy = Vo' VeV, where Vo = [0/001,...,00/00,)". The variance matrix and the
gradient are evaluated at the maximum likelihood estimate 6. This result readily extends to
vector ¢ € R fork < p, whereV 4is the Jacobian matrix of the transformation.
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3 Likelihood-based inference

Example 3.9 (Probability of waiting for exponential model.). To illustrate the difference
between likelihood ratio and Wald tests (and their respective confidence intervals), we
consider the metro waiting time data and consider the probability of waiting more than
one minute, ¢ = g(A\) = exp(—60/)). The maximum likelihood estimate is, by invari-
ance, 0.126 and the gradient of ¢ with respect to the scale parameter is V¢ = 9¢/0\ =
60 exp(—60/)\) /2.

lambda_hat <- mean(waiting)

phi_hat <- exp(-60/lambda_hat)

dphi <- function(lambda){60*exp(-60/lambda)/(lambda~2)}
V_lambda <- lambda_hat~2/length(waiting)

V_phi <- dphi(lambda_hat) "2 * V_lambda

(se_phi <- sqrt(V_phi))

#> [1] 0.0331

3.3 Likelihood-based tests

We consider a null hypothesis 7% that imposes restrictions on the possible values of 6 can
take, relative to an unconstrained alternative /7. We need two nested models: a full model,
and a reduced model that is a subset of the full model where we impose ¢ restrictions. For
example, the exponential distribution is a special case of the Weibull one if « = 1. The
testing procedure involves fitting the two models and obtaining the maximum likelihood
estimators of each of 77 and .74, respectively  and 50 for the parameters under .%). The
null hypothesis .77 tested is: ‘the reduced model is an adequate simplification of the full
model and the likelihood provides three main classes of statistics for testing this hypothesis:
these are

e likelihood ratio tests statistics, denoted R, which measure the drop in log likelihood
(vertical distance) from £(6) and £(6,).

¢ Wald tests statistics, denoted W, which consider the standardized horizontal distance
between 0 and 50.

* score tests statistics, denoted S, which looks at the scaled slope of ¢, evaluated only at
50 (derivative of ¢).

The three main classes of statistics for testing a simple null hypothesis .7 : 8 = 6, against
the alternative /7, : 6 # 0, are the Wald (denoted V), likelihood ratio (R), and the score (5)
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3.3 Likelihood-based tests

likelihood ratio test

log-likelihood

Wald test

0

Figure 3.2: Log-likelihood curve: the three likelihood-based tests, namely Wald, likelihood
ratio and score tests, are shown on the curve. The tests use different information
about the function.

test statistics, defined respectively as

where 8 is the maximum likelihood estimate under the alternative and 0, is the null value
of the parameter vector. Asymptotically, all the test statistics are equivalent (in the sense
that they lead to the same conclusions about J#).

Remark 3.1 (Testing procedures and quadratic forms). The null distribution of the maxi-
mum likelihood estimator (and related quantities) is useful for testing, albeit not in this form.
Consider for simplicity the case where we have p = 2 dimensional parameter (e.g., a Weibull
distribution) and we impose ¢ = 2 restrictions; we consider for simplicity a Wald-type test.
The asymptotic distribution of the maximum likelihood estimator is 8 ~ normal,{6,i~'(6)},
and we can obtain confidence ellipse for the MLE by replacing Fisher information i(0) by a

~

convergent estimator j(6): we then obtain the left panel of Figure 3.3.
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3 Likelihood-based inference

If we postulate 8 = 0, it suffices to consider where the pair falls on the plot and find the
level of the ellipse that intersects with the point. This however is complicated: rather, we
can standardize the variable to ¥ = j/2(8)(6 — 6,), where now the contour curves are
circular. To reduce the problem from a two-dimensional problem to a one-dimensional, we
consider the squared radius W = 92 + 92 = (8 — 0,) 7 j(8)(8 — 6,), which is approximately
X3 in large sample, as shown in the right panel of Figure 3.3. It is much easier to determine
whether the value is large based on the radius.
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Figure 3.3: Elliptical contour curves for the asymptotic multivariate normal distribution of
the MLE (left) and density of the squared radial of the standardized variable ¥
with rugs for the corresponding quantile levels (right).

If %) is true, the three test statistics follow asymptotically a x%; distribution under a null
hypothesis .74, where the degrees of freedom ¢ are the number of restrictions.

w(8) = (8 — 80) /se ()
(6) = sign(d — ) [2{¢(®) - 69)}]"”
s(60) = 5~*(60)U (60)

We call 7(6p) the directed likelihood root.

The likelihood ratio test statistic is normally the most powerful of the three likelihood
tests. The score statistic S only requires calculation of the score and information under .74
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(because by definition U(#) = 0), so it can be useful in problems where calculations of the
maximum likelihood estimator under the alternative is costly or impossible.

shape o
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Figure 3.4: Profile log likelihood for o, shown as a dashed gray line (left) and as a transect
(right). The left panel shows the log likelihood surface for the Weibull model

applied to the waiting data with 10%, 20%, ..

., 90% likelihood ratio confidence

regions (white contour curves). Higher log likelihood values are indicated by
darker colors. The cross indicates the maximum likelihood estimate. The profile
on the right hand panel has been shifted vertically to be zero at the MLE; the
dashed horizontal lines denote the cutoff points for the 95% and 99% confidence

intervals.

The Wald statistic W is the most widely encountered statistic and two-sided 95% confidence
intervals for a single parameter 6 are of the form

0+ 51704/256(9)7

where 3;_, /5 is the 1—a/2 quantile of the standard normal distribution; for a 95% confidence
interval, the 0.975 quantile of the normal distribution is 30975 = 1.96. The Wald-based
confidence intervals are by construction symmetric: they may include implausible values
(e.g., negative values for if the parameter of interest ¢ is positive, such as variances).

Example 3.10 (Wald test to compare exponential and Weibull models). We can test whether
the exponential model is an adequate simplification of the Weibull distribution by imposing
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3 Likelihood-based inference

the restriction .74 : « = 1. This imposes a single restriction to the model, so we compare
the square statistic to a x?. Since « is directly a parameter of the distribution, we have the
standard errors for free.

# Calculate Wald statistic

wald_exp <- (mle_weibull[2] - 1)/se_weibull[2]

# Compute p-value

pchisq(wald_exp~2, df = 1, lower.tail = FALSE)

#> [1] 3.61e-10

# p-value less than 5%, reject null

# Obtain 95} confidence intervals

mle_weibull[2] + gnorm(c(0.025, 0.975))*se_weibull[2]
#> [1] 2.1 3.1

# 1 is not inside the confidence interval, reject null

We reject the null hypothesis, meaning the exponential submodel is not an adequate
simplification of the Weibull.

We can also check the goodness-of-fit of both models by drawing a quantile-quantile plot (cf.
Definition 1.17). It is apparent from Figure 3.5 that the exponential model is overestimating
the largest waiting times, whose dispersion in the sample is less than that implied by the
model. By contrast, the near perfect straight line for the Weibull model in the right panel of
Figure 3.5 suggests that the model fit is adequate.

Remark 3.2 (Lack of invariance of Wald-based confidence intervals). The Wald-based
confidence intervals are not parametrization invariant: if we want intervals for a nonlinear
continuous function g(0), then in general Clyy {g(0)} # g{Clw (9)}.

For example, consider the exponential submodel. We can invert the Wald test statistic to
get a symmetric 95% confidence interval for ¢, [0.061, 0.191]. If we were to naively transform
the confidence interval for ) into one for ¢, we would get [0.063, 0.19], which highlights the
invariance although the difference here is subtle. The Gaussian approximation underlying
the Wald test is reliable if the sampling distribution of the likelihood is near quadratic,
which happens when the likelihood function is roughly symmetric on either side of the
maximum likelihood estimator.

The likelihood ratio test is invariant to interest-preserving reparametrizations, so the test
statistic for 7 : ¢ = ¢p and s : A = —60/1n(¢pg) are the same. The Wald confidence
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Figure 3.5: Quantile-quantile plots for exponential (left) and Weibull (right) models, with
95% pointwise simulation intervals.

regions can be contrasted with the (better) ones derived using the likelihood ratio test:
these are found through a numerical search to find the limits of

[6:2(08) — ()} < 21— a)}

where x2(1 — «) is the (1 — ) quantile of the x distribution. Such intervals, for o =

0.1,...,0.9, appear in Figure 3.4 as contour curves. If 8 is multidimensional, confidence
intervals for 6; are derived using the profile likelihood, discussed in the sequel. Likelihood
ratio-based confidence intervals are parametrization invariant, so Clz{g(0)} = g{CIr(6)}.
Because the likelihood is zero if a parameter value falls outside the range of possible values
for the parameter, the intervals only include plausible values of 6. In general, the intervals
are asymmetric and have better coverage properties.

# Exponential log likelihood
11_exp <- function(lambda){
sum(dexp(waiting, rate =

+
# MLE of the scale parameter
lambda_hat <- mean(waiting)

1/lambda, log = TRUE))
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3 Likelihood-based inference

# Root search for the limits of the confidence interval
1rt_1b <- uniroot( # lower bound, using values below MLE
f = function(r){
2%(11_exp(lambda_hat) - 11_exp(r)) - qchisq(0.95, 1)},
interval = c¢(0.5 * min(waiting), lambda_hat))$root
lrt_ub <- uniroot( # upper bound,
f = function(r){
2x(11_exp(lambda_hat) - 11_exp(r)) - qchisq(0.95, 1)},
interval = c(lambda_hat, 2 * max(waiting)))$root

The likelihood ratio statistic 95% confidence interval for ¢ can be found by using a root
finding algorithm: the 95% confidence interval for A is Clz(\)[22.784, 37.515]. By invariance,
the 95% confidence interval for ¢ is Clg(¢) = [0.072,0.202] = g{CIr(\)}.

3.4 Profile likelihood

Sometimes, we may want to perform hypothesis test or derive confidence intervals for
selected components of the model. In this case, the null hypothesis only restricts part of
the space and the other parameters, termed nuisance, are left unspecified — the question
then is what values to use for comparison with the full model. It turns out that the values
that maximize the constrained log likelihood are what one should use for the test, and
the particular function in which these nuisance parameters are integrated out is termed a
profile likelihood.

Definition 3.5 (Profile log likelihood). Consider a parametric model with log likelihood
function ¢(6) whose p-dimensional parameter vector 8 = (1, ) can be decomposed into a
g-dimensional parameter of interest ¢ and a (p — ¢)-dimensional nuisance vector .

The profile likelihood ¢, a function of ¢ alone, is obtained by maximizing the likelihood
pointwise at each fixed value 1), over the nuisance vector ¢, ,

Example 3.11 (Profile log likelihood for the Weibull shape parameter). Consider the shape
parameter ¢ = « as parameter of interest, and the scale ¢ = ) as nuisance parameter. Using
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3.4 Profile likelihood

the gradients derived in Example 3.7, we find that the value of the scale that maximizes the

log likelihood for given « is
X B l zn: . 1/a
a — n P Y; :

and plugging in this value gives a function of « alone, thereby also reducing the optimization
problem for the Weibull to a line search along ¢, («). The left hand panel of Figure 3.4 shows
the ridge along the direction of « corresponding to the log likelihood surface. If one thinks
of these contours lines as those of a topographic map, the profile likelihood corresponds in
this case to walking along the ridge of both mountains along the ¢ direction, with the right
panel showing the elevation gain/loss. The corresponding elevation profile on the right of
Figure 3.4 with cutoff values. We would need to obtain numerically using a root finding
algorithm the limits of the confidence interval on either side of @, but it’s clear that o = 1 is
not inside the 99% interval.

lambda_alpha <- function(alpha, y = waiting){
(mean(y~alpha)) " (1/alpha)

}

# Profile likelihood for alpha

prof_alpha_weibull <- function(par, y = waiting){
sapply(par, function(a){
nll_weibull(pars = c(lambda_alpha(a), a), y = y)
b

}

Example 3.12 (Score and likelihood ratio tests for comparing exponential vs Weibull mod-
els). We can proceed similarly with the score test, using the expected information matrix
formula derived earlier. Under the null model o = 1 and we get that the constrained MLE
for the scale is the sample mean 7.

## Score test
# Expected information matrix - one observation
info_weib <- function(scale, shape){
i11 <- shape*((shape + 1) - 1)/(scale”2)
i12 <- -(1+digamma(1))/scale
i22 <- (1+digamma(1) "2+2*digamma(1)+pi~2/6)/(shape”2)
matrix(c(ill, i12, il12, i22), nrow = 2, ncol = 2)
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3 Likelihood-based inference

}
# Score statistic
score_stat <- function(scale, shape, xdat){
score_w <- -gr_nll weibull(c(scale, shape), y = xdat)
finfo_w <- length(xdat)*info_weib(scale, shape)
as.numeric(t(score_w) %*% solve(finfo_w) %x*% score_w)
}
S <- score_stat(scale = mean(waiting), shape = 1, xdat = waiting)
pval_score <- pchisq(S, df = 1, lower.tail = FALSE)

## Likelihood ratio test
11_weib <- function(xdat, scale, shape){
sum(dweibull(x = xdat, scale = scale, shape = shape, log = TRUE))
}
111 <- 11 weib(xdat = waiting, scale = mle_weibull[1], shape = mle_weibull[2])
110 <- 11_weib(xdat = waiting, scale = mean(waiting), shape = 1)
1rt <- 2%(111-110)
pval_lrt <- pchisq(lrt, df = 1, lower.tail = FALSE)

Both statistics show strong evidence against the null of exponentiality, even if their numeri-
cal values are very different: we get 24.9 for the score test and 60.4 for the likelihood ratio
statistic.

Example 3.13 (Profile log likelihood for the Weibull mean). As an alternative, we can use
numerical optimization to compute the profile for another function. Suppose we are
interested in the expected waiting time, which according to the modelis n = E(Y) = A\I'(1+
1/a). To this effect, we reparametrize the model in terms of (i, «), where A = p/T'(1 + 1/«).
We then make a wrapper function that optimizes the log likelihood for fixed value of 1, then
returns &, ¢ and £, ().

To get the confidence intervals for a scalar parameter, there is a trick that helps with the
derivation. We compute the signed likelihood root r() = sign (¢ — ){26, (1) — 20, () }1/2
over a fine grid of ¢, then fit a smoothing spline to the equation flipping the axis (thus, the
model has response y = 1) and = = r(¢)). We then predict the curve at the standard normal
quantiles 3./, and 3;_, /2, and return these values as confidence interval. Figure 3.6 shows
how these value correspond to the cutoff points on the log likelihood ratio scale, where the
vertical line is given by —¢(1 — «) for ¢ denotes the quantile of a x? random variable, if we
consider instead R(y)) = r(¢)?.
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# Compute the MLE for the expected value via plug-in
mu_hat <- mle_weibull[1]*gamma(1+1/mle_weibull[2])
# Create a profile function
prof_weibull_mu <- function(mu){
# For given value of mu
alpha_mu <- function(mu){
# Find the profile by optimizing (line search) for fixed mu and the best alpha
opt <- optimize(f = function(alpha, mu){
# minimize the negative log likelihood
nll_weibull(c(mu/gamma(1+1/alpha), alpha), y = waiting)},
mu = mu,
interval = c(0.1,10) #search region
)
# Return the value of the negative log likelihood and alpha_mu
return(c(nll = opt$objective, alpha = opt$minimum))
3
# Create a data frame with mu and the other parameters
data.frame(mu = mu, t(sapply(mu, function(m){alpha_mu(m)})))
+
# Create a data frame with the profile
prof <- prof_weibull_mu(seq(22, 35, length.out = 101L))
# Compute signed likelihood root r
prof$r <- sign(prof$mu - mu_hat)*sqrt(2x(prof$nll - opt_weibull$value))

# Trick: fit a spline to obtain the predictions with mu as a function of r
# Then use this to predict the value at which we intersect the normal quantiles
fit.r <- stats::smooth.spline(x = cbind(prof$r, prof$mu), cv = FALSE)
pr <- predict(fit.r, gnorm(c(0.025, 0.975)))$y
# Plot the signed likelihood root - near linear indicates quadratic
gl <- ggplot(data = prof,
mapping = aes(x = mu, y = r)) +
geom_abline(intercept = 0, slope = 1) +
geom_line() +
geom_hline(yintercept = gnorm(c(0.025, 0.975)),
linetype = "dashed") +
labs(x = expression(paste("expectation ", mu)),
y = "signed likelihood root")
# Create a plot of the profile
g2 <- ggplot(data = prof,
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mapping = aes(x = mu, y = 2*(opt_weibull$value - nll))) +
geom_line() +
geom_hline(yintercept = -qchisq(c(0.95), df = 1),
linetype = "dashed") +
geom_vline(linetype = "dotted",
xintercept = pr) +

labs(x = expression(paste("expectation "

, mu)),
y = "negative of likelihood ratio statistic")

gl + g2

I
a

signed likelihood root
]
S

negative of likelihood ratio statistic
I
iR
($2)

-20

24 28 32 24 28 32
expectation p expectation |

Figure 3.6: Signed likelihood root (left) and shifted profile log likelihood (right) as a function
of the expected value . in the Weibull model.

The maximum profile likelihood estimator behaves like a regular likelihood for most quan-
tities of interest and we can derive test statistics and confidence intervals in the usual way.
One famous example of profile likelihood is the Cox proportional hazard covered in Chapter
7.
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3.5 Information criteria

-~

The likelihood can also serve as building block for model comparison: the larger ¢(0), the
better the fit. However, the likelihood doesn’t account for model complexity in the sense
that more complex models with more parameters lead to higher likelihood. This is not a
problem for comparison of nested models using the likelihood ratio test because we look
only at relative improvement in fit. There is a danger of overfitting if we only consider the
likelihood of a model.

AIC and BIC are information criteria measuring how well the model fits the data, while
penalizing models with more parameters,

AIC = —2((8) + 2p
BIC = —2/() + pln(n),

where p is the number of parameters in the model. The smaller the value of AIC (or of BIC),
the better the model fit.

Example 3.14 (Comparing models for waiting time). We have already considered two para-
metric families, exponential and Weibull, for the metro waiting time. Other candidate
models which are not necessarily nested include the lognormal and the gamma distribu-
tions.

We can fit these models using fitdistr routine in the MASS package. All but the exponential
have two parameters, so the penalty is the same. The Weibull appears best, and while the
difference with the gamma distribution isn’'t overwhelmingly large, a quantile-quantile plot
(not shown) reveals that our Weibull provides a much better fit to the upper tail.

mod0 <- MASS::fitdistr(x = waiting, densfun = "exponential")
modl <- MASS::fitdistr(x = waiting, densfun = "gamma")
mod2 <- MASS::fitdistr(x = waiting, densfun = "weibull")
mod3 <- MASS::fitdistr(x = waiting, densfun = "lognormal")
c("exp" = AIC(modO0),

"gamma" = AIC(modl),

"weibull" = AIC(mod2),

"lognormal" = AIC(mod3))
#> exp gamma  weibull lognormal
#> 543 488 485 496
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3 Likelihood-based inference

Note that information criteria do not constitute formal hypothesis tests on the parameters,
but they can be used to compare models that are not nested. Such tools work under
regularity conditions, and the estimated information criteria are quite noisy, so comparison
for non-nested models are hazardous although popular among practitioners. If we want to
compare likelihood from different probability models, we need to make sure they include
normalizing constant. The BIC is more stringent than AIC, as its penalty increases with the
sample size, so it selects models with fewer parameters. The BIC is consistent, meaning
that it will pick the true correct model from an ensemble of models with probability one as
n — oo. In practice, this is of little interest if one assumes that all models are approximation
of reality (it is unlikely that the true model is included in the ones we consider). AIC often
selects overly complicated models in large samples, whereas BIC chooses models that are
overly simple.

Remark 3.3 (Transformation of variables). While you can compare regression models that
are not nested using information criteria, they can only be used when the response variable
is the same. To see this, we fit a simple normal distribution to the log of the waiting time,
which is equivalent to the lognormal model from mod3 in Example 3.14.

mod4 <- MASS::fitdistr(x = log(waiting), densfun = "normal")
# Due to the transformation, the log likelihood differ
logLik (mod3) - logLik(mod4)

#> 'log Lik.' -202 (df=2)

# The Jacobian is (d/dy log(y) = 1/y)

# hence the log likelihood is -log(y) for each obs.
sum(-log(waiting))

#> [1] -202

Thus, you cannot compare a linear regression for Y to one with response In(Y'). Compar-
isons for log-linear and linear models are valid only if you use the Box—Cox likelihood or
include the Jacobian of the transformation.

Software often drops constant terms; this has no impact when you compare models with
the same constant factors, but it matters when these differ (e.g., different linear regression
models), but it matters more generally when you want to compare a Poisson regression
with a linear regression.
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4.1 Introduction

The linear regression model, or linear model, is one of the most versatile workhorse for sta-
tistical inference. Linear regression is used primarily to evaluate the effects of explanatory
variables (oftentimes treatment in an experimental setting) on the mean response of a con-
tinuous response, or for prediction. The linear regression specifies the mean of a response
variable Y of a random sample of size n as a linear function of observed explanatories
(also called predictors or covariates) X1, ..., X,,

EY | Xi=x) =pi= Po+ iz + -+ Bprip =xiB. (4.1

conditional mean linear combination of explanatories

wherex; = (1,z;1,...,2;p)isa(p+1) row vector containing a constant and the explanatories
of observation 4, and 8 = (8, ..., 3,) " isap + 1 column vector of coefficients for the mean.
The model formulation is conditional on the values of the observed explanatories; this
amounts to treating the p explanatory variables X1, ..., X, as non-random quantities, or
known in advance. The regression coefficients 3 is the same for all observations, but the
vector of explanatories x; may change from one observation to the next.

Remark 4.1 (Linearity). The model is linear in the coefficients jy, ..., 5,. The quadratic
curve 3y + Bix + (222 is a linear model because it is a sum of coefficients times functions of
explanatories. By contrast, the model 3y + 3127 is nonlinear in 3.

To simplify the notation, we aggregate observations into an n-vector Y and the explana-
tories into an n x (p + 1) matrix X by concatenating a column of ones and the p column
vectors X1, ..., X, each containing the n observations of the respective explanatories. The
matrix X is termed model matrix (or sometimes design matrix in experimental settings),
and it’s ¢th row is x;.

Assuming that the distribution of the response is drawn from a location family, we may
rewrite the linear model in terms of the mean plus an error term,

Y, = xB8 + &

observation mean p; error term
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where ¢; is the error term specific to observation i, and we assume that the errors ¢4, ..., &,
are independent and identically distributed. We fix the expectation or theoretical mean of
¢; to zero to encode the fact we do not believe the model is systematically off, so E(¢; | X; =
x;) =0 (i =1,...,n). The variance term o2 is included to take into account the fact that no
exact linear relationship links X; and Y;, or that measurements of Y; are subject to error.

The normal or Gaussian linear model specifies that responses follow a normal distribution,
with Y; | X; = x; ~ normal(x;3, 02). The normal distribution is a location-scale family, so
Y ~ normal(y, o) is equal in distribution with p + ¢ for e ~ normal(0, o).

4.1.1 Motivating examples
We present some motivating examples that are discussed in the sequel.

Example 4.1 (Consistency of product description). Study 1 of Lee and Choi (2019) consid-
ered descriptors and the impact on the perception of a product on the discrepancy between
the text description and the image. In their first experience, a set of six toothbrushes is sold,
but the image shows either a pack of six, or a single one). The authors also measured the
prior familiarity with the brand of the item. Participants were recruited using an online
panel, and the data in LC19_S1 includes the results of the n = 96 participants who passed
the attention check (one additional participant response was outlying and removed). We
could fit a linear model for the average product evaluation score, prodeval, as a function
of the familiarity of the brand familiarity, an integer ranging from 1 to 7, and a dummy
variable for the experimental factor consistency, coded 0 for consistent image/text de-
scriptions and 1 if inconsistent. The resulting model matrix is then 96 x 3. The prodeval
response is heavily discretized.

data(LC19_S1, package = "hecedsm")

modmat <- model.matrix( # extract model matrix
~ familiarity + consistency,
data = LC19_S1)

tail (modmat, n = 5L) # print first five lines

#> (Intercept) familiarity consistencyinconsistent
#> 92 1 6 1
#> 93 1 4 1
#> 94 1 7 1
#> 95 1 7 1
#> 96 1 7 1
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dim(modmat) # dimension of the model matrix
#> [1] 96 3

Example 4.2 (Teaching to read and pre-post experiments). The BSJ92 data in package
hecedsm contains the results of an experimental study by Baumann, Seifert-Kessell, and
Jones (1992) on the effectiveness of different reading strategies on understanding of children.
These are described in the abstract

Sixty-six fourth-grade students were randomly assigned to one of three exper-
imental groups: (a) a Think-Aloud (TA) group, in which students were taught
various comprehension monitoring strategies for reading stories (e.g., self-
questioning, prediction, retelling, rereading) through the medium of thinking
aloud; (b) a Directed Reading-Thinking Activity (DRTA) group, in which students
were taught a predict-verify strategy for reading and responding to stories; or
(c) a Directed Reading Activity (DRA) group, an instructed control, in which
students engaged in a noninteractive, guided reading of stories.

The data are balanced, as there are 22 observations in each of the three subgroups, of which
DR is the control. The researchers applied a series of three tests (an error detection task for
test 1, a comprehension monitoring questionnaire for test 2, and the Degrees of Reading
Power cloze test labelled test 3). Tests 1 and 2 were administered both before and after the
intervention: this gives us a change to establish the average improvement in student by
adding pretest1 as covariate for a regression of posttest, for example. The tests 1 were
out of 16, but the one administered after the experiment was made more difficult to avoid
cases of students getting near full scores. The correlation between pre-test and post-test 1
is (p1 = 0.57), much stronger than that for the second test (p2 = 0.21).

Example 4.3 (Gender discrimination in a US college). The college database consists of
observational data collected in a college in the United States. The goal of the administration
was to investigate potential gender inequality in the salary of faculty members. The data
contains the following variables:

* salary: nine-month salary of professors during the 2008-2009 academic year (in
thousands USD).

e rank: academic rank of the professor (assistant, associate or full).

e field: categorical variable for the field of expertise of the professor, one of applied or
theoretical.

* sex: binary indicator for sex, either man or woman.

* service: number of years of service in the college.

* years: number of years since PhD.
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Example 4.4 (Suggestions increase donations to charities). Study 1 of Moon and VanEpps
(2023) considers proportion of donators to a charity. Participants in the online panel were
provided with an opportunity to win 25$ and donate part of this amount to a charity of
their choosing. The data provided include only people who did not exceed this amount and
indicated donating a non-zero amount.

Example 4.5 (Is additional paper wrapping viewed as more eco-friendly?). Sokolova, Kr-
ishna, and Doring (2023) consider consumer bias when assessing how eco-friendly packages
are. Items such as cereal are packaged in plastic bags, which themselves are covered in a
box. They conjecture (and find) that, paradoxically, consumers tend to view the packaging
as being more eco-friendly when the amount of cardboard or paper surrounding the box is
larger, relative to the sole plastic package. We consider in the sequel the data from Study 2A,
which measures the perceived environmental friendliness (PEE variable pef) as a function
of the proportion of paper wrapping (either none, half of the area of the plastic, equal or
twice).

4.1.2 Exploratory data analysis

Exploratory data analysis (EDA) is an iterative procedure by which we query the data, using
auxiliary information, summary statistics and data visualizations, to better inform our
modelling.

It is useful to get a better understanding of the features of the data (sampling frame, missing
values, outliers), the nature of the observations, whether responses or explanatories and
the relationship between them.

See Chapter 11 of Alexander (2023) for examples. In particular, it is useful to check that

e categorical variables are properly code as factors.

* missing values are properly declared as such using NA (strings, 999, etc.)
e there is no missingness patterns (NA for some logical values)

* there are enough modalities of each level of categorical variables

e there is no explanatory variable derived from the response variable.

e the subset of observations used for statistical analysis is adequate.

e there are no anomalies or outliers that would distort the results.

Example 4.6 (Exploratory data analysis of the college data). Before drafting a model, it is
useful to perform an exploratory data analysis. If salary increases with year, there is more
heterogeneity in the salary of higher ranked professors: logically, assistant professors are
either promoted or kicked out after at most 6 years according to the data. The limited
number of years prevents large variability for their salaries.
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Figure 4.1: Exploratory data analysis of college data: salaries of professors as a function of
the number of years of service and the academic ranking

Salary increases over years of service, but its variability also increases with rank. Note
the much smaller number of women in the sample: this will impact our power to detect
differences between sex. A contingency table of sex and academic rank can be useful to see
if the proportion of women is the same in each rank: women represent 16% of assistant
professors and 16% of associate profs, but only 7% of full professors and these are better
paid on average.

Table 4.1: Contingency table of the number of prof in the college by sex and academic rank.

assistant associate full
man 56 54 248
woman 11 10 18

Some of the potential explanatory variables of the college data are categorical (rank, sex,
field), the latter two being binary. The other two continuous variables, years and service,
are strongly correlated with a correlation of 0.91.

Example 4.7 (Handling of missing values). The data for Moon and VanEpps (2023) should
be checked to ensure that the description of the data collection matches the structure of the
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database. Since people who didn’t donate didn'’t fill in the amount field, the latter indicates
a missing value. All donation amounts are between $0.25 and $25.

data(MV23_S1, package = "hecedsm")
str(MvV23_S1)
#> tibble [869 x 4] (S3: tbl_df/tbl/data.frame)

#> § before : int [1:869] 01 01111010 ...

#> § donate : int [1:869] 0001101001

#> $ condition: Factor w/ 2 levels "open-ended","quantity": 1 111222111
#> $ amount : num [1:869] NA NA NA 10 5 NA 20 NA NA 25 ...
summary (MV23_S1)

#> before donate condition amount
#> Min. :0.000 Min. :0.00 open-ended:407  Min. 5 ©.2
#> 1st Qu.:0.000 1st Qu.:0.00 quantity :462 1st Qu.: 5.0
#> Median :1.000 Median :1.00 Median :10.0
#> Mean :0.596  Mean :0.73 Mean :10.7
#> 3rd Qu.:1.000 3rd Qu.:1.00 3rd Qu.:15.0
#> Max. :1.000 Max. :1.00 Max. :25.0
#> NA's 1 NA's :235

If we include amount as response variable, the 235 missing observations will be removed by
default by procedures. This is okay if we want to compare the average amount of people
who donated, but we need to transform NAs to zeros otherwise. The donate binary variable
should not be included as an explanatory variable in a regression model, since it is a perfect
predictor of zero amounts.

4.1.3 Mean model specification

The first step of an analysis is deciding which explanatory variables should be added to the
mean model specification, and under what form. Models are but approximations of reality;
Section 2.1 of Venables (2000) argues that, if we believe the true mean function linking
explanatories X and the response Y is of the form E(Y | X) = f(X) for f sufficiently
smooth, then the linear model is a first-order approximation. For interpretation purposes, it
makes sense to mean-center any continuous explanatory, as this facilitates interpretation.

In an experimental setting, where the experimental group or condition is randomly allo-
cated, we can directly compare the different treatments and draw causal conclusions (since
all other things are constant, any detectable difference is due on average to our manipula-
tion). Although we usually refrain from including any other explanatory to keep the design
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simple, it may be nevertheless helpful to consider some concomitant variables that explain
part of the variability to filter background noise and increase power. For example, for the
Baumann, Seifert-Kessell, and Jones (1992) data, our interest is in comparing the average
scores as a function of the teaching method, we would include group. In this example, it
would also make sense to include the pretest1 result as an explanatory. This way, we will
model the average difference in improvement from pre-test to post-test rather than the
average score.

In an observational setting, people self-select in different groups, so we need to account
for differences. Linear models in economics and finance often add control variables to
the model to account for potential differences due to socio-demographic variables (age,
revenue, etc.) that would be correlated to the group. Any test for coefficients would capture
only correlation between the outcome Y and the postulated explanatory factor of interest.

E(y[do(x)) = E(y|x)

Correlation

Figure 4.2: Difference between experimental and observational studies by Andrew Heiss
CC-BY 4.0

4.1.4 Continuous explanatories

Continuous explanatories are typically specified by including a single linear term, leading
to the simple linear regression of the form Y | X = 2 ~ normal(3g + Bz, ¢2). In this situation
Bo is the intercept (the mean value of Y when x = 0) and ; is the slope, i.e., the average
increase of Y when z increases by one unit. Figure 4.3 shows such an example of a model
with a single explanatory. As revealed by the exploratory data analysis of Example 4.3, this
model is simplistic and clearly insufficient to explain differences in salary.

The intercept j is the value when all of x4, . . ., z,, are zero. The interpretation of the other
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Figure 4.3: Simple linear regression model for the salary of professors as a function of the
number of years of service.

mean parameters in the model depends crucially on the parametrization and on potential
interactions or higher order terms.

Generally, we can increase X; by one unit and compare the increase in the mean, here for
X

EY | Xj=2;+1,X =z ;) -EY [ X;=2;, X _j=2_;) =0

Another common perspective is to consider the effect of a change in the value of an explana-
tory variable by looking at the slope. If 1 = x/3, then the marginal effect of the j explanatory
X;=ux;(j=1,...,p)Iis the partial derivative of the mean with respect to this value, namely
op/0x;.

If the relationship between explanatory X and response Y, as assessed from a scatterplot, is
not linear, we may consider more complicated function of the explanatories, as Example 4.8
shows.

Example 4.8 (Quadratic curve for the automobile data). We consider a linear regression
model for the fuel autonomy of cars as a function of the power of their motor (measured in
horsepower) from the auto dataset. The postulated model,

mpg; = o + P1horsepower; + thorsepower? + &5,
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includes a quadratic term. Figure 4.4 shows the scatterplot with the fitted regression line,
above which the line for the simple linear regression for horsepower is added. The marginal
effect of an increase of one unit in horsepower is 3; + 252horsepower, which depends on
the value of the explanatory.

To fit higher order polynomials, we use the poly as the latter leads to more numerical
stability. For general transformations, the I function tells the software interpret the input
“as is”. Thus, 1m(y~x+I(x"2)), would fit a linear model with design matrix [1,, x x?].

w B
o o

fuel autonomy (in miles per US gallon)
N
o

i
o

50 100 150 200
horsepower

Figure 4.4: Linear regression models for the fuel autonomy of cars as a function of motor
power.

It appears graphically that the quadratic model fits better than the simple linear alternative:
we will assess this hypothesis formally later. For the degree two polynomial, Figure 4.4 show
that fuel autonomy decreases rapidly when power increases between 50 to 100, then more
slow until 189.35 hp. After that, the model postulates that autonomy increases again as
evidenced by the scatterplot, but beware of extrapolating (weird things can happen beyond
the range of the data, as exemplified by Hassett’s cubic model for the number of daily cases
of Covid19 in the USA).

The representation in Figure 4.4 may seem counter-intuitive given that we fit a linear model,
but it is a 2D projection of 3D coordinates for the equation 5y + 12 — y + S22 = 0, where
T = horsepower, z = horsepower? and y = mpg. Physics and common sense force z = 2,

and so the fitted values lie on a curve in a 2D subspace of the fitted plan, as shown in grey
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in the three-dimensional Figure 4.5.

50 100 150 200

Se+04

horsepower

Figure 4.5: 3D graphical representation of the linear regression model for the auto data.

Remark 4.2 (Discretization of continuous covariates). Another option is to transform a
continuous variable X into a categorical variable by discretizing into bins and fitting a
piecewise-linear function of X. The prime example of such option is treating a Likert scale
as a categorical variable. While this allows one to fit more flexible functional relations
between X and Y, this comes at the cost of additional coefficients for the same estimation
budget (fewer observations to estimate the effect of X results in lower precision of the
coefficients).

82



4.1 Introduction
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Figure 4.6: Piecewise-linear model for the fuel autonomy of cars as a function of motor
power.

4.1.5 Categorical covariates

Dummies are variables (columns of explanatories from the model matrix) which only
include —1, 0 and 1 to give indicator of the level of groups. For a binary outcome, we can
create a column that has entries 1 for the treatment and 0 for the control group.

Example 4.9 (Linear models with a single binary variable). Moon and VanEpps (2023)
consider the impact of providing suggested amounts for donations to a charity (as opposed
to an open-ended request). In Study 1, participants were given the chance of winning 25$
and giving part of this amount to charity.

Consider for example a linear model that includes the amount (in dollars, from 0 for people
who did not donate, up to 25 dollars) as a function of

o 0, open-ended,
condition = .
1, suggested quantity
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The equation of the simple linear model that includes the binary variable condition is

E(amount | Condition) = /80 + /81 1condition:quantity-
] Bo, condition = 0,
Bo+ f1 condition = 1.

Let 1,0 denote the theoretical average amount for the open-ended amount and 1, that of
participants of the treatment quantity group. A linear model that only contains a binary
variable X as regressor amounts to specifying a different mean for each of two groups: the
average of the treatment group is fy + f1 = w1 and 51 = p1 — po represents the difference
between the average donation amount of people given open-ended amounts and those
who are offered suggested amounts (quantity), including zeros for the amount of people
who did not donate. The parametrization of the linear model with 3, and f; is in terms of
pairwise differences relative to the baseline category and is particularly useful if we want to
test for mean difference between the groups, as this amounts to testing .7 : f; = 0.

N R
condition

open-ended

quantity

20

=
3

amount (in dollars)
e
o
£
3
1

condition

Figure 4.7: Simple linear model for the MV23_S1 data using the binary variable condition as
explanatory even if the equation defines a line, only its values in 0/1 are realistic.

Even if the linear model defines a line, the latter is only meaningful when evaluated at 0 or 1;
Figure 4.7 shows it in addition to sample observations (jittered horizontally) and a density
estimate for each condition. The colored dot represents the mean, which will coincide with
the estimates.
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It is clear that the data are heavily discretized, with lots of ties and zeros. However, given
the sample size of 869 observations, we can easily draw conclusions in each group.

Let us consider categorical variables with K > 2 levels, which in R are of class factor.
The default parametrization for factors are in terms of treatment contrast: the reference
level of the factor (by default, the first value in alphanumerical order) will be treated as
the reference category and assimilated to the intercept. The software will then create a set
of K — 1 dummy variables for a factor with K levels, each of which will have ones for the
relevant value and zero otherwise.

Example 4.10 (Dummy coding for categorical variables). Consider the Baumann, Seifert-
Kessell, and Jones (1992) study presented in Example 4.2, where we only include group as
explanatory variable. The data are ordered by group: the first 22 observations are for group
DR, the 22 next ones for group DRTA and the last 22 for TA. If we fit a model with group as
categorical variables

class(BSJ92$group) # Check that group is a factor

#> [1] "factor"

levels(BSJ92%group) # First level shown is reference
#> [1] "DR"  "DRTA" "TA"

# Print part of the model matrix

# (three individuals from different groups)
model.matrix(~ group, data = BSJ92) [c(1,23,47),]

#> (Intercept) groupDRTA groupTA

#> 1 1 0 0
#> 23 1 1 0
#> 47 1 0 1

# Compare with levels of factors recorded
BSJ92$group[c(1,23,47)]

#> [1] DR DRTA TA

#> Levels: DR DRTA TA

The mean model specification is

E(Y | group) = Sy + 51 lgroup=prTA + ﬁ?lgroup:TA'

Since the variable group is categorical with K = 3 levels, we need K — 1 = 2 dummy
explanatories to include the effect and obtain one average per group. With the default
parametrization, we obtain
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® lgroup—prra = 1 if group=DRTA and zero otherwise.

group—ta = 1 if group=TA and zero otherwise.

1
1
Because the model includes an intercept and the model ultimately describes three group
averages, we only need two additional variables. With the treatment parametrization, the
group mean of the reference group equals the intercept coefficient, upz = o,

Table 4.2: Parametrization of dummies for a categorical variable with the default treatment
contrasts.

(Intercept) groupDRTA groupTA

DR 1 0 0
DRTA 1 1 0
TA 1 0 1

When group=DR (baseline), both indicator variables groupDRTA and groupTA are zero. The
average in each group is upg = So, tiorta = Po + 1 and ury = By + [2. We thus find that 5 is
the difference in mean between group DRTA and group DR, and similarly $s = jira — pipg-

Remark 4.3 (Sum-to-zero constraints). The parametrization discussed above, which is
the default for the 1m function, isn’t the only one available. We consider an alternative
ones: rather than comparing each group mean with that of a baseline category, the default
parametrization for analysis of variance models is in terms of sum-to-zero constraints,
whereby the intercept is the equiweighted average of every group, and the parameters
B1,...,BKk—1 are differences to this average.

model .matrix(

~ group,
data = BSJ92,
contrasts.arg = list(group = "contr.sum"))

Table 4.3: Parametrization of dummies for the sum-to-zero constraints for a categorical
variable.

(Intercept) groupl group2

DR 1 1 0
DRTA 1 0 1
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Table 4.3: Parametrization of dummies for the sum-to-zero constraints for a categorical
variable.

(Intercept) groupl group2
TA 1 -1 -1

In the sum-to-zero constraint, we again only get two dummy variables, labelled group1
and group2, along with the intercept. The value of group1 is 1 if group=DR, 0 if group=DRTA
and —1 if group=TA. Using the invariance property, we find ppr = 5o + 51, torta = Bo + F2
and ury = By — /1 — P2 (more generally, the intercept minus the sum of all the other mean
coefficients). Some algebraic manipulation reveals that 5y = (upr + torTa + f12) /3.

If we removed the intercept, then we could include three dummies for each treatment
group and each parameter would correspond to the average. This isn't recommended in R
because the software treats models without the intercept differently and some output will
be nonsensical (e.g., the coefficient of determination will be wrong).

Example 4.11 (Wage inequality in an American college). We consider a linear regression
model for the college data that includes sex, academic rank, field of study and the number
of years of service as explanatories.

The postulated model is

salary = BO + /Bl S€Xyoman + P2fieldiheoretical

+ P3ranKkassociate + Saranksyi1 + Bsservice + €.

Table 4.4: Estimated coefficients of the linear model for the college (in USD, rounded to
the nearest dollar).

Bo B Ba B3 Ba B5
86596 4771 -13473 14560 49160 -89

The interpretation of the coefficients is as follows:

* The estimated intercept is 5y = 86596 dollars; it corresponds to the mean salary of
men assistant professors who just started the job and works in an applied domain.

* everything else being equal (same field, academic rank, and number of years of
service), the estimated salary difference between a woman and a man is estimated at
31 = —4771 dollars.
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e ceteris paribus, the salary difference between a professor working in a theoretical field
and one working in an applied field is ; dollars: our estimate of this difference is
—13473 dollars, meaning applied pays more than theoretical.

e ceteris paribus, the estimated mean salary difference between associate and assistant
professors is 35 = 14560 dollars.

e ceteris paribus, the estimated mean salary difference between full and assistant pro-
fessors is 34 = 49160 dollars.

» within the same academic rank, every additional year of service leads to a mean salary
increase of 35 = —&9 dollars.

Example 4.12 (Parameter interpretation for analysis of covariance). We consider a pre-post
model for the error detection task test of Baumann, Seifert-Kessell, and Jones (1992). We fit
a linear model with the pre-test score and the experimental condition.

data(BSJ92, package = "hecedsm") #load data
str(BSJ92) # Check that categorical variables are factors
#> tibble [66 x 6] (S3: tbl _df/tbl/data.frame)
#> $ group : Factor w/ 3 levels "DR","DRTA","TA": 1111111111
#> $ pretestl : int [1:66] 4 6 9 12 16 15 14 12 12 8 ...
#> §$ pretest2 : int [1:66] 3 5465 1387 38 ...
#> $ posttestl: int [1:66] 5 9 56 8 10 9 1258 7 ...
#> § posttest2: int [1:66] 4 535985577 ...
#> $ posttest3: int [1:66] 41 41 43 46 46 45 45 32 33 39 ...
# Check summary statistics for posttestl
BSJ92 |> # compute group average
group_by(group) [>
summarize(mean_pre = mean(pretestl),
mean_post = mean(posttestl),
diff_impr = mean_post - mean_pre)
#> # A tibble: 3 x 4
#>  group mean_pre mean_post diff_impr

#> <fct> <dbl> <dbl> <dbl>
#> 1 DR 10.5 6.68 =31182
#> 2 DRTA 9.73 9.77 0.0455
#> 3 TA 9.14 T.77 -1.36

# Fit the ANOVA for the difference
linmodl <- 1m(
posttestl - pretestl ~ group,
data = BSJ92)
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coef (linmodl) # Mean model coefficients
#> (Intercept)  groupDRTA groupTA
#> -3.82 3.86 2.45
# Fit a linear regression
linmod2 <- 1m(

posttestl ~ pretestl + group,

data = BSJ92 |[>

dplyr::mutate( # mean-center pretest result
pretestl = pretestl - mean(pretestl)))

coef (linmod2) # Mean model coefficients
#> (Intercept) pretestl  groupDRTA groupTA
#> 6.188 0.693 3.627 2.036

With the ANOVA model for the group as a function of the improvement and using the default
treatment parameterization, the intercept is the average of post-test minus pre-test score
for group DR, and the other two coefficients are the difference between groups DRTA and DR,
and the difference between groups TA and DR. Thus, the higher average improvement is for
DRTA, then T4, then the baseline DR.

Consider next a linear model in which we allow the post-test score to be a linear function of
the pre-test. We find that, for each point score on the pre-test, the post-test score increases
by 0.693 marks regardless of the group. The DRTA group (respectively TA) has an average,
ceteris paribus, that is 3.627 (respectively 2.036) points higher than that of the baseline
group DR for two people with the same pre-test score. If we center the continuous covariate
pretestl, the intercept j is the average post-test score of a person from the DR group who
scored the overall average of all 66 students in the pre-test.

4.2 Parameter estimation

The linear model includes p + 1 mean parameters and a standard deviation o, which is
assumed constant for all observations. Given a design or model matrix X and a linear model
formulation E(Y;) = x;/3, we can try to find the parameter vector 3 € RP*! that minimizes
the mean squared error, i.e., the average squared vertical distance between the fitted values

~

Ui =X B and the observations Yi-
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Figure 4.8: Ordinary residuals e; (vertical vectors) added to the regression line in the scatter
(z,y) (left) and the fit of response y; against fitted values y;. The ordinary least
squares line minimizes the average squared length of the ordinary residuals.

Proposition 4.1 (Ordinary least squares). Consider the optimization problem

~

= (y—XB) (y — XAB).

n

=1

B = argmingegp+1 Z(yz - Xzﬂ)Q

We can compute the derivative of the right hand side with respect to 3, set it to zero and solve

for B,

0,

- fﬁ@ ~XB) (y - XB)

y —XpB) oy —XPB) " (y — XB)

=2X"(y — XB)

oy — XB)

using the chain rule. Distributing the terms leads to the so-called normal equation
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4.2 Parameter estimation

If then x p matrix X is full-rank, meaning that it’s columns are not linear combinations of
one another, the quadratic form X" X is invertible and we obtain the solution to the least
square problems,

B = (XTX)_1 X'y. 4.2)

This is the ordinary least squares estimator (OLS). The explicit solution means that no
numerical optimization is needed for linear models.

We could also consider maximum likelihood estimation. Proposition 4.1 shows that, assum-
ing normality of the errors, the least square estimators of 8 coincide with the maximum
likelihood estimator of 3.

Proposition 4.2 (Maximum likelihood estimation of the normal linear model). The linear
regression model specifies that the observationsY; ~ normal(x;3, 0?) are independent. The
linear model has p + 2 parameters (B and o?) and the log likelihood is, abstracting from
constant terms,

1

UB.o) o —5 In(0?) — 55 (y — XB)T(y — XB).

Maximizing the log likelihood with respect to B is equivalent to minimizing the sum of
squared errors >, (y; — x;3)?, regardless of the value of o, and we recover the OLS estimator
B. The maximum likelihood estimator of the variance 5* is thus

5% = argmax 2 £(B3, 0?).
The profile log likelihood for o2, excluding constant terms that don’t depend on o2, is
1 1 A A
(o) x —3 {nlno® + (v - XB) (v~ XB)}.

Differentiating each term with respect to o and setting the gradient equal to zero yields the
maximum likelihood estimator

N 1 A .
7* = (Y - XB)" (Y - Xp)
I e
- Ei:1(yz XzIB)
p— SSe.
= 2=,

where SS, is the sum of squared residuals. The usual unbiased estimator of o* calculated
by software is S* = SS./(n — p — 1), where the denominator is the sample sizen minus the
number of mean parameters 3, p + 1.
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Proposition 4.3 (Information matrix for normal linear regression models). The entries of
the observed information matrix of the normal linear model are

C9(B.0%) 10X (y-XB) _X'X

8,38,8T - o2 8BT o2
B, o) XT(y—XB)
0B0c? ot
LB n (y—XB) (y—Xp)
J(02)? 204 a6 ’

If we evaluate the observed information at the MLLE, we get

x5 XX 0p+1
jB.o?) = F

0 _—=
p+1 204

since? = SS./n and the residuals are orthogonal to the model matrix. SinceE(Y | X) = X33,

the Fisher information is
: 2 XX 0,4
p+1 204

Since zero off-correlations in normal models amount to independence, the MLE for o? and
B are independent. Provided the (p + 1) square matrix X " X is invertible, the large-sample
variance of the ordinary least squares estimator is o>(X ' X)~! and thar of the MLE of the
variance is 20 /n.

Proposition 4.4 (Fitting linear models with software). Although we could build the model
matrix ourselves and use the least square formula of Equation 4.2, the numerical routines
implemented in software are typically better behaved. The imfunction in R fits linear models,
as does glm with the default arguments. Objects of class im have multiple methods allow you
to extract specific objects from lm objects. For example, the functions coef, resid, fitted,
model.matriz will return the coefficients B , the ordinary residuals e, the fitted values y and
the model matrix X.

data (BSJ92, package = "hecedsm") #load data
str(BSJ92) # Check that categorical wvariables are factors
# Fit the linear regresstion
linmod <- lm(posttestl ~ pretestl + group,
data = BSJ92)
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beta_hat <- coef(linmod) # beta coefficients

vcov_beta <- wvcov(linmod) # Covariance matriz of betas

summary (linmod) # summary table

beta_ci <- confint(linmod) # Wald confidence intervals for betas
yhat <- fitted(linmod) # fitted values

e <- resid(linmod) # ordinary residuals

# Check OLS formula
X <- model.matriz(linmod) # model matriz
y <- college$salary
1STRUE (all.equal (
c(solve(t(X) 7*% X) J*) t(X) 1+ y),
as.numeric(coef (linmod))

))

The summary method is arguably the most useful: it will print mean parameter estimates
along with standard errors, t values for the Wald test of the hypothesis 7% : 5; = 0 and the
associated p-values. Other statistics and information about the sample size, the degrees of
freedom, etc., are given at the bottom of the table. Note that the im function uses the unbiased
estimator of the variance 0%, denoted S? in this chapter.

4.3 Predictions

When we compute least square estimates, we obtain fitted values y as XB, where X denotes
the n x (p + 1) model matrix. We can also obtain an estimate of the mean surface for
any new row vector of explanatories x* = (1,27, ...,z;), knowing that E(Y | x*) = x*8,
by replacing the unknown coefficients 8 by our estimates 3. This yields the best linear
unbiased predictor of the mean.

If we want to predict the value of a new observation, say Y*, with known explanatories x*,
the prediction will thus be * = x*3 because

E(V* | X,x*) = Ex*8 | X,x*) = x*B.

However, individual observations vary more than averages (which are themselves based
on numerous observations). Intuitively, this is due to the added uncertainty of the error
term appearing in the model equation: the variability of new predictions is the sum of
uncertainty due to the estimators (based on random data) and the intrinsic variance of the
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observations assuming the new observation is independent of those used to estimate the
coefficients,

Va(Y* — V* | X, x*) = Va(Y* — x*B | X, x*)
= Va(Y™* | X,x") + Va(x*8 | X, x*)
— UQX* (XTX)—lx*T + 0_2’
and we can base the prediction interval on the Student distribution, as
Y* — X*B
\/52{1 Fxf(XTX)~1x* T}

~ Student(n —p — 1).

We obtain 1 — « prediction interval for Y* by inverting the test statistic,

B tup1(/2)y/SPH1 4 x+(XTX) 1T},

Similar calculations yield the formula for pointwise confidence intervals for the mean,

B £ b1 (0/2)/ 927 (XTX) 1T,

The two differ only because of the additional variance of individual observations.

Example 4.13 (Prediction for simple linear regression). Consider the data of Example 4.5.
We fit a simple linear regression of the form pef = [y + Siproportion + & with ¢ ~
normal(0, 0?) and observations assumed independent.

Figure 4.9 shows pointwise uncertainty bands for a simple linear regression of the data
Sokolova, Krishna, and Déring (2023) as a function of the paper to plastic proportion, with
larger values indicating more spurious paper wrapping. The model is not accounting for
the fact that our response arises from a bounded discrete distribution with integer values
ranging from 1 to 7, and that the ratios tested in the experiment are 0 (no paper), 0.5, 1 and 2.
The middle line gives the prediction of individuals as we vary the proportion paper/plastic.
Looking at the formulas for the confidence and prediction intervals, it is clear that the bands
are not linear (we consider the square root of a function that involves the predictors), but
it is not obvious that the uncertainty increases as you move away from the average of the
predictors.

This is more easily seen by replicating the potential curves that could have happened with
different data: Figure 4.9 shows generated new potential slopes from the asymptotic normal
distribution of 3 estimators. The hyperbolic shape is not surprising: we are basically tilting
curves from the average pef/proportion, and they have higher potential from deviating
the further we are from the average in each direction. The prediction intervals (pale grey)
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are very large and essentially cover the whole scope of potential values for the perceived
environmental friendliness Likert scale, except for a couple of observations. By contrast,
the confidence intervals for the mean are quite narrow, as a result of the large sample size.
We can see also that the curves do not deviate much from them.

perceived environmental friendliness

0.0 05 10 15 20
proportion of paper/plastic

Figure 4.9: Prediction with prediction intervals (left) and confidence intervals for the mean
(right) for the simple linear regression of perceived environmental friendliness
(pef) as a function of the proportion of paper to plastic, with horizontally jittered
observations. The plot shows predictions along with pointwise 95% confidence
intervals of the mean and the individual predictions. The y-axis has been trun-
cated.

In R, the generic predict takes as input a model and a newdata argument contains a data
frame with the same structure as the original data used to fit the model (or at least the
columns of explanatory variables used).

data(SKD23_S2A, package = "hecedsm") # load data
lm_simple <- 1m(pef ~ proportion, data = SKD23_S2A) # fit simple linear regression
predict(lm_simple,
newdata = data.frame(proportion = c(0, 0.5, 1, 2)),
interval = "prediction") # prediction intervals
predict(lm_simple,
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Table 4.5: Predictions with prediction intervals (left) and confidence intervals for the mean

(right).
Table 4.6: Prediction intervals Table 4.7: Confidence intervals for the mean
proportion prediction lower upper mean lower CI upper CI
0.0 2.41 -0.168 4.98 2.41 2.27 2.55
0.5 2.67 0.097 5.24 2.67 2.57 2.77
1.0 2.93 0.361 5.51 2.93 2.84 3.02
2.0 3.46 0.884 6.04 3.46 3.30 3.62

newdata = data.frame(proportion = c(0, 0.5, 1, 2)),
interval = "confidence") # confidence for mean

Remark 4.4 (Notation). Itis important to distinguish the equation of the stochastic model,
expressed in terms of random variables E(Y; | ;) = x;8 + ¢; and the equation of the fitted
values or predictions,

E(mi) = x,8

The prediction does not involve unknown error terms.

4.4 Hypothesis testing

Hypothesis testing in linear models and analysis of variance proceeds as usual: we compare
two nested models, one of which (the null model) is a simplification of a more complex one
obtaining by imposing restrictions on the mean coefficients.

Of particular interest are tests of restrictions for components of 3. The large sample proper-
ties of the maximum likelihood estimator imply that

B~ normal, 1 {B,UQ(XTX)A}
for sufficiently large sample size, and this result is exact for normal data. One can thus

easily estimate the standard errors from the matrix upon replacing o2 by an estimator. With
normal data, one can show that SS, ~ o?x2_, | and SS, is independent of 3.
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In an inferential setting, it’s often important to test whether the effect of an explanatory
variable is significant: if z; is binary or continuous, the test for .74 : 3; = 0 corresponds to a
null marginal effect for ;. The null model is a linear regression in which we remove the
(j + 1)st column of X.

Proposition 4.5 (Wald tests in linear regression). Recall that the Wald test statistic for the
hypothesis ) : B; = b is

Bi—b

se(f3;)

The Wald test statistic is reported by most software for the hypothesis b = 0. Since Var( Bj) =

o?[(XTX)™1]; ;, we can estimate standard error from S* and derive that the distribution of
W under the null hypothesis is Student(n — p — 1). This explains the terminology ‘t values”
in the summary table. In addition to coefficient estimates, it is possible to obtain Wald-based
confidence intervals for 3;, which are the usual 3; +t,_,_1 o /25¢(53;), Witht,_,_; , /> denoting
thel — «/2 quantile of the Student(n — p — 1) distribution.

Example 4.14. Consider the data from Example 4.5. If we fit against the simple linear
regression model, we can extract the p-values for the Wald or ¢-tests. The test for the
intercept is of no interest since data are measured on a scale from 1 to 7, so the mean
response when proportion=0 cannot be zero. The coefficient for proportion suggests a
trend of 0.5 point per unit ratio, and this is significantly different from zero, indicating that
the pef score changes with the paper to plastic ratio.

summary(1lm_simple)$coefficients # t-tests (Wald) for beta=0 with p-values
#> Estimate Std. Error t value Pr(>[t])

#> (Intercept) 2.407 0.0723 33.31 2.56e-153

#> proportion 0.526 0.0618 8.51 8.40e-17

confint(lm_simple) # confidence intervals for betas

#> 2.5 % 97.5 %

#> (Intercept) 2.266 2.549

#> proportion 0.405 0.648

For categorical variables with more than two levels, testing if 5; = 0 is typically not of
interest because the coefficient represents the difference between the category z; and the
baseline with the treatment contrast parametrization: these two categories could have a
small difference, but the categorical variable as a whole may still be a useful predictor given
the other explanatories. The hypothesis of zero contrast is awkward because it implies a
null model in which selected categories are merged, but then depends on the reference
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category. Rather, we wish to compare a model in which all variables are present with one in
which the categorical explanatory is omitted.

Proposition 4.6 (F-tests for comparison of nested linear models). Consider the full linear
model which contains p predictors,

My Y =Bo+ Brwr + -+ + Bgrg + Brr1Tpq1 + .- + Bprp + €.

Suppose without loss of generality that we want to test 7 : Bp11 = Prso = -+ = [p =
0 (one could permute columns of the model matrix to achieve this configuration). The
global hypothesis specifies that (p — k) of the 8 parameters are zero. The restricted model
corresponding to the null hypothesis contains only the covariates for which 5; # 0,

M(]:Y:Bo—l-ﬁlxl—l—...—l-ﬁkxk—FE.

Let SS. (M) be the residuals sum of squares for model M,

SS(My) = >_(V; — Y1),
=1

where ﬁMl is theith fitted value from M, . Similarly define SS.(My) for the residuals sum of
square of M. Clearly, SS.(My) > SS.(M;) (why?)
The F -test statistic is
_ {Sse(MO) - SSe(Ml)}/(p - k)
SSe(My)/(n—p—1)

Under 5%, the F statistic follows a Fisher distribution (Definition 1.15) with (p — k) and
(n — p — 1) degrees of freedom, Fisher(p — k,n — p — 1) — p — k is the number of restrictions,
andn — p — 1 is sample size minus the number of coefficients for the mean of M.

F

It turns out that both F' and ¢-statistics are equivalent for testing a single coefficient 5;: the
F-statistic is the square of the Wald statistic and they lead to the same inference — the
p-value for the test are identical. While it may get reported in tables, the test for 5y = 0 is
not of interest; we keep the intercept merely to centre the residuals.

Remark 4.5 (F-tests versus likelihood ratio tests). For normal linear regression, the like-
lihood ratio test for comparing models M; and M is a function of the sum of squared
residuals: the usual formula simplifies to

R =nIn{SSc(Mo)/SSe(My)}

=nln (1—|—p_kF>
n—p—1
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Both the likelihood ratio test and the F' tests are related via an monotone transformation,
and we can use the Fisher distribution for comparison, rather than the large-sample y?
approximation. The ¢-tests and F'-tests presented above could thus both be viewed as
particular cases of likelihood-ratio tests but using Student-t¢ versus normal distribution
when p — k = 1, and Fisher versus x? when p — k > 1. When n is large, results are roughly
the same.

4.4.1 Contrasts

Suppose we perform an analysis of variance and the F'-test for the (global) null hypothesis
that the averages of all groups are equal is very large: we reject the null hypothesis in favor
of the alternative, which states that at least one of the group average is different. The follow-
up question will be where these differences lie. Indeed, in an experimental context, this
implies one or more of the manipulation has a different effect from the others on the mean
response. Oftentimes, this isn't interesting in itself: we could be interested in comparing
different options relative to a control group or determine whether specific combinations
work better than separately, or find the best treatment by comparing all pairs.

The scientific question of interest that warranted the experiment may lead to a specific set
of hypotheses, which can be formulated by researchers as comparisons between means of
different subgroups. We can normally express these as contrasts. As Dr. Lukas Meier puts it,
if the global F'-test for equality of means is equivalent to a dimly lit room, contrasts are akin
to spotlight that let one focus on particular aspects of differences in treatments. Formally
speaking, a contrast is a linear combination of averages: in plain English, this means we
assign a weight to each group average and add them up, and then compare that summary
to a postulated value q, typically zero. Contrasts encode research question of interest: if
¢; denotes the weight of group average u; (i = 1, ..., K), then we can write the contrast as
C = cip1 + - - - + cxpi with the null hypothesis 7 : C' = a for a two-sided alternative. The
sample estimate of the linear contrast is obtained by replacing the unknown population
average u; by the sample average of that group, i; = 7,. We can easily obtain the standard
error of the linear combination C: assuming subsample size of nj, ..., nx and a common
variance o2, the standard error is the square root of

2
Va(0) = 52 (Cl+m+cf<).

ni nK

We can then build a ¢ statistic as usual by looking at the difference between our postulated
value and the observed weighted mean, suitably standardized. If the global F'-test leads to
rejection of the null, there exists a contrast which is significant at the same level. Whenever
the contrasts vectors are orthogonal, the tests will be uncorrelated. Mathematically, if we
let ¢; and ¢! denote weights attached to the mean of group i comprising n; observations,
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contrasts are orthogonal if ¢; ¢} /ny + - - - + cx ¢} /nk = 0; if the sample is balanced with the
same number of observations in each group, n/K = ny = --- = ng, we can consider the
dot product of the two contrast vectors and neglect the subsample sizes.

If we have K groups, there are K — 1 contrasts for pairwise differences, the last one being
captured by the sample mean for the overall effect!. If we care only about difference
between groups (as opposed to the overall effect of all treatments), we impose a sum-to-
zero constraint on the weightssoc; + - -+ + cx = 0.

4.4.2 Examples of tests

Example 4.15 (Testing for amount of donations). Consider Example 4.9, whereby we test
for differences between open-ended amounts and pre-specified amounts for proposals
(quantity). The test of interestis /% : 1 = 0, where 81 = pioe — gty iS the mean difference
between groups. Beyond the fact the difference is statistically significant at the 5% level,
we also want to report the marginal means, which when we have a single categorical
explanatory variable is the group sample mean.

data("MV23_S1", package = "hecedsm")
MV23_S1 <- MV23_S1 |>
dplyr: :mutate(amount2 = ifelse(is.na(amount), O, amount))
linmod_MV23 <- Im(amount2 ~ condition, data = MV23_S1)
# Wald tests with coefficients
summary (linmod_MV23)

#>

#> Call:

#> Im(formula = amount2 ~ condition, data = MV23_S1)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -8.70 -6.77 -1.77 3.23 18.23

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t])

#> (Intercept) 6.771 0.377 17.95 <2e-16 **x
#> conditionquantity 1.929 0.517 3.73 0.0002 **x
#> ——-

The constraint ¢; + - - - + cx = 0 ensures that linear contrasts are orthogonal to the mean, which has weight
c¢; = n;/n and for balanced samples ¢; = 1/n.
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#> Signif. codes: O '*x*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Residual standard error: 7.61 on 867 degrees of freedom

#> Multiple R-squared: 0.0158, Adjusted R-squared: 0.0147

#> F-statistic: 13.9 on 1 and 867 DF, p-value: 0.000205

# Analysis of variance table with F tests

anova(linmod_MV23)

#> Analysis of Variance Table

#>

#> Response: amount2

#> Df Sum Sq Mean Sq F value Pr(>F)

#> condition 1 805 805 13.9 0.0002 *x*x

#> Residuals 867 50214 58

#> ——-

#> Signif. codes: 0 'sx*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
# Marginal means

(emm <- emmeans::emmeans(linmod_MV23, spec = "condition"))

#> condition emmean SE df lower.CL upper.CL

#> open-ended 6.77 0.377 867 6.03 7.51

#> quantity 8.70 0.354 867 8.01 9.40

#>

#> Confidence level used: 0.95

emm |> emmeans::contrast(method = "pairwise") # contrast vector c(1,-1)
#> contrast estimate SE df t.ratio p.value

#> (open-ended) - quantity -1.93 0.517 867 -3.730 0.0002

Example 4.16 (Tests and contrasts for reading comprehension methods). We consider now
testing for the Example 4.2 and Example 4.12. The purpose of Baumann, Seifert-Kessell,
and Jones (1992) was to make a particular comparison between treatment groups. From
the abstract:

The primary quantitative analyses involved two planned orthogonal contrasts—
effect of instruction (TA + DRTA vs. 2 x DRA) and intensity of instruction (TA
vs. DRTA).

With a pre-post model, we will want to compare the means for a common value of pretest1,
below taken to be the overall mean of the pretest1 score.
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library(emmeans) #load package

data(BSJ92, package = "hecedsm")

mod_post <- Ilm(posttestl ~ group + pretestl,
data = BSJ92)

car: :Anova(mod_post, type = 3) # F-tests

#> Anova Table (Type III tests)

#>

#> Response: posttestl

#> Sum Sq Df F value Pr(>F)

#> (Intercept) 11 0.25 0.62

#> group 143 2 12.17 3.5e-05 *x*x

#> pretestl 275 1 46.67 4.2e-09 **x*

#> Residuals 365 62

#> ——-

#> Signif. codes: O '*x*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
emmeans_post <- emmeans(object = mod_post,

specs = "group") # which variable to keep

The result of the analysis of variance table shows that there are indeed differences between
groups. We can thus look at the estimated marginal means, which are the average of each

group.

Table 4.8: Estimated group averages with standard errors and 95% confidence intervals for
post-test 1 for average pre-testl score.

terms marg. mean std.err. dof lower (CI) upper (CI)

DR 6.19 0.52 62 5.14 7.23
DRTA 9.81 0.52 62 8.78 10.85
TA 8.22 0.52 62 7.18 9.27

The hypothesis of Baumann, Seifert-Kessell, and Jones (1992) is %) : pra + prTA = 2UDRA
or, rewritten slightly,

6 1 —24pR + UDRTA + pTA = 0.

with weights (-2, 1, 1); the order of the levels for the treatment are (DRA, DRTA, TA)
and it must match that of the coefficients. An equivalent formulation is (2,—1,—1) or
(1,—1/2,—1/2): in either case, the estimated differences will be different (up to a constant
multiple or a sign change). The vector of weights for 74 : ura = pprra is (0, —1, 1): the
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zero appears because the first component, DRA doesn’t appear. The two contrasts are
orthogonal since (—2 x 0) + (1 x —1) + (1 x 1) = 0.

# Identify the order of the level of the variables
with(BSJ92, levels(group))
#> [1] "DR" "DRTA" "TA"
# DR, DRTA, TA (alphabetical)
contrasts_list <- list(
# Contrasts: linear combination of means, coefficients sum to zero
"Cl: average (DRTA+TA) vs DR" = c(-1, 0.5, 0.5),
"C2: DRTA vs TA" = c(0, 1, -1)
)
contrasts_post <-
contrast(object = emmeans_post,
method = contrasts_list)
contrasts_summary_post <- summary(contrasts_post)

Table 4.9: Estimated contrasts for post-test 1.

contrast estimate std.err. dof stat p-value
C1: average (DRTA+TA) vs DR 2.83 0.64 62 4.40 0.00
C2: DRTAvs TA 1.59 0.73 62 2.17 0.03

We can look at these differences; since DRTA versus TA is a pairwise difference, we could have
obtained the ¢-statistic directly from the pairwise contrasts using pairs (emmeans_post).

What is the conclusion of our analysis of contrasts? It looks like the methods involving
thinking aloud have a strong impact on reading comprehension relative to only directed
reading. The evidence is not as strong when we compare the method that combines directed
reading-thinking activity and thinking aloud, but the difference is statistically significant at
level 5%.

# Extract coefficients and standard errors

beta_pre <- coefficients(mod_post) ['pretestl']

se_pre <- sqrt(c(vcov(mod_post) ['pretestl', 'pretestl']))

wald <- (beta_pre - 1)/se_pre # Wald statistic, signed version
# P-value based on Student-t distribution, with n-p-1 dof
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pval <- 2xpt(abs(wald), df = mod_post$df.residual, lower.tail = FALSE)

# Model comparison via 'anova' call

mod0 <- Im(posttestl ~ offset(pretestl) + group, data = BSJ92)

# The 'offset' fixes the term and so this is equivalent to a coefficient of 1
aov_tab <- anova(mod0, mod_post)

Another potential hypothesis of interest is testing whether the coefficient of pretest1
is unity. This amounts to the Wald test w = (Bpretesﬂ - 1) /se(Bpretesﬁ) = —3.024, or
alternatively a model comparison with the anova, which yields a test statistic of /' = 9.143.
Distribution theory shows that if Z ~ Student(v), then Z? ~ Fisher(1, v), it follows that both
tests are equivalent and the p-values are exactly the same.

Example 4.17 (Tests and contrasts for paper vs plastic). Let uo, o5, pt1, 1o denote the true
mean of the PEF score as a function of the proportion of paper for the data from Example 4.5.
There are several tests that could be of interest here, but we focus on contrasts performed
by authors and an hypothesis test of linearity as a function of the proportion of plastic. For
the latter, we could compare the linear regression model (in which the PEF score increases
linearly with the proportion of paper to plastic) against the ANOVA which allows each of
the four groups to have different means.

If we use a € R* to denote the parameter vector of the analysis of variance model using the
treatment parametrization and 8 € R? for the simple linear regression model, then we have

o = Bo = o

po.s = Bo +0.581 = ap + an
p1 = Bo+ p1=ap+ az
p2 = Bo + 281 = ap + as.

The test comparing the simple linear regression with the analysis of variance imposes two
simultaneous restrictions, with .7 : s = 22 = 4avg, so the null distribution is Fisher(2, 798)
or roughly 3.

data(SKD23_S2A, package = "hecedsm") # load data

linmod <- 1lm(pef ~ proportion, data = SKD23_S2A) # fit simple linear regression
coef (linmod) # extract intercept and slope

#> (Intercept) proportion

#> 2.407 0.526
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anovamod <- lm(pef ~ factor(proportion), # one-way ANOVA
data = SKD23_S2A)

# Compare simple linear regression with ANOVA

anova(linmod, anovamod) # is the change in PEF linear?

#> Analysis of Variance Table

#>

#> Model 1: pef ~ proportion

#> Model 2: pef ~ factor(proportion)

#> Res.Df RSS Df Sum of Sq F Pr(>F)

#> 1 800 1373

#>2 798 1343 2 29.3 8.69 0.00018 *xx*
#> ——-
#> Signif. codes: 0 'xk*' 0.001 'x*' 0.01 '%x' 0.05 '.' 0.1 ' ' 1

# Specifying the weights of the contrasts
# these contrasts encode the mean (so don't sum to zero)
car::linearHypothesis(model = anovamod,

hypothesis = rbind(c(0, -2, 1, 0),

c(0, 0, -2, 1))

#>
#> Linear hypothesis test:
#> - 2 factor(proportion)0.5 + factor(proportion)l = 0
#> - 2 factor(proportion)l + factor(proportion)2 = 0
#>
#> Model 1: restricted model
#> Model 2: pef ~ factor(proportion)
#>
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 800 1373

#> 2 798 1343 2 29.3 8.69 0.00018 **x
T
#> Signif. codes: 0 'x*kx' 0.001 'xx' 0.01 '#' 0.05 '.' 0.1 ' ' 1

We see from the output that the F tests and the p-values are identical, whether we impose
the constraints manually or simply feed the two nested models to the anova method.

The authors were interested in comparing none with other choices: we are interested in
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pairwise differences, but only relative to the reference p:

po = pos < lpo — lpos +Opg +Opz =0
po =1 <= lpo+0Opos —1pr +0p2 =0
po = p2 <= lpo+Opos +0pr —1pa =0

so contrast vectors (1,—1,0,0), (1,0,—1,0) and (1,0, 0, —1) for the marginal means would
allow one to test the hypothesis.

margmean <- anovamod |>
emmeans: :emmeans (specs = "proportion") # group means
contrastlist <- list( # specify contrast vectors
refvshalf = c(1, -1, 0, 0),
refvsone = c¢(1, 0, -1, 0),
refvstwo = c(1, 0, 0, -1))
# compute contrasts relative to reference
margmean |> emmeans::contrast(method = contrastlist)

#> contrast estimate SE df t.ratio p.value
#> refvshalf -0.749 0.131 798 -5.710 <.0001
#> refvsone -0.901 0.131 798 -6.890 <.0001
#> refvstwo -1.182 0.129 798 -9.200 <.0001

The group averages are reported in Table 4.10, match those reported by the authors in the
paper. They suggest an increased perceived environmental friendliness as the amount of
paper used in the wrapping increases. We could fit a simple regression model to assess
the average change, treating the proportion as a continuous explanatory variable. The
estimated slope for the change in PEF score, which ranges from 1 to 7 in increments of 0.25,
is 0.53 point per ratio of paper/plastic. There is however strong evidence, given the data,
that the change isn’t quite linear, as the fit of the linear regression model is significantly
worse than the corresponding linear model.

Table 4.10: Estimated group averages of PEF per proportion with standard errors

proportion marg. mean std.err. dof lower (CI) upper (CI)

0.0 2.16 0.093 798 1.98 2.34
0.5 291 0.093 798 2.73 3.09
1.0 3.06 0.092 798 2.88 3.24
2.0 3.34 0.089 798 3.17 3.52
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Table 4.11: Estimated contrasts for differences of PEF to no paper.

contrast estimate std.err. dof stat p-value

refvshalf -0.75 0.13 798 -5.71 0
refvsone -0.90 0.13 798 -6.89 0
refvstwo -1.18 0.13 798 -9.20 0

All differences reported in Table 4.11 are significant and positive, in line with the researcher’s
hypothesis.

Example 4.18 (Testing for the college wage discrimination). Consider the college data
example and the associated linear model with rank, sex, years of service and field as
covariates.

data(college, package = "hecstatmod")

modl_college <- Im(salary ~ sex + field + rank + service, data = college)

mod0_college <- Ilm(salary ~ field + rank + service , data = college)

# F-test with ANOVA table comparing nested models

aov_tab_college <- anova(modO_college, modl_college)

# Wald t-test - extracted from the output of the 'summary' table

wald_college <- summary(modl_college)$coefficients[2,]

# Likelihood ratio test with chi-square approximation

pval_lrt <- pchisq(q = as.numeric(2x(logLik(modl_college) - logLik(modO_college))),
df = 1, lower.tail = FALSE)

The only test of interest here is %) : Ssex = 0 against the two-sided alternative /7, : Ssex # 0.
The Wald ¢-test statistic is —1.23, with a p-value of 0.219 based on a Student-¢ distribution
with 391 degrees of freedom. The p-value in the output from the F-test is the same, and
that obtained from the likelihood ratio test the same up to two decimal places.

Table 4.12: Table of linear regression coefficients with associated standard errors, Wald tests
and p-values based on Student-¢ distribution.

term estimate std. error Wald stat. p-value
(Intercept) 86.596 2.96 29.25 <0.001
sex [woman] -4.771 3.878 -1.23 0.22
field [theoretical]  -13.473 2.315 -5.82  <0.001
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term estimate std. error Wald stat. p-value
rank [associate] 14.56 4.098 3.55 <0.001
rank [full] 49.16 3.834 12.82 <0.001
service -0.089 0.112 -0.8 0.43

4.5 Factorial designs and interactions

The additive mean model with linear terms (including categorical variables) specifies that
the marginal effect of one variable is independent of others. We may wish to relax this
assumption by including interaction terms.

Definition 4.1 (Interaction). An interaction occurs if some explanatory variables, when
coupled together, have different impacts than the superposition of each, i.e., if X; and X,
interact, the marginal effect of E(Y" | X) with respect to X is a function of X}, or vice-versa.

We will restrict attention to the cases where one or more of the explanatories is a categorical
variable (factor).

Example 4.19 (Intention to buy). We consider a toy model for the interaction data, and
model the intention to buy a product as a function of sex and fixation. The base model,
without interaction, is

intention = By + fisex + fofixation + €,

where sex is a binary variable taking value unity for female and zero for male. The model
assumes that the effect of the continuous variable fixation is the same for the two values of
the binary variable. Likewise, the effect of the binary variable is assumed to be the same for
all possible values of the continuous variable. We can see this on the plot, as the difference
between the lines represents the effect of sex, is the same for all values of fixation; the
lines are parallel: see the left panel of Figure 4.10.

In order to add a different slope for men and women, we can create a new variable equal to
the product fixation*sex and add it to the model,

intention = [y + fisex + fofixation

+ P3fixation - sex + €.
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Figure 4.10: Scatterplots and fitted lines for a model with a single continuous and binary
explanatory, without (left) and with (right) an interaction term.

Depending on the value of the binary variable sex, we get

E(intention | fixation, sex)

_ J(Bo+B1) + (B2 + B3)fixation, sex =1,
B() + Bgfixation, sex = 0.

The interpretation of the coefficients in the model is as usual with the treatment contrast
parametrization:

* [ is the average buying intention when the fixation time is zero for men,

e (3 is the difference in intercept for women vs men (mean difference women vs men
when the fixation time in zero),

* [, is the unit increase per second of fixation for men,

* (3 is the difference in slope for women vs men (mean difference for women vs men of

an increase of one additional second of fixation).

Testing whether the interaction is significant boils down to using the test .7 : 83 = 0.
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data(interaction, package = "hecstatmod")

# To specify an interaction, use the symbol :

mod <- Im(intention ~ fixation + sex + sex:fixation,
data = interaction)

# Another option is the star x*,

# So AxB is a shortcut that expands to A + B + A:B

summary (mod) $coefficients

#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.741 0.282 9.73 1.02e-16
#> fixation 0.504 0.153 3.29 1.33e-03
#> sex 1.312 0.380 3.45 7.74e-04
#> fixation:sex 2.135 0.200 10.69 5.61e-19

The model with the interaction is significantly better, meaning that the effect of fixation
time on intention to buy varies according to sex.

Remark 4.6 (Marginality). In the model with buying intention as a function of sex and
fixation time, we would not remove the main effect of f ixation while keeping the inter-
action term fixation*sex, even if we fail to reject .74 : 52 = 0. Without it, the model would
become

E(intention | fixation, sex)

~ J(Bo+ B1) + Bsfixation, sex =1,
a Bos sex = 0;

implying that intention to buy is constant for men, regardless of the fixation time. As the
choice of baseline is arbitrary, but changing the dummy sex (0 for women, 1 for men),
would yield a different model and so potentially different inferences, we never consider
removal of the main effect term that is involved in an interaction. The marginality principle
states that all lower interaction terms should be included.

The concept of interactions readily extends to categorical variables with & levels/categories.
In this case, we need to use the global F'-test to check if the interaction is statistically
significant.

Definition 4.2 (Analysis of variance). An analysis of variance is a linear model in which
the mean is a function of categorical explanatory variables. If we have data for all different
combinations of factors, the factors are crossed and we can consider inclusion of their
interactions.
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Consider a two-way analysis of variance model. This is a linear model with two factors, A
and B, with respectively n,, and n; levels. The model with interaction can be written as

Yijp = i +  Eijk (4.3)

response  subgroup mean  €rror term

where

* Y;;i is the kth replicate for ith level of factor A and jth level of factor B
* ui; is the average response of measurements in group (a;, b;)
* ¢;ji, are independent error terms with mean zero and standard deviation o.

In a full factorial design with interactions, we can write the mean response as E(Y | A =
a;, B = bj) = pi;. This model can be reduced to a single one-way ANOVA with a single
factor having n,n; levels. This may be useful to specify contrast weights, or when there is
an additional control group in an experimental setting. However, preserving the structure
helps setting up hypotheses of interest.

We can equivalently express this in terms of an intercept, main effects of either variables,
and interaction terms. The additive model, with no interaction, has average for cell (i, j)
of

E(Yij\A:ai,B:bj):,u—i—ai—l—ﬁj.

We can consider model simplifications from bottom up. Removing the interaction leads to
amodel with 1 + (n, — 1) + (n, — 1) parameters, relative to n, x n; for the model with the
interaction. We can use an F'-test to check for the significance of the latter. If the factors
don’t interact, the mean in the cell is given by the sum of the main effects. Only once we
have a removed this term can we consider if all row means or column means are the same.

While formal testing is needed to check for interactions, the concept can be better under-
stood by looking at graphs (at least in a setting where the means are known with little to no
uncertainty).

Definition 4.3 (Interaction plot). We can try to detect interactions visually by plotting the
(mean) response as a function of one of the covariates, using a so-called interaction plot.
When there are more than two categorical variables, we can use colors, symbols or panels
to represent the categories. Lack of interaction in those plots implies parallel lines, but one
must account for the uncertainty.
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mean response

no effect | | main effect of A only | | main effect of B only | | both main effects
15
10
5
interaction only | | main effect of A and interaction | | main effect of B and interaction | | both main effects and interaction
15
10
5
al a2 al a2 al a2 al a2
factor A
factor B b1 b2

Figure 4.11: Interaction plots (line graphs) for example patterns for means for each of the
possible kinds of general outcomes in a 2 by 2 design. Illustration adapted
from Figure 10.2 of Crump, Navarro, and Suzuki (2019) by Matthew Crump (CC
BY-SA 4.0 license).

Definition 4.4 (Simple effects and main effects). When interactions do not exist, it makes
sense to abstract from one or more variable and consider marginal effects, obtained by
pooling data from the omitted factors and averaging out. Suppose without loss of generality
that we are interested in comparing levels of A. When interactions between A and B are
not significant, we can consider lower order terms and report estimated marginal means
and contrasts between means of A. If the interaction with B has an impact, we can rather
compute the subcell average of A | B = b;, and similarly for contrasts. We thus distinguish
between the following:

» simple effects: difference between levels of one in a fixed combination of others.
Simple effects are comparing cell averages within a given row or column.

* main effects: differences relative to average for each condition of a factor. Main effects
are row/column averages.

Example 4.20 (Psychological ownership of borrowed money). Supplemental Study 5 from
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Sharma, Tully, and Cryder (2021) checks the psychological perception of borrowing money
depending on the label. The authors conducted a 2 by 2 between-subject comparison
(two-way ANOVA) varying the type of debt (whether the money was advertised as credit or
loan) and the type of purchase the latter would be used for (discretionary spending or
need for necessary purchases). The response is the average of the likelihood and interest in
the product, both measured using a 9 point Likert scale from 1 to 9.

The mean model with an interaction can be written using the treatment contrast
parametrization as

likelihood = BO + 61 1purchase=need + 62 1debttype=loan

+ 53 1purchase=need 1debttype=loan +e€

Sharma, Tully, and Cryder (2021) fitted a model with two factors, each with two levels,
and their interaction. Since there are one global average and two main effect (additional
difference in average for both factors debttype and purchase), the interaction involves one
degree of freedom since we go from a model with three parameters describing the mean to
one that has a different average for each of the four subgroups.

The reason why this is first test to carry out is that if the effect of one factor depends on the
level of the other, as shown in Figure 4.11, then we need to compare the label of debt type
separately for each type of purchase and vice-versa using simple effects. If the interaction
on the contrary isn't significant, then we could pool observations instead and average across
either of the two factors, resulting in the marginal comparisons with the main effects.

Fitting the model including the interaction between factors ensures that we keep the addi-
tivity assumption and that our conclusions aren’t misleading: the price to pay is additional
mean parameters to be estimated, which isn’'t an issue if you collect enough data, but can
be critical when data collection is extremely costly and only a few runs are allowed.

In R, we include both factors in a formula as response ~ factorA * factorB, the * sym-
bol indicating that both are allowed to interact, as a shorthand for factorA + factorB
+ factorA:factorB; in the main effect model, we would use instead + to reflect that the
effects of both factors add up.

# Analysing Supplementary Study 5

# of Sharma, Tully, and Cryder (2021)

data(STC21_SS5, package = "hecedsm")

mod <- aov(likelihood ~ purchase*debttype,
data = STC21_SS5)

# Compute means of rows/columns/cells
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model.tables(mod, type = "means")
#> Tables of means
#> Grand mean

#>

#> 4.88

#>

#> purchase

#> discretionary need

#> 4.182 5.579

#> rep 751.000 750.000

#>

#> debttype

#> credit loan

#> 5.127 4.631

#> rep 753.000 748.000

#>

#> purchase:debttype

#> debttype

#> purchase credit loan
#> discretionary 4.5 3.8
#> rep 392.0 359.0
#> need 5.7 5.4
#> rep 361.0 389.0

# Analysis of variance reveals
# non-significant interaction
# of purchase and type

car: :Anova(mod, type = 2)

#> Anova Table (Type II tests)

#>

#> Response: likelihood

#> Sum Sq Df F value Pr(>F)

#> purchase 752 1 98.21 < 2e-16 **x*

#> debttype 92 1 12.04 0.00054 *xx

#> purchase:debttype 14 1 1.79 0.18171

#> Residuals 11467 1497

#SN———

#> Signif. codes: O 'sx*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Since the interaction is not significant, we can only interpret the main effect of fixation.
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These conditional mean difference are termed marginal effect, because they are obtained
by averaging out the other explanatory. The model however estimates the variance based on
residuals from the full interaction model with four cell means, so differs from that obtained
by (incorrectly) running a model with only purchase as explanatory.

In the analysis of variance table, we focus exclusively on the last line with the sum of
squares for purchase:debttype. The F statistic is 1.79; using the F (1, 1497) distribution
as benchmark, we obtain a p-value of 0.18 so there is no evidence the effect of purchase
depends on debt type.

We can thus pool data and look at the effect of debt type (Loan or credit) overall by com-
bining the results for all purchase types, one of the planned comparison reported in the
Supplementary material. To do this in R with the emmeans package, we use the emmeans
function and we quote the factor of interest (i.e., the one we want to keep) in specs. By
default, this will compute the estimate marginal means: the contr = "pairwise" indicates
that we want the difference between the two, which gives us the contrasts.

# Pairwise comparisons within levels of purchase
# Simple effect
emmeans : : emmeans (mod,

specs = '"purchase",

contr = "pairwise")
#> $emmeans
#> purchase emmean SE  df lower.CL upper.CL
#> discretionary 4.17 0.101 1497 3.97 4.36
#> need 5.58 0.101 1497 5.39 5.78

#>
#> Results are averaged over the levels of: debttype
#> Confidence level used: 0.95

#>

#> $contrasts

#> contrast estimate SE df t.ratio p.value
#> discretionary - need -1.42 0.143 1497 -9.910 <.0001
#>

#> Results are averaged over the levels of: debttype
# Interaction plot
emmeans : :emmip (mod,
purchase ~ debttype,
CIs = TRUE) +
theme_minimal ()
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Figure 4.12: Interaction plots for the Sharma, Tully, and Cryder (2021) data.

Remark 4.7 (Sum of square decomposition). There are different sum of square decom-
positions (type I, IT and III) for the comparison of nested models in analysis of variance
tables produced by anova. These test different models using F’ statistics, with the same
denominator based on S, from the model output, and the numerator is the difference in
sum of squares. All of the decompositions agree when the sample size is balanced, meaning
each cell has the same number of replications n,., so that the overall number of observations
1S = Ngnpny.

Table 4.13: Sum of square decompositions in ANOVA tables. Comparison of sum of squares
between null, versus alternative model.

type 1 type 11 type III
A intercept vs A Bvs (A, B) (B,AB)vs (A, B,AB)
B Avs (A, B) Avs (A, B) (A, AB)vs (A, B,AB)
AB (A,B)vs (A,B,AB) (A,B)vs(A,B,AB) (A,B)vs(A,B,AB)

Table 4.13 shows the different sum of squared errors of the models, with the terms in
parenthesis indicating which terms are included (AB denotes the interaction).

Type I, the default with the generic anova, uses the order in which terms enter, say A, B,
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AB, so compares in the first line the improvement in the mean-only model with A, then
in the second line the test for B compares the model with both main effects A and B with
only A. Since the order in which the factors is specified is arbitrary, this decomposition is
arbitrary and not relevant.

The type II decomposition considers terms of the same level in the hierarchy, so the tests
for the main effects are A + B vs A, A + B vs B and that of the interactionis A x Bvs A, B.
This should be the default option if we wish to consider main effects when the interaction
isn't significant.

The type III decomposition, popularized by SAS and often taken as the default, considers
all other terms, so would test main effects as A + B+ A x Bvs B+ A x B. This does not
respect the marginality principle, so should be avoided. The tests for A or B should not be
used.

All three methods agree for the last level with the interaction.

All of the discussion for a two-way ANOVA extends to higher-dimensional designs for K
factors. However, the curse of dimensionality makes it more difficult to collect observations
in each cell. Any multiway ANOVA with two or more factor can be collapsed into a single
one-way ANOVA: this is notably useful when there is a control group which is not related to
the factor levels, as no manipulation takes place. The use of contrasts becomes critical since
we can write any test for main effects, interactions using the latter through weighting.

Example 4.21 (Perceptions of cultural appropriation by ideology). We consider a three-way
ANOVA from Lin et al. (2024). Their Study 4 focused on cultural appropriation for soul
food recipe cookbook from Chef Dax, who was either black (or not), manipulating the
description of the way he obtained the recipes (by peeking without permission in kitchens,
by asking permission or no mention for control). Authors postulated that the perception of
appropriation would vary by political ideology (liberal or conservative). The study results in
a 3 by 2 by 2 three-way ANOVA.

data(LKUK24_S4, package = "hecedsm")
# Check repartition of observations in subgroups
xtabs(~politideo + chefdax + brandaction,

data = LKUK24_S4)

#> , , brandaction = peeking

#>

#> chefdax

#> politideo not black black
#> conservative 33 36

117



4 Linear regression models

#> liberal 87 84
#>

#> , , brandaction = permission
#>

#> chefdax

#> politideo not black black
#> conservative 42 34
#> liberal 77 84
#>

#> , , brandaction = control

#>

#> chefdax

#> politideo not black black
#> conservative 38 32
#> liberal 79 85

# Factors are crossed, and there are replications
# We fit the three-way ANOVA model (all interactions)
mod <- lm(appropriation ~ politideo * chefdax * brandaction,
data = LKUK24 S4)
# Compute estimated marginal means for each of the 12 subgroups
emm <- emmeans (mod,
specs = c("chefdax", "brandaction", "politideo"))
# Create an interaction plot
emmip(object = emm,
formula = brandaction ~ chefdax | politideo,
CIs = TRUE) +
MetBrewer: :scale_color_met_d(name = "Hiroshige")
anova_tab <- car::Anova(mod, type = 2)
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For the K-way ANOVA, we always start with estimating the full model with all K-way
interaction (provided there are enough data to estimate the latter, which implies there are
repetitions). If the latter is significant, we can fix one or more factor levels and compare the

Table 4.14: Analysis of variance table (type II decomposition) for the data from Study 4 of

term sum of squares  df stat p-value
politideo 48.49 1 21.35 <0.001
chefdax 473.72 1 208.61 <0.001
brandaction 34.24 2 7.54 <0.001
politideo:chefdax 65.00 1 28.63 <0.001
politideo:brandaction 1.56 2 0.34 0.71
chefdax:brandaction 0.62 2 0.14 0.87
politideo:chefdax:brandaction 0.66 2 0.15 0.86
Residuals 1587.33 699

If we consider Table 4.14, we find that there is no three-way interaction and, omitting the
latter and focusing on lower-level, a single two-way interaction between political ideology
and the race of Chef Dax. We cannot interpret the p-value for the main effect of brandaction,
but we could look at the marginal means.
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Based on the data, we will collapse data to a one-way ANOVA comparing the three levels
of brandaction and a 2 by 2 two-way ANOVA for the other two factors. The results are
obtained by averaging over the missing factor, but estimating the standard deviation o from
the full model.

We are interested in comparing the perception between the race of Chef Dax (black or not,
as Southern Soul food cooking is more likely to be associated with cultural appropriation
if Chef Dax is not black. We proceed with emmeans by computing the marginal means
separately for each of the four subcategories, but compare the race of Chef Dax separately
for liberals and conservatives due to the presence of the interaction.

data(LKUK24_S4, package = "hecedsm")

library(emmeans)

mod <- lm(appropriation ~ politideo * chefdax * brandaction,
data = LKUK24 S4)

# Marginal means for political ideology/Chef Dax

# Compute simple effects, by political ideology

emmeans (mod,

specs = '"chefdax",

by = "politideo",

contrast = "pairwise")
#> politideo = conservative:
#> chefdax  emmean SE df lower.CL upper.CL
#> mnot black 2.38 0.1425 699 2.11 2.66
#> black 1.68 0.1494 699 1.38 1.97
#>
#> politideo = liberal:
#> chefdax emmean SE df lower.CL upper.CL
#> mnot black 3.60 0.0968 699 3.41 3.79
#> black 1.57 0.0947 699 1.38 1.75
#>

#> Results are averaged over the levels of: brandaction
#> Confidence level used: 0.95

We see that the liberals are much more likely to view Chef Dax cookbook as an instance
of cultural appropriation if he is not black; there is limited evidence of any difference
between conservatives and liberal when Chef Dax is black. Both differences are statistically
significative, but the differences (and thus evidence of an effect) is much stronger for
left-leaning respondents.
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We can look next at the brandaction: we expect participants will view peeking less favorably
than if Chef Dax asked for permission to publish the recipes. It’s tricky to know the effect of
the control, as we are not bringing the point to the attention of participants in this instance.

# Marginal mean for brandaction
emm_brand <- emmeans(mod, specs = c("brandaction"))
emm_brand

#> brandaction emmean SE df lower.CL upper.CL
#> peeking 2.56 0.107 699 2.35 2.77
#> permission 2.29 0.105 699 2.09 2.50
#> control 2.07 0.108 699 1.86 2.28
#>

#> Results are averaged over the levels of: politideo, chefdax
#> Confidence level used: 0.95

# Joint F test for the main effect of brandaction

emm_brand |> pairs() [|> joint_tests()

#> model term dfl df2 F.ratio p.value

#> contrast 2 699 5.090 0.0064

Ajoint F'-test, obtained by collapsing everything to a one-way ANOVA, shows that there are
indeed differences. However, note that the averages of the three actions are much smaller
than for race.

4.6 Geometry of least squares

Remark 4.8 (Geometry). The vector of fitted values § = X8 = Hxy is the projection of the
response vector y on the linear span generated by the columns of X. The matrix Hx =
X(XTX)"!1XT, often called hat matrix, is an orthogonal projection matrix, so Hx = Hy
and HxHx = Hx and HxX = X. Since the vector of residuals e = (ey,...,e,) ", which
appear in the sum of squared errors, is defined as y — y and y = X, simple algebraic
manipulations show that the inner product between ordinary residuals and fitted values is
zero, since

. 5T =
g'le=B X'(y—XB)
=y X(XTX)"' X T (y - X(XTX)"'XTy)
=y Hxy - X(X'X)"'XTX(XTX)" !XTy
=0
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where we use the definition of y and e = y — y on the first line, then substitute the OLS
estimator 8 = (X' X) !X "y and distribute terms. Similarly, X"e = 0,,;. The ordinary
residuals are thus orthogonal to both the model matrix X and to the fitted values.

Corollary 4.1 (Orthogonality of residuals and fitted values). A direct consequence of this fact
is that the sample linear correlation between e and y is zero, so a simple linear regression of e
as a function of y has zero intercept and zero slope. The same is true for any plot of e against
a column of X. Any additional pattern visible must come from omitted dependence.
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Figure 4.13: Plot of residuals against fitted values (left), and against the explanatory variable
service (right) for the linear regression of the college data. The intercept and
the slope of the simple linear regressions are zero.

Corollary 4.2 (Mean of residuals). Since the inner product between the model matrix X and
the residuals e is zero, the sample mean of e must be zero provided that 1,, is in the linear
span of X, which is the case as soon as we include an intercept.

mod <- lm(salary ~ sex + field + rank + service, data = college)
# Zero correlations

with(college, cor(resid(mod), service))

#> [1] -3.93e-17
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cor(resid(mod), fitted(mod))
#> [1] 5.21e-17

# Mean zero errors

mean (resid(mod))

#> [1] -6.16e-16

Remark 4.9 (Invariance). One direct consequence of the definition of the estimator in terms
of projection matrices is that the fitted values y; for two model matrices X, and X, are the
same if they generate the same linear span, as in Example 4.10. The interpretation of the
coefficients will however change. If we include an intercept term, then we get the same
output if the columns of explanatory are mean-centered.

The value of 3 is such that it will maximize the correlation between Y and Y. In the case of
a single categorical variable, we will obtain fitted values y that correspond to the sample
mean of each group.

4.6.1 Residuals

Residuals are predictions of the errors £ and represent the difference between the observed
value Y; and the estimated value on the line. The ordinary residuals are

~

ei:YVi—YVi izl,...,n.

The sum of the ordinary residuals is always zero by construction if the model includes an
intercept, meaning e = 0.

Not all observations contribute equally to the adjustment of the fitted hyperplane. The
geometry of least squares shows that the residuals are orthogonal to the fitted values, and
e = (I, — Hx)Y, where Hx = X(XTX)"'XT is an n x n projection matrix that spans
the (p + 1)-dimensional subspace consisting of all linear combination of the columns of
X, .7(X). If Va(Y) = o1, it follows that Va(e) = o(I, — Hx) because (I, — Hx) is
a projection matrix, therefore idempotent and symmetric. Because the matrix has rank
n — p — 1, the ordinary residuals cannot be independent from one another.

If the errors are independent and homoscedastic, the ordinary residual e; has variance
o?(1 — h;), where the leverage term h; = (Hx);; = x;(X"X)~!x, is the ith diagonal entry
of the projection matrix Hx and x; is the ith row of the model matrix corresponding to
observation i.

We thus conclude that ordinary residuals do not all have the same standard deviation and
they are not independent. This is problematic, as we cannot make meaningful comparisons:
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points with low leverage are bound to deviate more from the fitted model than others. To
palliate to this, we can standardize the residuals so each has the same variance under the
null of independent homoscedastic errors — the leverage terms h; are readily calculated
from the model matrix X. The only remaining question is how to estimate the variance. If
we use the ith observation to estimate both the residual and the variance, we introduce
additional dependence. A better way is remove the ith observation and refit the model
with the n — 1 remaining observations to get of S%—i) (there are tricks and closed-form
expressions for these, so one doesn'’t need to fit n different linear models). The jacknife
studentized residual r; = e;/{s_;(1—h;)}, also termed externally studentized residuals, are
not independent, but they are identically distributed and follow a Student distribution with
n — p — 2 degrees of freedom. These can be obtained in R with the command rstudent.

When to use which residuals? By construction, the vector of ordinary residuals e is orthog-
onal to the fitted values 4 and also to each column of the model matrix X: this means a
simple linear regression of e with any of these as covariate gives zero intercept and zero
slope. However, residual patterns due to forgotten interactions, nonlinear terms, etc. could
be picked up from pair plots of ordinary residuals against the explanatories.

While the jackknife studentized residuals r; are not orthogonal, they are not very different.
Use jackknife residuals r to check for equality of variance and distributional assumptions
(e.g., using quantile-quantile plots).

Definition 4.5 (Coefficient of determination). When we specify a model, the error term
e accounts for the fact no perfect linear relationship characterizes the data (if it did, we
wouldn’t need statistic to begin with). Once we have fitted a model, we estimate the variance
o?; one may then wonder which share of the total variance in the sample is explained by
the model.

The total sum of squares, defined as the sum of squared residuals from the intercept-only
model, serves as comparison — the simplest model we could come up with would involving
every observation by the sample mean of the response and so this gives (up to scale) the
variance of the response, SS. = > (y; — 7)?. We can then compare the variance of the
original data with that of the residuals from the model with model matrix X, defined as

SSe=>1, ef withe; = y; — Bg — Z§:1 @X ;. We define the coefficient of determination, or
squared multiple correlation coefficient of the model, R?, as
R2—1— SSe —1_ 21 (i — ?/J\i)g.
SS. > (yi — )2

An alternative decomposition shows that R? = cor?(y, 3), i.e., the coefficient of determina-
tion can be interpreted as the square of Pearson’s linear correlation between the response y
and the fitted values y.
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Its important to note that R? is not a goodness-of-fit criterion, like the log likelihood:
some phenomena are inherently noisy and even a good model will fail to account for
much of the response’s variability. Moreover, one can inflate the value of R? by including
more explanatory variables and making the model more complex, thereby improving the
likelihood and R?. Indeed, the coefficient is non-decreasing in the dimension of X, so
a model with p + 1 covariate will necessarily have a higher R? values than only p of the
explanatories. For model comparisons, it is better to employ information criteria or else rely
on the predictive performance if this is the purpose of the regression. Lastly, a model with
a high R? may imply high correlation, but the relation may be spurious: linear regression
does not yield causal models!

4.6.2 Collinearity

The linearity assumption can be interpreted broadly to mean that all relevant covariates
have been included and that their effect is correctly specified in the equation of the mean.
Adding superfluous covariates to a model has limited impact: if the (partial) correlation
between a column vector X; and the response variable Y is zero, then 5, = 0 and the
estimated coefficient 3, ~ 0 because the least square estimators are unbiased. If we include
many useless variables, say k, the lack of parsimony can however make interpretation more
difficult. The price to pay for including the k£ additional covariates is an increase in the
variance of the estimators B

It is nevertheless preferable to include more variables than to forget key predictors: if we
omit an important predictor, their effect may be picked up by other regressors (termed
confounders) in the model with are correlated with the omitted variable. The interpretation
of the other effects can be severely affected by confounders. For example, the simple linear
model (or two-sample ¢-test) for salary as a function of sex for the college data is invalid
because sex is a confounder for rank. Since there are more men than women full professor,
the mean salary difference between men and women is higher than it truly is. One way to
account for this is to include control variables (such as rank), whose effect we need not be
interested in, but that are necessary for the model to be adequate. We could also have used
stratification, i.e., tested for wage discrimination within each academic rank. This is the
reason why sociodemographic variables (sex, age, education level, etc.) are collected as
part of studies.

Alinear model is not a causal model: all it does is capture the linear correlation between
an explanatory variable and the response. When there are more than one explanatory,
the effect of x; given what has not already been explained by X _;. Thus, if we fail to
reject 7% : f; = 0 in favor of the alternative J# : 5; # 0, we can only say that there is no
significant linear association between x; and Y once the effect of other variables included
in the model has been accounted for. There are thus two scenarios: either the response is
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uncorrelated with z; (uninteresting case, but easy to pick up by plotting both or computing
linear correlation), or else there is a strong correlation between z; and both the response
Y as well as (some) of the other explanatory variables z1, ..., z,. This problem is termed
(multi)collinearity.

One potential harm of collinearity is a decrease in the precision of parameter estimators.
With collinear explanatories, many linear combinations of the covariates represent the
response nearly as well. Due to the (near) lack of identifiability, the estimated coefficients
become numerically unstable and this causes an increase of the standard errors of the
parameters. The predicted or fitted values are unaffected. Generally, collinearity leads to
high estimated standard errors and the regression coefficients can change drastically when
new observations are included in the model, or when we include or remove explanatories.
The individual 5 coefficients may not be statistically significant, but the global F'-test will
indicate that some covariates are relevant for explaining the response. This however would
also be the case if there are predictors with strong signal, so neither is likely to be useful to
detect issues.

The added-variable plot shows the relation between the response Y and an explanatory x;
after accounting for other variables: the slope Bj of the simple linear regression is the same
of the full model. A similar idea can be used to see how much of z; is already explained by
the other variables. For a given explanatory variable z;, we define its variance inflation
factor as VIF(j) = (1 — R%(j))~!, where R?(j) is the coefficient of determination of the
model obtained by regressing x; on all the other explanatory variables, i.e.,

xj =B+ Biwr + -+ Biqxj1 + Bz + - 4 Bpap 4 €

By definition, R?(j) represents the proportion of the variance of x; that is explained by all
the other predictor variables. Large variance inflation factors are indicative of problems
(typically covariates with VIF > 10 require scrutinity, and values in the hundreds or more
indicate serious problems). For categorical variables, the variance inflation factor definition
would normally yield for each level a different value; an alternative is the generalized
variance inflation factor (Fox and Monette 1992).

Added-variable plots can also serve as diagnostics, by means of comparison of the partial
residuals with a scatterplot of the pair (Y, z;); if the latter shows very strong linear relation,
but the slope is nearly zero in the added-variable plot, this hints that collinearity is an
issue.

What can one do about collinearity? If the goal of the study is to develop a predictive model
and we’re not interested in the parameters themselves, then we don’t need to do anything.
Collinearity is not a problem for the overall model: it’s only a problem for the individual
effects of the variables. Their joint effect is still present in the model, regardless of how the
individual effects are combined.
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If we are interested in individual parameter estimates, for example, to see how (and to what
extent) the predictor variables explain the behaviour of Y, then things get more complicated.
Collinearity only affects the variables that are strongly correlated with one another, so we
only care if it affects one or more of the variables of interest. There sadly is no good solution
to the problem. One could

* try to obtain more data, so as to reduce the effects of collinearity appearing in specific
samples or that are due to small sample size.

e create a composite score by somehow combining the variables showing collinearity.

* remove one or more of the collinear variables. You need to be careful when doing this
not to end up with a misspecified model.

* use penalized regression. If XX is (nearly) not invertible, this may restore the
uniqueness of the solution. Penalties introduce bias, but can reduce the variance of
the estimators 3. Popular choices include ridge regression (with an [ penalty), lasso
(I; penalty), but these require adjustment in order to get valid inference.

Whatever the method, it's important to understand that it can be very difficult (and some-
times impossible) to isolate the individual effect of a predictor variable strongly correlated
with other predictors.

Example 4.22 (Collinearity in the college data). We consider the college data analysis
and include all the covariates in the database, including years, the number of years since
PhD. One can suspect that, unless a professor started his or her career elsewhere before
moving to the college, they will have nearly the same years of service. In fact, the correlation
between the two variables, service and years is 0.91.

Here, we are interested in gender disparities, so the fact that both service and field are
strongly correlated is not problematic, since the VIF for sex is not high and the other
variables are there to act as control and avoid confounders.

Table 4.15: (Generalized) variance inflation factor for the college data.

service years rank sex field

592 752 201 1.03 1.06

4.6.3 Leverage and outliers

The leverage h; of observation i measures its impact on the least square fit, since we can
write h; = 0y;/0y;. Leverage values tell us how much each point impacts the fit: they are
strictly positive, are bounded below by 1/n and above by 1. The sum of the leverage values
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is> i~ h; = p+ 1: in a good design, each point has approximately the same contribution,
with average weight (p + 1) /n.

Points with high leverage are those that have unusual combinations of explanatories. An
influential observation (h; ~ 1) pulls the fitted hyperplane towards itself so that §; ~ y;. As
arule of thumb, points with »; > 2(p + 1)/n should be scrutinized.

It is important to distinguish betwen influential observations (which have unusual x
value, i.e., far from the overall mean) and outliers (unusual value of the response y). If an
observation is both an outlier and has a high leverage, it is problematic.

10.0

7.5

5.0

2.5

25 5.0 7.5 10.0 5 10 15 20
X

Figure 4.14: Outlier and influential observation. The left panel shows an outlier, whereas
the right panel shows an influential variable (rightmost z value).

If influential observations can be detected by inspecting the leverage of each observation,
outliers are more difficult to diagnose.

An outlier stands out from the rest of the observations, either because it has an usual
response value, or because it falls far from the regression surface. Loosely speaking, an
outlier is an unusual values of Y for a given combination of X that stands out from the rest.
Outliers can be detected during the exploratory data analysis or picked-up in residual plots
(large values of |¢;| in plots of fitted versus residuals) or added-variable plots. One could
potentially test whether an jackknife studentized residual is an outlier (adjusting for the
fact we would consider only largest values). One can also consider Cook’s distance, C}, a
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statistic giving the scaled distance between the fitted values § and the fitted values for the
model with all but the jth observation, (7,

b N~ e
Cj_W;{yz_yij}

Large values of C; indicate that its residual e; is large relative to other observations or else
its leverage h; is high. A rule of thumb is to consider points for which C; > 4/(n —p —1). In
practice, if two observations are outlying and lie in the same region, their Cook distance
will be halved.

Outliers and influential observations should not be disregarded because they don't comply
with the model, but require further investigation. They may motivate further modelling
for features not accounted for. It is also useful to check for registration errors in the data
(which can be safely discarded).

Except in obvious scenarios, unusual observations should not be discarded. In very large
samples, the impact of a single outlier is hopefully limited. Transformations of the response
may help reduce outlyingness. Otherwise, alternative objective functions (as those em-
ployed in robust regression) can be used; these downweight extreme observations, at the
cost of efficiency.

4.7 Model assumptions and diagnostics

This section reviews the assumptions made in order to allow statistical inference using the
linear model and different residuals that serve as building blocks for graphical diagnostics.
We investigate the consequences of violation of these assumptions and outline potential
mitigation strategies, many of which are undertaken in other chapters.

So far, we have fit models and tested significance of the parameters without checking
the model. The correctness of statements about the p-values and confidence intervals
depend on the (approximate) validity of the model assumptions, which all stem from the
distributional assumption for

Y; | x; ~ normal(x;8, 0?)

, assumed independent. This compact mathematical description can be broken down into
four assumptions.

e linearity: the mean of Y is 8y + Six1 + - - - + Bpzp.
* homoscedasticity: the error variance is constant
* independence of the errors/observations conditional on covariates.
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e normality of the errors

When we perform an hypothesis test, we merely fail to reject the null hypothesis, either
because the latter is true or else due to lack of evidence. The same goes for checking
the validity of model assumptions: scientific reasoning dictates that we cannot know for
certain whether these hold true. Our strategy is therefore to use implications of the linear
model assumptions to create graphical diagnostic tools, so as to ensure that there is no
gross violation of these hypothesis. However, it is important to beware of over-interpreting
diagnostic plots: the human eye is very good at finding spurious patterns.

We review the assumptions in turn and discuss what happens when the assumptions fail to
hold.

4.7.1 Linearity and additivity assumption

The first assumption of the linear model is that of linearity, which means that the mean
model is correctly specified, all relevant covariates have been included and their effect is
correctly specified. To check that the response surface of the linear model is adequate, we
plot e; against y; or z;; (for j = 1,...,p). Since the linear correlation between e and y (or
e and X;) is zero by construction, patterns (e.g., quadratic trend, cycles, changepoints)
are indicative of misspecification of the mean model. One can add a smoother to detect
patterns. Figure 4.15 shows three diagnostics plots, the second of which shows no pattern
in the residuals, but skewed fitted values.

If there is residual structure in plots of ordinary residuals against either (a) the fitted values or
(b) the explanatory variables, a more complex model can be adjusted including interactions,
nonlinear functions, ...If the effect of an explanatory variable is clearly nonlinear and
complicated, smooth terms could be added (we won'’t cover generalized additive models in
this course).

Plotting residuals against left-out explanatory variables can also serve to check that all of
the explanatory power of the omitted covariate is already explained by the columns of X.

If an important variable has been omitted and is not available in the dataset, then the effect
of that variable is captured by both the errors (the portion orthogonal to the model matrix
X, i.e., unexplained by the covariates included in the model) and the remaining part is
captured by other explanatories of the model that are correlated with the omitted variable.
These variables can act as confounders. There is little that can be done in either case unless
the data for the omitted variable are available, but subject-specific knowledge may help
make sense of the results.
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Figure 4.15: Scatterplots of residuals against fitted values. The first two plots show no
departure from linearity (mean zero). The third plot shows a clear quadratic
pattern, suggesting the mean model is misspecified. Note that the distribution
of the fitted value need not be uniform, as in the second panel which shows
more high fitted values.

4.7.2 Constant variance assumption

If the variance of the errors is the same for all observations (homoscedasticity), that of
the observations Y is also constant. The most common scenarios for heteroscedasticity
are increases in variance with the response, or else variance that depends on explanatory
variables X, most notably categorical variables. For the former, a log-transform (or Box—Cox
transformation) can help stabilize the variance, but we need the response to be positive.
For the latter, we can explicitly model that variance and we will see how to include different
variance per group later on. A popular strategy in the econometrics literature, is to use
robust (inflated) estimators of the standard errors such as White’s sandwich estimator of

the variance.

If the residuals (or observations) are heteroscedastic (non constant variance), the estimated
effects of the variables (the 3 parameters) are still valid in the sense that the ordinary least
squares estimator f is unbiased. However, the estimated standard errors of the 3 are no
longer reliable and, consequently, the confidence intervals and the hypothesis tests for the
model parameters will be incorrect. Indeed, if the variance of the errors differs from one
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observation to the next, we will estimate an average of the different variance terms. The
standard errors of each term are incorrect (too small or too large) and the conclusions of the
tests (p-values) will be off because the formulas of both ¢-test and F'-test statistics include
estimates of 2.

Looking at the plot of jackknife studentized residuals against regressors (or fitted values)
is instructive — for example, we often see a funnel pattern when there is an increase in
variance in the plot of the jackknife studentized residuals against fitted value, or else in
boxplots with a categorical variable as in Figure 4.17. However, if we want to fit a local
smoother to observe trends, it is better to plot the absolute value of the jackknife studentized
residuals against regressors or observation number.
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Figure 4.16: Plot of the absolute value of jackknife studentized residuals against observation
number. The left panel is typical of homoscedastic data, whereas the right
panel indicates an increase in the variance.

An obvious extension of the linear model is to allow variance to vary according to explana-
tories, typically categorical covariates. In a likelihood framework, this is easy to do and we
will cover this approach in more detail.

We can perform hypothesis tests for the homogeneity (equal) variance assumption. The
most commonly used tests are Bartlett’s test, the likelihood ratio test under the assumption
of normally distributed data, with a Bartlett correction to improve the y? approximation to
the null distribution. The second most popular is Levene’s test (a more robust alternative,
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Figure 4.17: Plot of jackknife studentized residuals against fitted value (left) and categorical
explanatory (right). Both clearly display heteroscedasticity.

less sensitive to outliers). For both tests, the null distribution is % : 0? = - - - = 0% against
the alternative that at least two differ. The Bartlett test statistic has a x? null distribution
with K — 1 degrees of freedom, whereas Levene’s test has an F-distribution with (K — 1,
n — K) degrees of freedom: it is equivalent to computing the one-way ANOVA F'-statistic
with the absolute value of the centered residuals, |y;x — fix|, as observations.

Example 4.23 (Violation of the null hypothesis of equal variance).

We consider for simplicity a two sample ¢-with K = 2 groups, which is the two-sample
t-test. We simulated 50 observations from a normal(0, 1) distribution and 10 observations
from normal(0,9), comparing the distribution of the p-values for the Welch and the ¢-test
statistics. Figure 4.18 shows the results. The percentage of p-values less than a = 0.05
based on 10 000 replicates is estimated to be 4.76% for the Welch statistic, not far from the
level. By contrast, we reject 28.95% of the time with the two-sample ¢-test! While the size
distortion is not always as striking, heterogeneity of variance should be accounted in the
design by requiring sufficient sample sizes (Whenever costs permits) in each group to be
able to estimate the variance reliably and using an adequate statistic.

Oftentimes, unequal variance occurs because the model is not additive. You could use
variance-stabilizing transformations (e.g., log for multiplicative effects) to ensure approxi-
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Figure 4.18: Histogram of the null distribution of p-values obtained through simulation us-
ing the classical analysis of variance F'-test (left) and Welch’s unequal variance
alternative (right), based on 10 000 simulations. Each simulated sample consist
of 50 observations from a normal(0, 1) distribution and 10 observations from
normal(0,9). The uniform distribution would have 5% in each of the 20 bins
used for the display.

mately equal variance in each group. Another option is to use a model that is suitable for
the type of response you have (including count and binary data). Lastly, it may be necessary
to explicitly model the variance in more complex design (including repeated measures)
where there is a learning effect over time and variability decreases as a result. Consult an
expert if needed.

4.7.3 Independence assumption

Usually, the independence of the observations follows directly from the type of sampling
used — this assumption is implicitly true if the observations were taken from a random
sample from the population. This is generally not the case for longitudinal data, which
contains repeated measures from the same individuals across time. Likewise, time series
are bound not to have independent observations. If we want to include all the time points
in the analysis, we must take into account the possible dependence (correlation) between
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observations. If we ignore correlation, the estimated standard errors are too small relative

to the truth, so the effective sample size is smaller than number of observations.

What is the impact of dependence between measurements? Heuristically, correlated mea-
surements carry less information than independent ones. In the most extreme case, there
is no additional information and measurements are identical, but adding them multiple
times unduly inflates the statistic and leads to more frequent rejections.
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Figure 4.19: Percentage of rejection of the null hypothesis for the F'-test of equality of means
for the one way ANOVA with data generated with equal mean and variance from
an equicorrelation model (within group observations are correlated, between
group observations are independent). The nominal level of the test is 5%.

The lack of independence can also have drastic consequences on inference and lead to
false conclusions: Figure 4.19 shows an example with correlated samples within group (or
equivalently repeated measurements from individuals) with five observations per group.
The y-axis shows the proportion of times the null is rejected when it shouldn’t be. Here,
since the data are generated from the null model (equal mean) with equal variance, the
inflation in the number of spurious discoveries, false alarm or type I error is alarming and
the inflation is substantial even with very limited correlation between measurements.

The first source of dependence is clustered data, meaning measurements taken from sub-
jects that are not independent from one another (family, groups, etc.) More generally,
correlation between observations can arises from space-time dependence, roughly cate-
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gorized into longitudinal data, when repeated measurements are taken from the same
subjects at a few time points, and time series, which have more observations sampled at
higher frequency.

Time series require dedicated models not covered in this course. Because of autocorrelation,
positive errors tend to be followed by positive errors, etc. We can plot the residuals as a
function of time, and a scatterplot of lagged residuals ¢; versus e;—1 (i = 2,...,n).
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Figure 4.20: Lagged residual plots: there is no evidence against independence in the left
panel, whereas the right panel shows positively correlated residuals.

However, lagged residuals plots only show dependence at lag one between observations.
For time series, we can look instead at a correlogram, i.e., a bar plot of the correlation
between two observations & units apart as a function of the lag & (Brockwell and Davis 2016,
Definition 1.4.4).

For y1,...,y, and constant time lags h = 0, 1, . .. units, the autocorrelation at lag 4 is
—|h
() 17 _ _
r(h) = ;o (k) =~ Yi —=9)(Yirn — 7
=T W= X 6= D7)

If the series is correlated, the sample autocorrelation will likely fall outside of the point-
wise confidence intervals, as shown in Figure 4.21. Presence of autocorrelation requires
modelling the correlation between observations explicitly using dedicated tools from the
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time series literature. We will however examine AR(1) models as part of the chapter on
longitudinal data. See Forecasting: Principles and Practice, section 5.3 for more details.

When observations are positively correlated, the estimated standard errors reported by the
software are too small. This means we are overconfident and will reject the null hypothesis
more often then we should if the null is true (inflated Type I error, or false positive).
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Figure 4.21: Correlogram of independent observations (left) and the ordinary residuals
of the log-linear model fitted to the air passengers data (right). While the
mean model of the latter is seemingly correctly specified, there is residual
dependence between monthly observations and yearly (at lag 12). The blue
lines give approximate pointwise 95% confidence intervals for white noise
(uncorrelated observations).

4.7.4 Normality assumption

The normality assumption is mostly for convenience: if the errors are assumed normally
distributed, then the least square and the maximum likelihood estimators of 3 coincide.
The maximum likelihood estimators of 3 are asymptotically normal under mild conditions
on the model matrix and ¢-tests are surprisingly robust and unaffected by departure from
the normality assumption. This means that inference is valid in large samples, regardless
of the distribution of the errors/residuals (even if the null distribution are not exact). It
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is important to keep in mind that, for categorical explanatory variables, the sample size
in each group must be sufficiently large for the central limit theorem to kick in since
coefficients represent group average.

Sometimes, transformations can improve normality: if the data is right-skewed and the
response is strictly positive, a log-linear model may be more adequate Section 4.8.1. This
can be assessed by looking at the quantile-quantile plot of the externally studentized
residuals. If the response Y is not continuous (including binary, proportion or count data),
linear models give misleading answers and generalized linear models are more suitable.

The inference will be valid for large samples even if the errors are not normally distributed
by virtue of the central limit theorem. If the errors €; ~ normal(0, o?), then the jacknnife
studentized residuals should follow a Student distribution, with r; ~ Student(n — p — 2),
(identically distributed, but not independent). A Student quantile-quantile plot can thus
be used to check the assumption (and for n large, the normal plotting positions could be
used as approximation if n — p > 50). One can also plot a histogram of the residuals. Keep
in mind that if the mean model is not correctly specified, some residuals may incorporate
effect of leftover covariates.
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Figure 4.22: Histogram (left) and Student quantile-quantile plot (right) of the jackknife
studentized residuals. The left panel includes a kernel density estimate (black),
with the density of Student distribution (blue) superimposed. The right panel
includes pointwise 95% confidence bands calculated using a bootstrap.
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Quantile-quantile plots are discussed in Definition 1.17 but their interpretation requires
training. For example, Figure 4.23 shows many common scenarios that can be diagnosed
using quantile-quantile plots: discrete data is responsible for staircase patterns, positively
skewed data has too high low quantiles and too low high quantiles relative to the plotting
positions, heavy tailed data have high observations in either tails and bimodal data leads to
jumps in the plot.
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Figure 4.23: Quantile-quantile plots of non-normal data, showing typical look of behaviour
of discrete (top left), heavy tailed (top right), skewed (bottom left) and bimodal
data (bottom right).

Example 4.24 (Diagnostic plots for the college data.). We can look at the college data to
see if the linear model assumptions hold.

Based on the plots of Figure 4.24, we find that there is residual heteroscedasticity, due
to rank. Since the number of years in the first rank is limited and all assistant professors
were hired in the last six years, there is less disparity in their income. It is important not
to mistake the pattern on the z-axis for the fitted value (due to the large effect of rank
and field, both categorical variable) with patterns in the residuals (none apparent). Fixing
the heteroscedasticity would correct the residuals and improve the appearance of the
quantile-quantile plot.
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Figure 4.24: Diagnostic plots for the college data example: ordinary residuals against fitted
values (top left), absolute value of the jacknnife studentized residuals against
fitted values (top right), box and whiskers plot of jacknnife studentized residuals
(bottom left) and detrended Student quantile-quantile plot (bottom right).
There is clear group heteroscedasticity.

4.8 Extensions of the model

4.8.1 Transformation of the response

If the response is strictly positive, there are some options that can alleviate lack of additivity,
more specifically multiplicative mean-variance relationships. If the data is right-skewed
and the response is strictly positive, a log-linear model may be more adequate and the
parameters can be interpreted.

We can rewrite the log-linear model in the original response scale as

p
Y =exp ﬂo—l—Zﬁij—i-E
j=1

p
=exp | By + Zﬁij . exp(e),
Jj=1
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and thus

E(Y | X) = exp(Bo + 1 X1+ --- + B,Xp) x E{exp(e) | X}.

Ife | X ~ normal(u, 0?), then E{exp(e) | X} = exp(u+ 02/2) and exp(e) follows a log-normal
distribution.

An increase of one unit of X leads to a j3; increase of In Y without interaction or nonlinear
term for X, and this translates into a multiplicative increase of a factor exp(f;) on the
original data scale for Y. Indeed, we can compare the ratio of E(Y | X; = 2z + 1) to
EY | X; =2),

E(Y | Xi=z+ 1,X2,...,Xp) . eXp{Bl(l‘—F 1)} — ex (IB )
E(Y | X1 =2, X2,..,X,)  exp(Bz) PV
Thus, exp(1) represents the ratio of the mean of Y when X; = z + 1 in comparison to that
when X, = z, ceteris paribus (and provided this statement is meaningful). If ; = 0, the
multiplicative factor one is the identity, whereas negative values of the regression coefficient
Bj < 0leads to exp(3;) < 1. The percentage change is 1 — exp(3;) if 8; < 0 and exp(f;) — 1
ifg; >0

Sometimes, we may wish to consider a log transformation of both the response and some
of the continuous positive explanatories, when this make sense (a so-called log-log model).
Consider the case where both Y and X is log-transformed, so the equation for the mean
on the original data scale reads

Y = X exp(Bo + BoXa+ - + By X, +€)

Taking the derivative of the left hand side with respect to X; > 0, we get

oY _
X, B XD exp(Bo + BaXa + - + BpXp + €)
_ By
X1

and thus we can rearrange the expression so that

aXl@ _ oY,
x, 'y

this is a partial elasticity, so f; is interpreted as a ; percentage change in Y for each
percentage increase of X, ceteris paribus.
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Example 4.25 (Log-log model). Consider for example the Cobb-Douglas production func-
tion (Douglas 1976), which specifies that economic output Y is related to labour L and
capital C viaE(Y | L,C) = BoCP L' =P with 8 € (0,1). If we take logarithms on both sides
(since all arguments are positive), then E(InY | L,C) = 5§ + /1ilnC + (1 — f1)In L. We
could fit a linear model with response In Y — In L and explanatory variable InC' — In L, to
obtain an estimate of the coefficient 5, while 35 = In /3. A constrained optimization would
be potentially necessary to estimate the model parameters of the resulting linear model if
the estimates lie outside of the parameter space.

Proposition 4.7 (Box-Cox transformation). If the data are strictly positive, one can consider
a Box—Cox transformation,

@ =D/ A#£0
y(A) = {ln(y), A=0.

The cases A = —1 (inverse), A = 1 (identity) and \ = 0 (log-linear model) are perhaps the
most important because they yield interpretable models.

If we assume thatY (\) ~ normal(X3, 0%1,,), then the likelihood is
L\, B, 03y, X) = (2m0%) 2T (A, y)

exp |55 {5 — X} {w() - X8}

n

where J denotes the Jacobian of the Box—Cox transformation, J(\,y) = [[*, v} . For each
given value of \, the maximum likelihood estimator is that of the usual regression model,
withy replaced byy()\), namely 8, = (X" X)X Ty(\) and5? = n~{y(\)-XB,} {y(\) -
XBx}

The profile log likelihood is

n

6N = =5 W(2r53) — 5+ (A= 1Y In(y)
i=1

The maximum profile likelihood estimator is the value \ minimizes the sum of squared
residuals from the linear model with y(\) as response.

The Box—Cox is not a panacea and should be reserved to cases where the transformation re-
duces heteroscedasticity (unequal variance) or creates a linear relation between explanatories
and response: theory provides a cogent explanation of the data. Rather than an ad hoc choice
of transformation, one could choose a log transformation if the value 0 is included within the
95% confidence interval since this improves interpretability.
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Example 4.26 (Box—Cox transform for the poison data). Box and Cox (1964) considered
survival time for 48 animals based on a randomized trial; these data are analyzed in Example
8.25 of Davison (2003). Three poisons were administered with four treatments; each factor
combination contained four animals, chosen at random. There is strong evidence that both
the choice of poison and treatment affect survival time.

We could consider a two-way analysis of variance model for these data without interaction,
given the few observations for each combination. The model would be of the form

Y = By + Pipoison, + [fapoisong + fztreatments
+ Bitreatments + fytreatmenty + ¢

The plot of fitted values against residuals shows that the model is not additive; there is also
indications that the variance increases with the mean response. The model is inadequate:
lowest survival times are underpredicted, meaning the residuals are positive and likewise
the middle responses is positive. A formal test of non-additivity based on constructed
variables further point towards non-additivity (Davison 2003, Example 8.24). Overall, the
model fit is poor and any conclusion drawn from it dubious.

One could consider using a Box—Cox to find a suitable transformation of the residuals so
as to improve normality. An analysis of residuals in the top four plots of Figure 4.25 show
evidence of heteroscedasticity as a function of either poison and treatment. This is evident
by looking at the plot of ordinary residuals, which displays increase in variance with the
survival time. The quantile-quantile plot in the middle right plot shows some evidence of
departure from the normality, but the non-linearity and heteroscedasticity obscure this.

The bottom left panel of Figure 4.25 shows the profile log likelihood for the Box—Cox trans-
form parameter, suggesting a value of A\ = —1 would be within the 95% confidence interval.
This choice has the benefit of being interpretable, as the reciprocal response Y ! corre-
sponds to the speed of action of the poison depending on both poison type and treatment.
The diagnostics plot at the bottom right of Figure 4.25 also indicate that the model for the
reciprocal has no residual structure and the variance appears constant.

4.9 Concluding remarks

Linear regression is the most famous and the most widely used statistical model around.
The name may appear reductive, but many tests statistics (z-tests, ANOVA, Wilcoxon,
Kruskal-Wallis) can be formulated using a linear regression, while models as diverse as
trees, principal components and deep neural networks are just linear regression model
in disguise. What changes under the hood between one fancy model to the next are the
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Figure 4.25: Diagnostic plots for the poison data: ordinary residuals (jittered) for the linear
model for survival time as a function of poison and treatment (top), fitted values
against residuals (middle left), detrended quantile-quantile plot of residuals
(middle right), profile log likelihood of A for the Box-Cox model transformation
(bottom left) and fitted values against residuals (bottom right) after reciprocal
transformation.

optimization method (e.g., ordinary least squares, constrained optimization or stochastic
gradient descent) and the choice of explanatory variables entering the model (spline basis
for nonparametric regression, indicator variable selected via a greedy search for trees,
activation functions for neural networks).
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