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Welcome

These notes by Léo Belzile (HEC Montréal) are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

This course is about statistical modelling.

A famous quote attributed to George Box claims that

All models are wrong, but some are useful.

This standpoint is reductive: Peter McCullagh and John Nelder wrote in the preamble of
their book (emphasis mine)

Modelling in science remains, partly at least, an art. Some principles do exist,
however, to guide the modeller. The first is that all models are wrong; some,
though, are better than others and we can search for the better ones. At the
same time we must recognize that eternal truth is not within our grasp.

And this quote by David R. Cox adds to the point:

. . . it does not seem helpful just to say that all models are wrong. The very word
model implies simplification and idealization. The idea that complex physical,
biological or sociological systems can be exactly described by a few formulae
is patently absurd. The construction of idealized representations that capture
important stable aspects of such systems is, however, a vital part of general
scientific analysis and statistical models, especially substantive ones, do not
seem essentially different from other kinds of model.

Why use models? Paul Krugman wrote in 2010 in his blog

The answer I’d give is that models are an enormously important tool for clar-
ifying your thought. You don’t have to literally believe your model — in fact,
you’re a fool if you do — to believe that putting together a simplified but com-
plete account of how things work, with all the eyes crossed and teas dotted or
something, helps you gain a much more sophisticated understanding of the
real situation. People who don’t use models end up relying on slogans that are
much more simplistic than the models
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Welcome

Course content

There are two main data type: experimental data are typically collected in a control en-
vironment following a research protocol with a particular experimental design: they serve
to answer questions specified ahead of time. This approach is highly desirable to avoid
the garden of forking paths (researchers unfortunately tend to refine or change their hy-
pothesis in light of data, which invalidates their findings — preregistration alleviates this
somewhat). While experimental data are highly desirable, it is not always possible to col-
lect experimental data: for example, an economist cannot modify interest rates to see how
it impacts consumer savings. When data have been collected beforehand without inter-
vention (for other purposes), these are called observational. These will be the ones most
frequently encountered.

A stochastic model will comprise two ingredients: a distribution for the random data and
a formula linking the parameters or the conditional expectation of a response variable Y
to a set of explanatories X. A model can serve to either predict new outcomes (predictive
modelling) or else to test research hypothesis about the effect of the explanatory variables
on the response (explanatory model). These two objectives are of course not mutually
exclusive even if we distinguish in practice inference and prediction.

A predictive model gives predictions of Y for different combinations of explanatory vari-
ables or future data. For example, one could try to forecast the enery consumption of a
house as a function of weather, the number of inhabitants and its size. Black boxes used
in machine learning are often used solely for prediction: these models are not easily inter-
preted and they often ignore the data structure.

By constrast, explicative models are often simple and interpretable: regression models are
often used for inference purpose and we will focus on these. The following examples will
be covered in class or as part of the exercices:

• Are sequential decisions in online shop (buying or not, then selecting the quantity)
preferable to integrated decisions (Duke and Amir 2023)?

• Determining what is the most distracting for road users: talking on a cellphone, tex-
ting or checking your smartwatch (Brodeur et al. 2021)?

• What is the impact of inconsistencies between product description and the displayed
image (Lee and Choi 2019)?

• Is the price of gasoline more expensive in the Gaspé peninsula than in the rest of
Quebec? A report of the Régie de l’énergie examines the question

• Are driving tests in the UK easier if you live in a rural area? An analysis of The
Guardian hints that it is the case.

• What is the environmental perception of a package that includes cardboard over a
plastic container (Sokolova, Krishna, and Döring 2023)?
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• What is the psychological impact of suggested amounts on donations (Moon and
VanEpps 2023)?

• What are the benefits of face-to-face meetings, rather than via videoconference
tools? Brucks and Levav (2022) suggests a decrease in the number of creative ideas
and interactions when meeting online.
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1 Introduction

This chapter reviews some basic notions of probability and statistics that are normally
covered in undergraduate or college.

1.1 Population and samples

Statistics is the science of uncertainty quantification: of paramount importance is the no-
tion of randomness. Generally, we will seek to estimate characteristics of a population
using only a sample (a sub-group of the population of smaller size).

The population of interest is a collection of individuals which the study targets. For exam-
ple, the Labour Force Survey (LFS) is a monthly study conducted by Statistics Canada, who
define the target population as “all members of the selected household who are 15 years
old and older, whether they work or not.” Asking every Canadian meeting this definition
would be costly and the process would be long: the characteristic of interest (employment)
is also a snapshot in time and can vary when the person leaves a job, enters the job market
or become unemployed.

In general, we therefore consider only samples to gather the information we seek to ob-
tain. The purpose of statistical inference is to draw conclusions about the population,
but using only a share of the latter and accounting for sources of variability. George Gallup
made this great analogy between sample and population:

One spoonful can reflect the taste of the whole pot, if the soup is well-stirred

A sample is a random sub-group of individuals drawn from the population. Creation of
sampling plans is a complex subject and semester-long sampling courses would be re-
quired to evens scratch the surface of the topic. Even if we won’t be collecting data, keep
in mind the following information: for a sample to be good, it must be representative of
the population under study. Selection bias must be avoided, notably samples of friends or
of people sharing opinions.

Because the individuals are selected at random to be part of the sample, the measure-
ment of the characteristic of interest will also be random and change from one sample
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1 Introduction

to the next. However, larger samples of the same quality carry more information and our
estimator will be more precise. Sample size is not guarantee of quality, as the following
example demonstrates.

Example 1.1 (Polling for the 1936 USA Presidential Election). The Literary Digest surveyed
10 millions people by mail to know voting preferences for the 1936 USA Presidential Elec-
tion. A sizeable share, 2.4 millions answered, giving Alf Landon (57%) over incumbent
President Franklin D. Roosevelt (43%). The latter nevertheless won in a landslide election
with 62% of votes cast, a 19% forecast error. Biased sampling and differential non-response
are mostly responsible for the error: the sampling frame was built using “phone number
directories, drivers’ registrations, club memberships, etc.”, all of which skewed the sample
towards rich upper class white people more susceptible to vote for the GOP.

In contrast, Gallup correctly predicted the outcome by polling (only) 50K inhabitants. Read
the full story here.

1.1.1 Variable type

• a variable represents a characteristic of the population, for example the sex of an
individual, the price of an item, etc.

• an observation is a set of measures (variables) collected under identical conditions
for an individual or at a given time.

Table 1.1: First lines of the renfe database, which contains the price of 10K train tickets
between Madrid and Barcelona. The columns price and duration represent
continuous variables, all others are categorical.

price type class fare dest duration wday

143.4 AVE Preferente Promo Barcelona-Madrid 190 6
181.5 AVE Preferente Flexible Barcelona-Madrid 190 2

86.8 AVE Preferente Promo Barcelona-Madrid 165 7
86.8 AVE Preferente Promo Barcelona-Madrid 190 7
69.0 AVE-

TGV
Preferente Promo Barcelona-Madrid 175 4

The choice of statistical model and test depends on the underlying type of the data col-
lected. There are many choices: quantitative (discrete or continuous) if the variables are
numeric, or qualitative (binary, nominal, ordinal) if they can be described using an adjec-
tive; I prefer the term categorical, which is more evocative.
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1.2 Random variable

Most of the models we will deal with are so-called regression models, in which the mean
of a quantitative variable is a function of other variables, termed explanatories. There are
two types of numerical variables

• a discrete variable takes a finite or countable number of values, prime examples be-
ing binary variables or count variables.

• a continuous variable can take (in theory) an infinite possible number of values, even
when measurements are rounded or measured with a limited precision (time, width,
mass). In many case, we could also consider discrete variables as continuous if they
take enough values (e.g., money).

Categorical variables take only a finite of values. They are regrouped in two groups,

• nominal if there is no ordering between levels (sex, color, country of origin) or
• ordinal if they are ordered (Likert scale, salary scale) and this ordering should be

reflected in graphs or tables.

We will bundle every categorical variable using arbitrary encoding for the levels: for mod-
elling, these variables takingK possible values (or levels) must be transformed into a set of
K−1 binary 0/1 variables, the omitted level corresponding to a baseline. Failing to declare
categorical variables in your favorite software is a common mistake, especially when these
are saved in the database using integers rather than strings.

1.2 Random variable

Suppose we wish to describe the behaviour of a stochastic phenomenon. To this effect,
one should enumerate the set of possible values taken by the variable of interest and their
probability: this is what is encoded in the distribution.

Random variables are denoted using capital letters: for example Y ∼ normal(µ, σ2) indi-
cates that Y follows a normal distribution with parameters µ and σ > 0. If the values of the
latter are left unspecified, we talk about the family of distributions. When the values are
given, for example µ = 0 and σ = 1, we deal with a single distribution for which a function
encode the probability of the underlying variable.

Definition 1.1 (Distribution function, mass function and density). The (cumulative) dis-
tribution function F (y) gives the cumulative probability that an event doesn’t exceed a
given numerical value y, F (y) = Pr(Y ≤ y).

If Y is discrete, then it has atoms of non-zero probability and we call f the mass function,
and f(y) = Pr(Y = y) gives the probability of each outcome y. In the continuous case,
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1 Introduction

no numerical value has non-zero probability and so we consider intervals instead. The
density function f(x) is non-negative and satisfies

∫
R f(x)dx = 1: the integral over a set B

(the area under the curve) gives the probability of Y falling insideB ∈ R. It follows that the
distribution function of a continuous random variable is simply F (y) =

∫ y
−∞ f(x)dx.

Figure 1.1: (Cumulative) distribution functions (top) and density/mass functions (bottom)
of continuous (left) and discrete (right) random variables.

One of the first topics covered in introductory statistics is descriptive statistics such as the
mean and standard deviation. These are estimators of (centered) moments, which charac-
terise a random variable. In the case of the standard normal distribution, the expectation
and variance fully characterize the distribution.

Definition 1.2 (Moments). Let Y be a random variable with density (or mass) function
f(x). The expectation (or theoretical mean) of a continuous random variable Y is

E(Y ) =
∫
R
xf(x)dx.

In the discrete case, we set rather µ = E(Y ) =
∑
x∈X xPr(X = x), where X denotes the

support of Y , the set of numerical values at which the probability of Y is non-zero. More
generally, we can look at the expectation of a function g(x) for Y , which is nothing but the

8



1.2 Random variable

integral (or sum in the discrete case) of g(x) weighted by the density or mass function of
f(x). In the same fashion, provided the integral is finite, the variance is

Va(Y ) = E{Y − E(Y )}2 ≡
∫
R

(x− µ)2f(x)dx.

The standard deviation is the square root of the variance, sd(Y ) =
√

Va(Y ): it units are the
same as those of Y and are thus more easily interpreted.

The notion of moments can be extended to higher dimensions. Consider an n-vector Y .
In the regression setting, the response Y would usually comprise repeated measures on
an individual, or even observations from a group of individuals.

The expected value (theoretical mean) of the vector Y is calculated componentwise, i.e.,

E(Y ) = µ =
(
E(Y1) · · · E(Yn)

)⊤

whereas the second moment of Y is encoded in the n× n covariance matrix

Va(Y ) = Σ =


Va(Y1) Co(Y1, Y2) · · · Co(Y1, Yn)

Co(Y2, Y1) Va(Y2) . . .
...

...
. . . . . .

...
Co(Yn, Y1) Co(Yn, Y2) · · · Va(Yn)


The ith diagonal element of Σ, σii = σ2

i , is the variance of Yi, whereas the off-diagonal
entries σij = σji (i ̸= j) are the covariance of pairwise entries, with

Co(Yi, Yj) =
∫
R2

(yi − µi)(yj − µj)fYi,Yj (yi, yj)dyidyj .

The covariance matrix Σ is thus symmetric. It is customary to normalize the pairwise
dependence so they do not depend on the component variance. The linear correlation
between Yi and Yj is

ρij = Cor(Yi, Yj) = Co(Yi, Yj)√
Va(Yi)

√
Va(Yj)

= σij
σiσj

.

The correlation matrix of Y is an n × n symmetric matrix with ones on the diagonal and
the pairwise correlations off the diagonal,

Cor(Y ) =



1 ρ12 ρ13 · · · ρ1n
ρ21 1 ρ23 · · · ρ2n

ρ31 ρ32 1 . . . ρ3n
...

...
. . . . . .

...
ρn1 ρn2 ρn3 · · · 1


.
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1 Introduction

One of the most important parts of modelling correlated (or longitudinal) data is the need
to account for within-group correlations. This basically comes down to modelling a co-
variance matrix for observations within the same group (or within the same individual in
the case of repeated measures), which is the object of Chapter 5.

Definition 1.3 (Bias). The bias of an estimator θ̂ for a parameter θ is

bias(θ̂) = E(θ̂) − θ

The estimator is unbiased if its bias is zero.

Example 1.2 (Unbiased estimators). The unbiased estimator of the mean and the variance
of Y are

Y n = n−1
n∑
i=1

Yi

Sn = (n− 1)−1
n∑
i=1

(Yi − Y )2.

While unbiasedness is a desirable property, there may be cases where no unbiased esti-
mator exists for a parameter! Often, rather, we seek to balance bias and variance: recall
that an estimator is a function of random variables and thus it is itself random: even if it is
unbiased, the numerical value obtained will vary from one sample to the next.

Definition 1.4. We often seek an estimator that minimises the mean squared error,

MSE(θ̂) = E{(θ̂ − θ)2} = Va(θ̂) + {E(θ̂)}2.

The mean squared error is an objective function consisting of the sum of the squared bias
and the variance.

Most estimators we will considered are so-called maximum likelihood estimator. These es-
timator are asymptotically efficient, in the sense that they have the lowest mean squared
error of all estimators for large samples. Other properties of maximum likelihood estima-
tors also make them attractive default choice for estimation.
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1.3 Discrete distributions

1.3 Discrete distributions

Many distributions for discrete random variables have a simple empirical justification,
stemming from simple combinatorial arguments (counting). We revisit the most common
ones.

Definition 1.5 (Bernoulli distribution). We consider a binary event such as coin toss
(heads/tails). In general, the two events are associated with success/failure. By conven-
tion, failures are denoted by zeros and successes by ones, the probability of success being
p so Pr(Y = 1) = p and Pr(Y = 0) = 1 − p (complementary event). The mass function of
the Bernoulli distribution is thus

Pr(Y = y) = py(1 − p)1−y, y = 0, 1.

A rapid calculation shows that E(Y ) = p and Va(Y ) = p(1 − p). Indeed,

E(Y ) = E(Y 2) = p · 1 + (1 − p) · 0 = p.

Many research questions have binary responses, for example:

• did a potential client respond favourably to a promotional offer?
• is the client satisfied with service provided post-purchase?
• will a company go bankrupt in the next three years?
• did a study participant successfully complete a task?

Oftentimes, we will have access to aggregated data.

Definition 1.6 (Binomial distribution). If we consider the sum of independent and iden-
tically distributed Bernoulli events, the number of sucesses Y out of m trials is binomial,
denoted Bin(m, p); the mass function of the binomial distribution is

Pr(Y = y) =
(
m

y

)
py(1 − p)1−y, y = 0, 1.

The likelihood of a sample from a binomial distribution is (up to a normalizing constant
that doesn’t depend on p) the same as that of m independent Bernoulli trials. The expec-
tation of the binomial random variable is E(Y ) = mp and its variance Va(Y ) = mp(1 − p).

As examples, we could consider the number of successful candidates out ofmwho passed
their driving license test or the number of customers out ofm total which spent more than
10$ in a store.

More generally, we can also consider count variables whose realizations are integer-
valued, for examples the number of
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1 Introduction

• insurance claims made by a policyholder over a year,
• purchases made by a client over a month on a website,
• tasks completed by a study participant in a given time frame.

Definition 1.7 (Poisson distribution). If the probability of success p of a Bernoulli event is
small in the sense thatmp → λwhen the number of trialsm increases, then the number of
success follows approximately a Poisson distribution with mass function

Pr(Y = y) = exp(−λ)λy

Γ(y + 1) , y = 0, 1, 2, . . .

where Γ(·) denotes the gamma function. The parameter λ of the Poisson distribution is
both the expectation and the variance of the distribution, meaning E(Y ) = Va(Y ) = λ.

Definition 1.8 (Negative binomial distribution). The negative binomial distribution arises
if we consider the number of Bernoulli trials with probability of success puntil we obtainm
success. Let Y denote the number of failures: the order of success and failure doesn’t mat-
ter, except for the latest trial which must be a success. The mass function of the negative
binomial is

Pr(Y = y) =
(
m− 1 + y

y

)
pm(1 − p)y.

The negative binomial distribution also appears as the unconditional distribution of a
two-stage hierarchical gamma-Poisson model, in which the mean of the Poisson distri-
bution is random and follows a gamma distribution. In notation, this is Y | Λ = λ ∼ Po(λ)
and Λ follows a gamma distribution with shape r and scale θ, whose density is

f(x) = θ−rxr−1 exp(−x/θ)/Γ(r).

The unconditional number of success is then negative binomial.

In the context of generalized linear models, we will employ yet another parametrisation of
the distribution, with the mass function

Pr(Y = y) = Γ(y + r)
Γ(y + 1)Γ(r)

(
r

r + µ

)r ( µ

r + µ

)y
, y = 0, 1, . . . , µ, r > 0,

where Γ is the gamma function and the parameter r > 0 is not anymore integer valued.
The expectation and variance of Y are E(Y ) = µ et Va(Y ) = µ + kµ2, where k = 1/r. The
variance of the negative binomial distribution is thus higher than its expectation, which
justifies the use of the negative binomial distribution for modelling overdispersion.
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1.4 Continuous distributions

1.4 Continuous distributions

We will encounter many continuous distributions that arise as (asymptotic) null distribu-
tion of test statistics because of the central limit theorem, or that follow from transforma-
tion of Gaussian random variables.

Definition 1.9 (Beta distribution). The beta distribution Beta(α, β) is a distribution sup-
ported on the unit interval [0, 1] with shape parameters α > 0 and β > 0. It’s density is

f(x) = Γ(α)Γ(β)
Γ(α+ β) x

α−1(1 − x)1−β, x ∈ [0, 1].

The case α = β = 1, also denoted unif(0, 1), corresponds to a standard uniform distribu-
tion.

0

0.25

0.5

0.75

1

1.25

0.0 0.4 0.8
x

f(
x)

uniform density

0

2

4

6

8

0.0 0.4 0.8
x

f(
x)

beta(2, 0.75) density

Figure 1.2: Density fonction of uniform (left) and beta(2, 3/4) random variables on the unit
interval.

Definition 1.10 (Exponential distribution). The exponential distribution plays a promi-
nent role in the study of waiting time of Poisson processes, and in survival analysis. One
caracteristic of the distribution is it’s absence of memory: Pr(Y ≥ y+u | Y > u) = Pr(Y >
u) for y, u > 0.
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1 Introduction

The distribution function of the exponential distribution with scale λ > 0, denoted
Y ∼ Exp(λ), is F (x) = 1 − exp(−x/λ) and the corresponding density function is
f(x) = λ−1 exp(−x/λ) for x > 0. The expected value of Y is simply λ.

Definition 1.11 (Normal distribution). Ths most well known distribution, the normal dis-
tribution is ubiquitous in statistics because of the central limit theorem (CLT), which de-
scribes the behaviour of the sample mean in large sample.The parameters µ and σ > 0
that fully characterize the distribution of the normal distribution and they correspond to
the expectation and standard deviation. The density of a normal distribution is symmet-
ric around µ, while σ describes the dispersion around this mode. The bell-shaped density
function is

f(x) = (2πσ2)−1/2 exp
{

−(x− µ)2

2σ2

}
, x ∈ R.
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Figure 1.3: Densities of normal distributions with different mean parameters (left) and dif-
ferent scale parameters (right).

The distribution function of the normal distribution is not available in closed-form. The
normal distribution is a location-scale distribution: if Y ∼ normal(µ, σ2), then Z = (Y −
µ)/σ ∼ normale(0, 1). Conversely, if Z ∼ normal(0, 1), then Y = µ+ σZ ∼ normal(µ, σ2).

We will also encounter the multivariate normal distribution; for a d dimensional vector
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1.4 Continuous distributions

Y ∼ normald(µ,Σ), the density is

f(x) = (2π)−d/2|Σ|−1/2 exp
{

−1
2(x− µ)⊤Σ−1(x− µ)

}

The mean vectorµ is the vector of expectation of individual observations, whereas Σ is the
d× d covariance matrix of Y . A unique property of the multivariate normal distribution is
the link between independence and the covariance matrix: if Yi and Yj are independent,
the (i, j) off-diagonal entry of Σ is zero.

Definition 1.12 (Chi-square distribution). The chi-square distribution with ν > 0 degrees
of freedom, denoted χ2

ν or chi − square(ν). It’s density is

f(x; ν) = 1
2ν/2Γ(ν/2)

xν/2−1 exp(−x/2), x > 0.

It can be obtained for ν integer by considering the following: if we consider k indepen-
dent and identically distributed standard normal variables, Yi ∼ normal(0, 1), then

∑k
i=1 Y

2
i

follows a chi-square distribution with k degrees of freedom, denote χ2
k. The square of a

standard normal variate likewise follows a χ2
1 distribution. The expectation of χ2

k random
variable is k.

If we consider a sample of n normally distributed observations, the scaled sample variance
(n− 1)S2/σ2 ∼ χ2

n−1.

Definition 1.13 (Student-t distribution). The Student-t distribution with ν > 0 degrees of
freedom is a location-scale family. The standard version is denoted by Student(ν).

The name “Student” comes from the pseudonym used by William Gosset in Gosset (1908),
who introduced the asymptotic distribution of the t-statistic. The density of the standard
T with ν degrees of freedom is

f(y; ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2
)√

νπ

(
1 + y2

ν

)− ν+1
2

the distribution has polynomial tails, is symmetric around 0 and unimodal. As ν → ∞,
the Student distribution converges to a normal distribution. It has heavier tails than the
normal distribution and only the first ν− 1 moments of the distribution exist, so a Student
distribution with ν = 2 degrees of freedom has infinite variance.

For normally distributed data, the centered sample mean divided by the sample variance,
(Y − µ)/S2 follows a Student-t distribution with n− 1 degrees of freedom, which explains
the terminology t-tests.
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Figure 1.4: Comparison between the Student-t density for varying degrees of freedom,
with ν = 2 (dotted), ν = 10 (dashed) and the normal density (ν = ∞).

Definition 1.14 (Fisher distribution). The Fisher orF distribution is used to determine the
large sample behaviour of test statistics for comparing different group averages (in analysis
of variance) assuming data are normally distributed.

The F distribution, denoted Fisher(ν1, ν2), is obtained by dividing two independent chi-
square random variables with respective degrees of freedom ν1 and ν2. Specifically, if Y1 ∼
χ2
ν1 and Y2 ∼ χ2

ν2 , then

F = Y1/ν1
Y2/ν2

∼ Fisher(ν1, ν2)

The Fisher distribution tends to a χ2
ν1 when ν2 → ∞.

1.5 Graphs

This section reviews the main graphical representation of random variables, depending
on their type.

The main type of graph for representing categorical variables is bar plot (and modifica-
tions thereof). In a bar plot, the frequency of each category is represented in the y-axis as
a function of the (ordered) levels on the x-axis. This representation is superior to the igno-
minious pie chart, a nuisance that ought to be banned (humans are very bad at comparing
areas and a simple rotation changes the perception of the graph)!

Continuous variables can take as many distinct values as there are observations, so we
cannot simply count the number of occurences by unique values. Instead, we bin them
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Figure 1.5: Bar plot of ticket class for Renfe tickets data

into distinct intervals so as to obtain an histogram. The number of class depends on the
number of observations: as a rule of thumb, the number of bins should not exceed

√
n,

where n is the sample size. We can then obtain the frequency in each class, or else nor-
malize the histogram so that the area under the bands equals one: this yields a discrete
approximation of the underlying density function. Varying the number of bins can help us
detect patterns (rounding, asymmetry, multimodality).

Since we bin observations together, it is sometimes difficult to see where they fall. Adding
rugs below or above the histogram will add observation about the range and values taken,
where the heights of the bars in the histogram carry information about the (relative) fre-
quency of the intervals.

If we have a lot of data, it sometimes help to focus only on selected summary statistics.

Definition 1.15 (Box-and-whiskers plot). A box-and-whiskers plot (or boxplot) represents
five numbers

• The box gives the quartiles q1, q2, q3 of the distribution. The middle bar q2 is thus the
median, so 50% of the observations are smaller or larger than this number.

• The length of the whiskers is up to 1.5 times the interquartiles range q3 − q1 (the
whiskers extend until the latest point in the interval, so the largest observation that
is smaller than q3 + 1.5(q3 − q1), etc.)
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Figure 1.6: Histogram of Promo tickets for Renfe ticket data

• Observations beyond the whiskers are represented by dots or circles, sometimes
termed outliers. However, beware of this terminology: the larger the sample size,
the more values will fall outside the whiskers. This is a drawback of boxplots, which
was conceived at a time where the size of data sets was much smaller than what is
current standards.

q1 q3
75 percentile25 percentile

median
q2

iqr = q3 − q1

interquartile range

q1 − 1.5iqr q3 + 1.5iqr

◦ ◦◦

Figure 1.7: Box-and-whiskers plot

We can represent the distribution of a response variable as a function of a categorical vari-
able by drawing a boxplot for each category and laying them side by side. A third variable,
categorical, can be added via a color palette, as shown in Figure 1.8.

Scatterplots are used to represent graphically the co-variation between two continuous

18



1.5 Graphs

50

100

150

Preferente Turista TuristaPlus TuristaSolo
class

pr
ic

e 
(in

 e
ur

os
)

train type AVE AVE−TGV

Figure 1.8: Box-and-whiskers plots for Promo fare tickets as a function of class and type for
the Renfe tickets data.

variables: each tuple gives the coordinate of the point. If only a handful of large values
are visible on the graph, a transformation may be useful: oftentimes, you will encounter
graphs where the x- or y-axis is on the log-scale when the underlying variable is positive.
If the number of data points is too large, it is hard to distinguish points because they are
overlaid: adding transparency, or binning using a two-dimensional histogram with the fre-
quency represented using color are potential solutions. The left panel of Figure 1.9 shows
the 100 simulated observations, whereas the right-panel shows a larger sample of 10 000
points using hexagonal binning, an analog of the bivariate density.

Models are (at best) an approximation of the true data generating mechanism and we will
want to ensure that our assumptions are reasonable and the quality of the fit decent.

Definition 1.16 (Quantiles-quantiles plots). Quantile-quantile plots are graphical
goodness-of-fit diagnostics that are based on the following principle: if Y is a continuous
random variable with distribution function F , then the mapping F (Y ) ∼ unif(0, 1)
yields standard uniform variables. Similarly, the quantile transform applied to a uniform
variable provides a mean to simulating samples from F , viz. F−1(U). Consider then a
random sample of size n from the uniform distribution ordered from smallest to largest,
with U(1) ≤ · · · ≤ U(n). One can show these ranks have marginally a Beta distribution,
U(k) ∼ beta(k, n+ 1 − k) with expectation k/(n+ 1).
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Figure 1.9: Scatterplot (left) and hexagonal heatmap of bidimensional bin counts (right) of
simulated data.

In practice, we don’t know F and, even if we did, one would need to estimate the param-
eters. We consider some estimator F̂ for the model and apply the inverse transform to an
approximate uniform sample {i/(n+ 1)}ni=1. The quantile-quantile plot shows the data as
a function of the (first moment) of the transformed order statistics:

• on the x-axis, the theoretical quantiles F̂−1{rank(yi)/(n+ 1)}
• on the y-axis, the empirical quantiles yi

If the model is adequate, the ordered values should follow a straight line with unit slope
passing through the origin.

Even if we knew the true distribution of the data, the sample variability makes it very dif-
ficult to spot if deviations from the model are abnormal or compatible with the model.
A simple point estimate with no uncertainty measure can lead to wrong conclusions. As
such, we add approximate pointwise or simultaneous confidence intervals. The simplest
way to do this is by simulation, by repeating the following steps B times:

1. simulate a sample {Y (b)
i }(i = 1, . . . , n) from F̂

2. re-estimate the parameters of F to obtain F̂(b)
3. calculate and save the plotting positions F̂−1

(b) {i/(n+ 1)}.
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Figure 1.10: Probability-probability plot (left) on uniform margins, and ormal quantile-
quantile plot (right) for the same dataset.

The result of this operation is an n × B matrix of simulated data. We obtain a symmetric
(1−α) confidence interval by keeping the empirical quantile of order α/2 and 1−α/2 from
each row. The number B should be larger than 999, say, and be chosen so that B/α is an
integer.

For the pointwise interval, each order statistic from the sample is a statistic and so the
probability of any single one falling outside the confidence interval is approximately α.
However, order statistics are not independent (they are ordered), so its common to see
neighbouring points falling outside of their respective intervals. The intervals shown in
Figure 1.10 are pointwise and derived (magically) using a simple function. The uniform
order statistics have larger variability as we move away from 0.5, but the uncertainty in the
quantile-quantile plot largely depends on F.

Interpretation of quantile-quantile plots requires practice and experience: this post by
Glen_b on StackOverflow nicely summarizes what can be detected (or not) from them.
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1 Introduction

1.6 Laws of large numbers

An estimator for a parameter θ is consistent if the value obtained as the sample size in-
creases (to infinity) converges to the true value of θ. Mathematically speaking, this trans-

lates into convergence in probability, meaning θ̂ Pr→ θ. In common language, we say that
the probability that θ̂ and θ differ becomes negligible as n gets large.

Consistency is the a minima requirement for an estimator: when we collect more informa-
tion, we should approach the truth. The law of large number states that the sample mean
of n (independent) observations with common mean µ, say Y n, converges to µ, denoted
Y n → µ. Roughly speaking, our approximation becomes less variable and asymptotically
unbiased as the sample size (and thus the quantity of information available for the param-
eter) increases. The law of large number is featured in Monte Carlo experiments: we can
approximate the expectation of some (complicated) function g(x) by simulating repeat-
edly independent draws from Y and calculating the sample mean n−1∑n

i=1 g(Yi).

If the law of large number tells us what happens in the limit (we get a single numerical
value), the result doesn’t contain information about the rate of convergence and the un-
certainty at finite levels.

1.7 Central Limit Theorem

The central limit theorem gives the approximate large sample distribution of the sample
mean. Consider a random sample of size n {Yi}ni=1 of independent random variables with
common expectation µ and variance σ2. The sample mean Y = n−1∑n

i=1 Yi converges to
µ by the law of large number, but we also have that

• the estimator Y is centered around µ,
• the standard error is σ/

√
n; the rate of convergence is thus

√
n. For a sample of size

100, the standard error of the sample mean will be 10 times smaller than that of the
underlying random variable.

• the sample mean, once properly scaled, follows approximately a normal distribution

Mathematically, the central limit theorem states
√
n(Y − µ) d→ normal(0, σ2). If n is large

(a rule of thumb is n > 30, but this depends on the underlying distribution of Y ), then
Y

·∼ normal(µ, σ2/n).

How do we make sense of this result? Let us consider the mean travel time of high speed
Spanish trains (AVE) between Madrid and Barcelona that are operated by Renfe.
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Figure 1.11: Empirical distribution of travel times of high speed trains.

Our exploratory data analysis showed previously that the duration is the one advertised on
the ticket: there are only 15 unique travel time. Based on 9603 observations, we estimate
the mean travel time to be 170 minutes and 41 seconds. Figure 1.11 shows the empirical
distribution of the data.

Consider now samples of size n = 10, drawn repeatedly from the population: in the first
sample, the sample mean is 169.3 minutes, whereas we get an estimate of 167 minutes in
our second , 157.9 minutes in the third, etc.

We draw B = 1000 different samples, each of size n = 5, from two millions records, and
calculate the sample mean in each of them. The top right panel of Figure 1.12 is a his-
togram of the sample means when n = 5, whereas the bottom left panel shows the same
thingfor n = 20. The last graph of Figure 1.12 shows the impact of the increase in sam-
ple size: whereas the normal approximation is okay-ish for n = 5, it is indistinguishable
from the normal approximation for n = 20. As n increases and the sample size gets big-
ger, the quality of the approximation improves and the curve becomes more concentrated
around the true mean. Even if the distribution of the travel time is discrete, the mean is
approximately normal.

We considered a single distribution in the example, but you could play with other distri-
butions and vary the sample size to see when the central limit theorem kicks in usng this
applet.
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Figure 1.12: Graphical representation of the central limit theorem. The upper left panel
shows a sample of 20 observations with its sample mean (vertical red). The
three other panels show the histograms of the sample mean from repeated
samples of size 5 (top right), 20 (bottom left) and 20, 50 and 100 overlaid, with
the density approximation provided by the central limit theorem.

The central limit theorem underlies why scaled test statistics which have sample mean
zero and sample variance 1 have a standard null distribution in large sample: this is what
guarantees the validity of our inference!
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2 Statistical inference

In most applied domains, empirical evidences drive the advancement of the field and data
from well designed experiments contribute to the built up of science. In order to draw
conclusions in favour or against a theory, researchers turn (often unwillingly) to statistics
to back up their claims. This has led to the prevalence of the use of the null hypothesis
statistical testing (NHST) framework. One important aspect of the reproducibility crisis is
the misuse of p-values in journal articles: falsification of a null hypothesis is not enough to
provide substantive findings for a theory.

Because introductory statistics course typically present hypothesis tests without giving
much thoughts to the underlying construction principles of such procedures, users often
have a reductive view of statistics as a catalogue of pre-determined procedures. To make
a culinary analogy, users focus on learning recipes rather than trying to understand the
basics of cookery. This chapter focuses on understanding of key ideas related to testing.

, Important

Learning objectives:

• Understanding the role of uncertainty in decision making.
• Understanding the importance of signal-to-noise ratio as a measure of evi-

dence.
• Knowing the basic ingredients of hypothesis testing and being capable of cor-

rectly formulating and identifying these components in a paper.
• Correctly interpreting p-values and confidence intervals for a parameter.

The first step of a design is formulating a research question. Generally, this hypothesis
will specify potential differences between population characteristics due to some inter-
vention (a treatment) that the researcher wants to quantify. This is the step during which
researchers decide on sample size, choice of response variable and metric for the mea-
surement, write down the study plan, etc.

It is important to note that most research questions cannot be answered by simple tools.
Researchers wishing to perform innovative methodological research should contact ex-
perts and consult with statisticians before they collect their data to get information on
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2 Statistical inference

how best to proceed for what they have in mind so as to avoid the risk of making mislead-
ing and false claims based on incorrect analysis or data collection.

Figure 2.1: xkcd comic 2569 (Hypothesis generation) by Randall Munroe. Alt text: Frazzled
scientists are requesting that everyone please stop generating hypotheses for a
little bit while they work through the backlog. Cartoon reprinted under the CC
BY-NC 2.5 license.

2.1 Sampling variability

Given data, a researcher will be interested in estimating particular characteristics of the
population. We can characterize the set of all potential values their measurements can
take, together with their frequency, via a distribution.

The purpose of this section is to illustrate how we cannot simply use raw differences be-
tween groups to make meaningful comparisons: due to sampling variability, samples will
be alike even if they are generated in the same way, but there will be always be differences
between their summary statistics. Such differences tend to attenuate (or increase) as we
collect more sample. Inherent to this is the fact that as we gather more data (and thus
more information) about our target, the portrait becomes more precise. This is ultimately
what allows us to draw meaningful conclusions but, in order to do so, we need first to de-
termine what is likely or plausible and could be a stroke of luck, and what is not likely to
occur solely due to randomness.

We call numerical summaries of the data statistics. Its important to distinguish between
procedures/formulas and their numerical values. An estimator is a rule or formula used
to calculate an estimate of some parameter or quantity of interest based on observed data
(like a recipe for cake). Once we have observed data we can actually compute the sample
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2.1 Sampling variability

mean, that is, we have an estimate — an actual value (the cake), which is a single realiza-
tion and not random. In other words,

• an estimand is our conceptual target, like the population characteristic of interest
(population mean).

• an estimator is the procedure or formula telling us how to transform the sample data
into a numerical summary that is a proxy of our target.

• an estimate is a number, the numerical value obtained once we apply the formula to
observed data.

(a) Estimand

(b) Estimator

(c) Estimate

Figure 2.2: Estimand (left), estimator (middle) and estimate (right) illustrated with cakes
and based on an original idea of Simon Grund. Cake photos shared under CC
BY-NC 2.0 license.

For example, we may use as estimand the population average of Y1, . . . , say µ. The estima-
tor will be sample mean, i.e., the sum of the elements in the sample divided by the sample
size, Y = (Y1 + · · · + Yn)/n. The estimate will be a numerical value, say 4.3.

Because the inputs of the estimator are random, the output is also random and change
from one sample to the next: even if you repeat a recipe, you won’t get the exact same
result every time, as in Figure 2.3.

To illustrate this point, Figure 2.4 shows five simple random samples of size n = 10 drawn
from an hypothetical population with mean µ and standard deviation σ, along with their
sample mean y. Because of the sampling variability, the sample means of the subgroups
will differ even if they originate from the same distribution. You can view sampling vari-
ability as noise: our goal is to extract the signal (typically differences in means) but ac-
counting for spurious results due to the background noise.

The astute eye might even notice that the sample means (thick horizontal segments) are
less dispersed around the full black horizontal line representing the population average µ
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2 Statistical inference

Figure 2.3: xkcd comic 2581 (Health Stats) by Randall Munroe. Alt text: You will live on
forever in our hearts, pushing a little extra blood toward our left hands now and
then to give them a squeeze. Cartoon reprinted under the CC BY-NC 2.5 license.

_ _ _ _ _
4

6

8

10

1 2 3 4 5
sample number

ob
se

rv
at

io
ns

Figure 2.4: Five samples of size n = 10 drawn from a common population with mean µ
(horizontal line). The colored segments show the sample means of each sam-
ple.

than are the individual measurements. This is a fundamental principle of statistics: infor-
mation accumulates as you get more data.

Values of the sample mean don’t tell the whole picture and studying differences in mean
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2.1 Sampling variability

(between groups, or relative to a postulated reference value) is not enough to draw conclu-
sions. In most settings, there is no guarantee that the sample mean will be equal to it’s true
value because it changes from one sample to the next: the only guarantee we have is that
it will be on average equal to the population average in repeated samples. Depending on
the choice of measurement and variability in the population, there may be considerable
differences from one observation to the next and this means the observed difference could
be a fluke.

To get an idea of how certain something is, we have to consider the variability of an obser-
vation Yi. This variance of an observation drawn from the population is typically denoted
σ2 and it’s square root, the standard deviation, by σ.

The standard deviation of a statistic is termed standard error; it should not be confused
with the standard deviation σ of the population from which the sample observations
Y1, . . . , Yn are drawn. Both standard deviation and standard error are expressed in the
same units as the measurements, so are easier to interpret than variance. Since the
standard error is a function of the sample size, it is however good practice to report the
estimated standard deviation in reports.

Example 2.1 (Sample proportion and uniform draws). To illustrate the concept of sam-
pling variability, we follow the lead of Matthew Crump and consider samples from a uni-
form distribution on {1, 2, . . . , 10} each number in this interval is equally likely to be sam-
pled.

Even if they are drawn from the same population, the 10 samples in Figure 2.5 look quite
different. The only thing at play here is the sample variability: since there are n = 20 obser-
vations in total, there should be on average 10% of the observations in each of the 10 bins,
but some bins are empty and others have more counts than expected. This fluctuation is
due to randomness, or chance.

How can we thus detect whether what we see is compatible with the model we think gen-
erated the data? The key is to collect more observations: the bar height is the sample
proportion, an average of 0/1 values with ones indicating that the observation is in the bin
and zero otherwise.

Consider now what happens as we increase the sample size: the top panel of Figure 2.6
shows uniform samples for increasing samples size. The scaled bar plot looks more and
more like the true underlying distribution (flat, each bin with equal frequency) as the sam-
ple size increases. The sample distribution of points is nearly indistinguishable from the
theoretical one (straight line) when n = 10000.1 The bottom panel, on the other hand,

1The formula shows that the standard error decreases by a tenfold every time the sample size increases by a
factor 100.
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Figure 2.5: Histograms for 10 random samples of size n = 20 from a discrete uniform dis-
tribution.

isn’t from a uniform distribution and larger samples come closer to the population distri-
bution. We couldn’t have spotted this difference in the first two plots, since the sampling
variability is too important; there, the lack of data in some bins could have been attributed
to chance, as they are comparable with the graph for data that are truly uniform. This
is in line with most practical applications, in which the limited sample size restricts our
capacity to disentangle real differences from sampling variability. We must embrace this
uncertainty: in the next section, we outline how hypothesis testing helps us disentangle
the signal from the noise.

2.2 Hypothesis testing

An hypothesis test is a binary decision rule used to evaluate the statistical evidence pro-
vided by a sample to make a decision regarding the underlying population. The main steps
involved are:

• define the model parameters
• formulate the alternative and null hypothesis
• choose and calculate the test statistic
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Figure 2.6: Bar plots of data from a uniform distribution (top) and non-uniform (bottom)
with increasing sample sizes of 10, 100, 1000 and 10 000 (from left to right).

• obtain the null distribution describing the behaviour of the test statistic under H0
• calculate the p-value
• conclude (reject or fail to reject H0) in the context of the problem.

A good analogy for hypothesis tests is a trial for murder on which you are appointed ju-
ror.

• The judge lets you choose between two mutually exclusive outcome, guilty or not
guilty, based on the evidence presented in court.

• The presumption of innocence applies and evidences are judged under this optic:
are evidence remotely plausible if the person was innocent? The burden of the proof
lies with the prosecution to avoid as much as possible judicial errors. The null hy-
pothesis H0 is not guilty, whereas the alternative Ha is guilty. If there is a reasonable
doubt, the verdict of the trial will be not guilty.

• The test statistic (and the choice of test) represents the summary of the proof. The
more overwhelming the evidence, the higher the chance the accused will be declared
guilty. The prosecutor chooses the proof so as to best outline this: the choice of
evidence (statistic) ultimately will maximise the evidence, which parallels the power
of the test.

• The final step is the verdict. This is a binary decision, guilty or not guilty. For an
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hypothesis test performed at level α, one would reject (guilty) if the p-value is less
than α.

The above description provides some heuristic, but lacks crucial details.

2.3 Hypothesis

In statistical tests we have two hypotheses: the null hypothesis (H0) and the alternative
hypothesis (H1). Usually, the null hypothesis is the ‘status quo’ and the alternative is what
we’re really interested in testing. A statistical hypothesis test allows us to decide whether
or not our data provides enough evidence to reject H0 in favour of H1, subject to some
pre-specified risk of error. Usually, hypothesis tests involve a parameter, say θ,which char-
acterizes the underlying distribution at the population level ans whose value is unknown.
A two-sided hypothesis test regarding a parameter θ has the form

H0 : θ = θ0 versus Ha : θ ̸= θ0.

We are testing whether or not θ is precisely equal to the value θ0. The hypotheses are a
statistical representation of our research question.

A common example of two-sided test is one for the regression coefficient βj associated to
an explanatory variable Xj , for which the null and alternative hypothesis are

H0 : βj = β0
j versus Ha : βj ̸= β0

j ,

where β0
j is some value that reflects the research question of interest. For example, if β0

j =
0, the underlying question is: is covariate Xj impacting the response Y linearly once other
variables have been taken into account?

Note that we can impose direction in the hypotheses and consider alternatives of the form
Ha : θ > θ0 or Ha : θ < θ0.

2.4 Test statistic

A test statistic T is a function of the data that summarise the information contained in
the sample for θ. The form of the test statistic is chosen such that we know its underlying
distribution under H0, that is, the potential values taken by T and their relative probability
if H0 is true. Indeed, Y is a random variable and its value change from one sample to the
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next. This allows us to determine what values of T are likely if H0 is true. Many statistics
we will consider are Wald statistic, of the form

T = θ̂ − θ0

se(θ̂)

where θ̂ is an estimator of θ, θ0 is the postulated value of the parameter and se(θ̂) is an
estimator of the standard deviation of the test statistic θ̂.

For example, to test whether the mean of a population is zero, we set

H0 : µ = 0, Ha : µ ̸= 0,

and the Wald statistic is

T = X − 0
Sn/

√
n

where X is the sample mean of X1, . . . , Xn,

X = 1
n

n∑
i=1

Xi = X1 + · · · +Xn

n

and the standard error (of the mean) X is Sn/
√
n; the sample variance Sn is an estimator

of the standard deviation σ,

S2
n = 1

n− 1

n∑
i=1

(Xi −X)2.

2.5 Null distribution and p-value

The p-value allows us to decide whether the observed value of the test statistic T is plau-
sible under H0. Specifically, the p-value is the probability that the test statistic is equal
or more extreme to the estimate computed from the data, assuming H0 is true. Suppose
that based on a random sample Y1, . . . , Yn we obtain a statistic whose value T = t. For a
two-sided test H0 : θ = θ0 vs. Ha : θ ̸= θ0, the p-value is Pr0(|T | ≥ |t|).2

How do we determine the null distribution given that the true data generating mechanism
is unknown to us? We ask a statistician! In simple cases, it might be possible to enumerate
all possible outcomes and thus quantity the degree of outlyingness of our observed statis-
tic. In more general settings, we can resort to simulations or to probability theory: the

2If the distribution of T is symmetric around zero, the p-value reduces to p = 2 × Pr0(T ≥ |t|).
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central limit theorem says that the sample mean behaves like a normal random variable
with mean µ and standard deviation σ/

√
n for n large enough. The central limit theorem

has broader applications since most statistics can be viewed as some form of average or
transformation thereof, a fact used to derive benchmarks for most commonly used tests.
Most software use these approximations as proxy by default: the normal, Student’s t, χ2

and F distributions are the reference distributions that arise the most often.

Figure 2.7 shows the distribution of p-values for two scenarios: one in which there are no
differences and the null is true, the other under an alternative. The probability of rejection
is obtained by calculating the area under the density curve between zero and α = 0.1, here
0.1 on the left. Under the null, the model is calibrated and the distribution of p-values is
uniform (i.e., a flat rectangle of height 1), meaning all values in the unit interval are equally
likely. Under the alternative (right), small p-values are more likely to be observed.
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Figure 2.7: Density of p-values under the null hypothesis (left) and under an alternative
with a signal-to-noise ratio of 0.5 (right).

There are generally three ways of obtaining null distributions for assessing the degree of
evidence against the null hypothesis

• exact calculations
• large sample theory (aka ‘asymptotics’ in statistical lingo)
• simulation
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While desirable, the first method is only applicable in simple cases (such as counting the
probability of getting two six if you throw two fair die). The second method is most com-
monly used due to its generality and ease of use (particularly in older times where com-
puting power was scarce), but fares poorly with small sample sizes (where ‘too small’ is
context and test-dependent). The last approach can be used to approximate the null dis-
tribution in many scenarios, but adds a layer of randomness and the extra computations
costs sometimes are not worth it.

Consider the example of a two-sided test involving the population mean H0 : µ = 0 against
the alternative H1 : µ ̸= 0. Assuming the random sample comes from a normal (popula-
tion) normal(µ, σ2), it can be shown that if H0 is true (that is, if µ = 0), the test statistic

T = X

S/
√
n

follows a Student-t distribution with n − 1 degrees of freedom. This allows us to calcu-
late the p-value (either from a table, or using some statistical software). By virtue of the
symmetry, the p-value is P = 2 × Pr(T > |t|), where T ∼ Student(n− 1).

2.6 Confidence intervals

A confidence interval is an alternative way to present the conclusions of an hypothesis
test performed at significance level α. It is often combined with a point estimator θ̂ plus or
minus a margin of error designed to give an indication of the variability of the estimation
procedure. Wald-based (1 − α) confidence intervals for a scalar parameter θ are of the
form

[θ̂ + qα/2se(θ̂), θ̂ + q1−α/2 × se(θ̂)]

where qα/2 is the α/2 quantile of the null distribution of the Wald statistic W,

W = θ̂ − θ

se(θ̂)
,

and where θ represents the postulated value for the fixed, but unknown value of the param-
eter. The critical values for a symmetric interval, chosen so that the probability of being
more extreme is α, are the α/2 and 1 − α/2 quantiles of the null distribution.

For example, for a random sample X1, . . . , Xn from a normal distribution normal(µ, σ), the
(1 − α) confidence interval for the population mean µ is

X ± tn−1,α/2
S√
n
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where tn−1,α/2 is the 1 − α/2 quantile of a Student-t distribution with n − 1 degrees of
freedom.

The bounds of the confidence intervals are random variables, since both estimators of the
parameter and its standard error, θ̂ and se(θ̂), are random: their values will vary from one
sample to the next. Before the interval is calculated, there is a 1−α probability that θ is con-
tained in the random interval (θ̂−qα/2 se(θ̂), θ̂+qα/2 se(θ̂)),where θ̂ denotes the estimator.
Once we obtain a sample and calculate the confidence interval, there is no more notion
of probability: the true value of the parameter θ is either in the confidence interval or not.
We can interpret confidence intervals as follows: if we were to repeat the experiment mul-
tiple times, and calculate a 1 − α confidence interval each time, then roughly 1 − α of the
calculated confidence intervals would contain the true value of θ in repeated samples (in
the same way, if you flip a coin, there is roughly a 50-50 chance of getting heads or tails,
but any outcome will be either). Our confidence is in the procedure we use to calculate
confidence intervals and not in the actual values we obtain from a sample.

0 25 50 75 100
replicate study

fails to cover covers

Figure 2.8: 95% confidence intervals for the mean of a standard normal population for 100
random samples. On average, 5% of these intervals fail to include the true mean
value of zero (in red).

If we are only interested in the binary decision rule reject/fail to reject H0, the confidence
interval is equivalent to a p-value since it leads to the same conclusion. Whereas the 1 − α
confidence interval gives the set of all values for which the test statistic doesn’t provide
enough evidence to reject H0 at level α, the p-value gives the probability under the null of
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obtaning a result more extreme than the postulated value and so is more precise for this
particular value. If the p-value is smaller than α, our null value θ will be outside of the
confidence interval and vice-versa.

2.7 Conclusion

The p-value allows us to make a decision about the null hypothesis. If H0 is true, the p-
value follows a uniform distribution. Thus, if the p-value is small, this means observing
an outcome more extreme than T = t is unlikely, and so we’re inclined to think that H0 is
not true. There’s always some underlying risk that we’re making a mistake when we make
a decision. In statistic, there are two type of errors:

• type I error: we reject H0 when H0 is true,
• type II error: we fail to reject H0 when H0 is false.

These hypothesis are not judged equally: we seek to avoid error of type I (judicial errors,
corresponding to condemning an innocent). To prevent this, we fix the level of the test, α,
which captures our tolerance to the risk of committing a type I error: the higher the level
of the test α, the more often we will reject the null hypothesis when the latter is true. The
value of α ∈ (0, 1) is the probability of rejecting H0 when H0 is in fact true,

α = Pr 0 ( reject H0) .

where the subscript Pr 0 indicates the probability under the null model. The level α is
fixed beforehand, typically 1%, 5% or 10%. Keep in mind that the probability of type I error
is α only if the null model for H0 is correct (sic) and correspond to the data generating
mechanism.

The focus on type I error is best understood by thinking about medical trial: you need
to prove a new cure is better than existing alternatives drugs or placebo, to avoid extra
costs or harming patients (think of Didier Raoult and his unsubstantiated claims that
hydrochloroquine, an antipaludean drug, should be recommended treatment against
Covid19).

Decision \ true model H0 Ha

fail to reject H0 ✓ type II error
reject H0 type I error ✓

To make a decision, we compare our p-value P with the level of the test α:
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• if P < α, we reject H0;
• if P ≥ α, we fail to reject H0.

Do not mix up level of the test (probability fixed beforehand by the researcher) and the
p-value. If you do a test at level 5%, the probability of type I error is by definition α and
does not depend on the p-value. The latter is conditional probability of observing a more
extreme likelihood given the null distribution H0 is true.

\ Caution

The American Statistical Association (ASA) published a list of principles guiding
(mis)interpretation of p-values, some of which are reproduced below:

(2) P-values do not measure the probability that the studied hypothesis
is true.

(3) Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

(4) P-values and related analyses should not be reported selectively.

(5) p-value, or statistical significance, does not measure the size of an
effect or the importance of a result.

2.8 Power

There are two sides to an hypothesis test: either we want to show it is not unreasonable
to assume the null hypothesis, or else we want to show beyond reasonable doubt that a
difference or effect is significative: for example, one could wish to demonstrate that a new
website design (alternative hypothesis) leads to a significant increase in sales relative to
the status quo. Our ability to detect these improvements and make discoveries depends
on the power of the test: the larger the power, the greater our ability to reject H0 when the
latter is false.

Failing to reject H0 when Ha is true corresponds to the definition of type II error, the prob-
ability of which is 1−power, say. The power of a test is the probability of rejecting H0 when
H0 is false, i.e.,

Pra(reject H0),

38

https://doi.org/10.1080/00031305.2016.1154108
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i.e., the probability under the alternative model of falling in the rejection region. Depend-
ing on the alternative models, it is more or less easy to detect that the null hypothesis is
false and reject in favor of an alternative.
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Figure 2.9: Comparison between null distribution (full curve) and a specific alternative for
a t-test (dashed line). The power corresponds to the area under the curve of the
density of the alternative distribution which is in the rejection area (in white).
The middle panel shows an increase in power due to an increase in the mean
difference, whereas the right panel shows the change due to a decrease in vari-
ability of increase in the sample size.

We want a test to have high power, i.e., that the power should be as close to 1 as possi-
ble. Minimally, the power of the test should be α because we reject the null hypothesis α
fraction of the time even when H0 is true. Power depends on many criteria, notably

• the effect size: the bigger the difference between the postulated value for θ0 under
H0 and the observed behavior, the easier it is to detect it, as in the middle panel of
Figure 2.9;

• variability: the less noisy your data, the easier it is to detect differences between the
curves (big differences are easier to spot, as the right panel of Figure 2.9 shows);
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• the sample size: the more observation, the higher our ability to detect significative
differences because the standard error decreases with sample size n at a rate (typi-
cally) of n−1/2. The null distribution also becomes more concentrated as the sample
size increase.

• the choice of test statistic: for example, rank-based statistics discard information
about the actual values and care only about relative ranking. Resulting tests are less
powerful, but are typically more robust to model misspecification and outliers. The
statistics we will choose are standard and amongst the most powerful: as such, we
won’t dwell on this factor.

To calculate the power of a test, we need to single out a specific alternative hypothesis. In
very special case, analytic derivations are possible but typically we compute the power of
a test through Monte Carlo methods. For a given alternative, we simulate repeatedly sam-
ples from the model, compute the test statistic on these new samples and the associated
p-values based on the postulated null hypothesis. We can then calculate the proportion
of tests that lead to a rejection of the null hypothesis at level α, namely the percentage of
p-values smaller than α.

2.9 Examples

Example 2.2 (Gender inequality and permutation tests). We consider data from Rosen and
Jerdee (1974), who look at sex role stereotypes and their impacts on promotion and oppor-
tunities for women candidates. The experiment took place in 1972 and the experimental
units, which consisted of 95 male bank supervisors, were submitted to various memoran-
dums and asked to provide ratings or decisions based on the information provided.

We are interested in Experiment 1 related to promotion of employees: managers were re-
quested to decide on whether or not to promote an employee to become branch manager
based on recommendations and ratings on potential for customer and employee relations.

The authors intervention focused on the description of the nature (complexity) of the
manager’s job (either simple or complex) and the sex of the candidate (male or female):
all files were otherwise similar.

We consider for simplicity only sex as a factor and aggregate over job for the n = 93 replies.
Table 2.2 shows the counts for each possibility.

Table 2.2: Promotion recommandation to branch manager based on sex of the applicant.

male female

promote 32 19
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hold file 12 30

The null hypothesis of interest here that sex has no impact, so the probability of promotion
is the same for men and women. Let pm and pw denote these respective probabilities; we
can thus write mathematically the null hypothesis as H0 : pm = pw against the alternative
Ha : pm ̸= pw.

The test statistic typically employed for contingency tables is a chi-square test3, which
compares the overall proportions of promoted to that in for each subgroup. The sample
proportion for male is 32/42 = ~76%, compared to 19/49 or ~49% for female. While it seems
that this difference of 16% is large, it could be spurious: the standard error for the sample
proportions is roughly 3.2% for male and 3.4% for female.

If there was no discrimination based on sex, we would expect the proportion of people
promoted to be the same overall; this is 51/93 =0.55 for the pooled sample. We could
simply do a test for the mean difference, but rely instead on the Pearson contingency X2

p

(aka chi-square) test, which compares the expected counts (based on equal promotion
rates) to the observed counts, suitably standardized. If the discrepancy is large between
expected and observed, than this casts doubt on the validity of the null hypothesis.

If the counts of each cell are large, the null distribution of the chi-square test is well approx-
imated by a χ2 distribution. The output of the test includes the value of the statistic, 10.79,
the degrees of freedom of the χ2 approximation and the p-value, which gives the proba-
bility that a random draw from a χ2

1 distribution is larger than the observed test statistic
assuming the null hypothesis is true. The p-value is very small, 0.001, which means such
a result is quite unlikely to happen by chance if there was no sex-discrimination.

Another alternative to obtain a benchmark to assess the outlyingness of the observed odds
ratio is to use simulations: permutation tests are well illustrated by Jared Wilber. Consider
a database containing the raw data with 93 rows, one for each manager, with for each an
indicator of action and the sex of the hypothetical employee presented in the task.

Table 2.3: First five rows of the database in long format for experiment 1 of Rosen and
Jerdee.

action sex

promote male
hold file female
promote male

3If you have taken advanced modelling courses, this is a score test obtained by fitting a Poisson regression
with sex and action as covariates; the null hypothesis corresponding to lack of interaction term between
the two.

41

https://www.jwilber.me/permutationtest/


2 Statistical inference

hold file female
hold file male

Under the null hypothesis, sex has no incidence on the action of the manager. This means
we could get an idea of the “what-if” world by shuffling the sex labels repeatedly. Thus, we
could obtain a benchmark by repeating the following steps multiple times:

1. permute the labels for sex,
2. recreate a contingency table by aggregating counts,
3. calculate a test statistic for the simulated table.

As test statistic, we use odds ratio: the odds of an event is the ratio of the number of success
over failure: in our example, this would be the number of promoted over held files. The
odds of promotion for male is 32/12, whereas that of female is 19/30. The odds ratio for
male versus female is thus OR = (32/12)/(19/30) = 4.21. Under the null hypothesis, H0 :
OR = 1 (same probability of being promoted) (why?)
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Figure 2.10: Histogram of the simulated null distribution of the odds ratio statistic ob-
tained using a permutation test; the vertical red line indicates the sample odds
ratio.
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The histogram in Figure 2.10 shows the distribution of the odds ratio based on 10 000 per-
mutations. Reassuringly, we again get roughly the same approximate p-value, here 0.002.4

The article concluded (in light of the above and further experiments)

Results confirmed the hypothesis that male administrators tend to discrim-
inate against female employees in personnel decisions involving promotion,
development, and supervision.

Recap

• Model parameters: probability of promotion for men and women, respectively pm

and pw.
• Hypotheses: no discrimination based on gender, meaning equal probability of pro-

motion (null hypothesis H0 : pm = pw, versus alternative hypothesis Ha : pm ̸= pw).
• Test statistic: (1) chi-square test for contingency tables and (2) odds ratio.
• p-value: (1) .0010 and (2) .0024 based on permutation test.
• Conclusion: reject null hypothesis, as there is evidence of a gender-discrimination

with different probability of promotion for men and women.

Following the APA guidelines, the χ2 statistic would be reported as χ2(1, n = 93) = 10.79,
p = .001 along with counts and sample proportions.

Example 2.3 (“The Surprise of Reaching Out”). Liu et al. (2023) studies social interactions
and the impact of surprise on people reaching out if this contact is unexpected. Experi-
ment 1 focuses on questionnaires where the experimental condition is the perceived ap-
preciation of reaching out to someone (vs being reached to). The study used a question-
naire administered to 200 American adults recruited on the Prolific Academic platform.
The response index consists of the average of four questions measured on a Likert scale
ranging from 1 to 7, with higher values indicating higher appreciation.

We can begin by inspecting summary statistics for the sociodemographic variables (gender
and age) to assess whether the sample is representative of the general population as a
whole. The proportion of other (including non-binary people) is much higher than that
of the general census, and the population skews quite young according to Table 2.4.

Table 2.4: Summary statistics of the age of participants, and counts per gender

gender min max mean n

male 18 78 32.0 105

4The p-value obtained for the permutation test would change from one run to the next since it’s input is
random. However, the precision of the proportion statistic is sufficient for decision making purposes.
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female 19 68 36.5 92
other 24 30 27.7 3

Table 2.5: Mean ratings, standard deviation and number of participants per experimental
condition.

role mean sd n

initiator 5.50 1.28 103
responder 5.87 1.27 97

Since there are only two groups, initiator and responder, we are dealing with a pairwise
comparison. The logical test one could use is a two sample t-test, or a variant thereof.
Using Welch two sample t-test statistic, both group average and standard deviation are
estimated using the data provided.

The software returns t(197.52) = −2.05, p = .041, which leads to the rejection of the null
hypothesis of no difference in appreciation depending on the role of the individual (initia-
tor or responder). The estimated mean difference is ∆M = −0.37, 95% CI [−0.73,−0.01];
since 0 is not included in the confidence interval, we also reject the null hypothesis at level
5%. The estimate suggests that initiators underestimate the appreciation of reaching out.5

Recap

• Model parameters: average expected appreciation score µi and µr of initiators and
responder, respectively

• Hypothesis: expected appreciation score is the same for initiator and responders,
H0 : µi = µr against alternative Ha : µi ̸= µr that they are different.

• Test statistic: Welch two sample t-test
• p-value: 0.041
• Conclusion: reject the null hypothesis, average appreciation score differs depending

on the role

Example 2.4 (Virtual communication curbs creative idea generation). A Nature study per-
formed an experiment to see how virtual communications teamwork by comparing the
output both in terms of ideas generated during a brainstorming session by pairs and of
the quality of ideas, as measured by external referees. The sample consisted of 301 pairs of
participants who interacted via either videoconference or face-to-face.

5Assuming that the variance of each subgroup were equal, we could have used a two-sample t-test instead.
The difference in the conclusion is immaterial, with a nearly equal p-value.
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The authors compared the number of creative ideas, a subset of the ideas generated with
creativity score above average. The mean number of the number of creative ideas for face-
to-face 7.92 ideas (sd 3.40) relative to videoconferencing 6.73 ideas (sd 3.27).

Brucks and Levav (2022) used a negative binomial regression model: in their model, the
expected number creative ideas generated is

E(ncreative) = exp(β0 + β1video)

where video = 0 if the pair are in the same room and video = 1 if they interact instead via
videoconferencing.

The mean number of ideas for videoconferencing is thus exp(β1) times that of the face-to-
face: the estimate of the multiplicative factor is exp(β1) is 0.85 95% CI [0.77, 0.94].

No difference between experimental conditions translates into the null hypothesis as H0 :
β1 = 0 vs H0 : β1 ̸= 0 or equivalently H0 : exp(β1) = 1. The likelihood ratio test comparing
the regression model with and without video the statistic is R = 9.89 (p-value based on
χ2

1 of .002). We conclude the average number of ideas is different, with summary statistics
suggesting that virtual pairs generate fewer ideas.

If we had resorted to a two sample t-test, we would have found a mean difference in the
number of creative idea of ∆M = 1.19, 95% CI [0.43, 1.95], t(299) = 3.09, p = .002.

Both tests come with slightly different sets of assumptions, but yield similar conclusions:
there is evidence of a smaller number of creative ideas when people interact via videocon-
ferencing.

Example 2.5 (Price of Spanish high speed train tickets). The Spanish national railway com-
pany, Renfe, manages regional and high speed train tickets all over Spain and The Gurus
harvested the price of tickets sold by Renfe. We are interested in trips between Madrid
and Barcelona and, for now, ask the question: are tickets more expensive one way or an-
other? To answer this, we consider a sample of 8059 AVE tickets sold at Promo rate. Our
test statistic will again be the mean difference between the price (in euros) for a train ticket
for Madrid–Barcelona (µ1) and the price for Barcelona–Madrid (µ2), i.e., µ1 − µ2. The null
hypothesis is that there are no difference in price, so H0 : µ1 − µ2 = 0.

We use Welch’s t test statistic for two samples: the sample mean of the price of Barcelona-
Madrid tickets is 82.15 euros, that of Madrid-Barcelona tickets is 82.54 euros and the Welch
statistic is worth -1.15. If we use a normal approximation, the p-value is 0.25.

Rather than use the asymptotic distribution, whose validity stems from the central limit
theorem, we could consider another approximation under the less restrictive assumption
that the data are exchangeable: under the null hypothesis, there is no difference between
the two destinations and so the label for destination (a binary indicator) is arbitrary. The
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reasoning underlying permutation tests is as follows: to create a benchmark, we will con-
sider observations with the same number in each group, but permuting the labels. We
then compute the test statistic on each of these datasets. If there are only a handful in each
group (fewer than 10), we could list all possible permutations of the data, but otherwise we
can repeat this procedure many times, say 9999, to get a good approximation. This gives
an approximate distribution from which we can extract the p-value by computing the rank
of our statistic relative to the others.
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Figure 2.11: Permutation-based approximation to the null distribution of Welch two-
sample t-test statistic (histogram and black curve) with standard normal ap-
proximation (dashed curve) for the price of AVE tickets at promotional rate
between Madrid and Barcelona. The value of the test statistic calculated using
the original sample is represented by a vertical line.

The so-called bootstrap approximation to the p-value of the permutation test, 0.186, is the
proportion of statistics that are more extreme than the one based on the original sam-
ple. It is nearly identical to that obtained from the Satterthwaite approximation, 0.249 (the
Student-t distribution is numerically equivalent to a standard normal with that many de-
grees of freedom), as shown in Figure 2.11. Even if our sample is very large (n = 8059
observations), the difference is not statistically significative. With a bigger sample (the
database has more than 2 million tickets), we could estimate more precisely the average
difference, up to 1/100 of an euro: the price difference would eventually become statisti-
cally significative, but this says nothing about practical difference: 0.28 euros relative to an
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Promo ticket priced on average 82.56 euros is a negligible amount.
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3 Likelihood-based inference

This chapter is dedicated to the basics of statistical modelling using likelihood-based in-
ference, arguably the most popular estimation paradigm in statistics.

, Important

Learning objectives:

• Learn the terminology associated with likelihood-based inference
• Derive closed-form expressions for the maximum likelihood estimator in sim-

ple models
• Using numerical optimization, obtain parameter estimates and their standards

errors using maximum likelihood
• Use large-sample properties of the likelihood to derive confidence intervals and

tests
• Use information criteria for model selection

A statistical model starts with the specification of a data generating mechanism. We postu-
late that the data has been generated from a probability distribution with p-dimensional
parameter vector θ. The sample space is the set in which the n vector observations lie,
while the parameter space Θ ⊆ Rp is the set in which the parameter takes values.

As motivating example, consider the time a passenger must wait at the Université de Mon-
tréal station if that person arrives at 17:59 sharp every weekday, just in time for the metro
train. The measurements in waiting represent the time in seconds before the next train
leaves the station. The data were collected over three months and can be treated as an
independent sample. The left panel of Figure 3.1 shows an histogram of the n = 62 ob-
servations, which range from 4 to 57 seconds. The data are positive, so our model must
account for this feature.

Example 3.1 (Exponential model for waiting times). To model the waiting time, we may
consider for example an exponential distribution with scale λ (Definition 1.10), which rep-
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Figure 3.1: Histogram of waiting time with rugs for the observations (left) and exponential
log likelihood function for the waiting time, with the maximum likelihood esti-
mate at dashed vertical line (right).

resents the theoretical mean. Under independence1, the joint density for the observations
y1, . . . , yn is

f(y) =
n∏
i=1

f(yi) =
n∏
i=1

λ−1 exp(−yi/λ) = λ−n exp
(

−
n∑
i=1

yi/λ

)

The sample space is Rn+ = [0,∞)n, while the parameter space is (0,∞).

To estimate the scale parameter λ and obtain suitable uncertainty measures, we need a
modelling framework. We turn to likelihood-based inference.

3.1 Maximum likelihood estimation

For any given value of θ, we can obtain the probability mass or density of the sample ob-
servations, and we use this to derive an objective function for the estimation.

1Recall that, if A and B are independent random variables, the joint probability is the product of the proba-
bility of the events, Pr(A ∪ B) = Pr(A) Pr(B). The same holds for density or mass function, since the latter
are defined as the derivative of the distribution function.
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3.1 Maximum likelihood estimation

Definition 3.1 (Likelihood). The likelihood L(θ) is a function of the parameter vector θ
that gives the probability (or density) of observing a sample under a postulated distribu-
tion, treating the observations as fixed,

L(θ;y) = f(y;θ),

where f(y;θ) denotes the joint density or mass function of the n-vector containing the
observations.

If the latter are independent, the joint density factorizes as the product of the density of
individual observations, and the likelihood becomes

L(θ;y) =
n∏
i=1

fi(yi;θ) = f1(y1;θ) × · · · × fn(yn;θ).

The corresponding log likelihood function for independent and identically distributions
observations is

ℓ(θ;y) =
n∑
i=1

ln f(yi;θ)

Example 3.2 (Dependent data). The joint density function only factorizes for independent
data, but an alternative sequential decomposition can be helpful. For example, we can
write the joint density f(y1, . . . , yn) using the factorization

f(y) = f(y1) × f(y2 | y1) × . . . f(yn | y1, . . . , yn)

in terms of conditional. Such a decomposition is particularly useful in the context of
time series, where data are ordered from time 1 until time n and models typically re-
late observation yn to it’s past. For example, the AR(1) process, states that Yt | Yt−1 =
yt−1 ∼ normal(α+βyt−1, σ

2) and we can simplify the log likelihood using the Markov prop-
erty, which states that the current realization depends on the past, Yt | Y1, . . . , Yt−1, only
through the most recent value Yt−1. The log likelihood thus becomes

ℓ(θ) = ln f(y1) +
n∑
i=2

f(yi | yi−1).

Definition 3.2 (Maximum likelihood estimator). The maximum likelihood estimator θ̂ is
the vector value that maximizes the likelihood,

θ̂ = argmaxθ∈ΘL(θ;y).
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3 Likelihood-based inference

The natural logarithm ln is a monotonic transformation, so the maximum likelihood esti-
mator θ for likelihood L(θ;y) is the same as that of the log likelihood ℓ(θ;y) = lnL(θ;y).2

If we suppose that our model is correct, than we expect to observe whatever was real-
ized, so we find the parameter vector that makes the sample the most likely to have been
generated by our model. Several properties of maximum likelihood estimator makes it ap-
pealing for inference. The maximum likelihood estimator is efficient, meaning it has the
smallest asymptotic mean squared error. The maximum likelihood estimator is also con-
sistent, i.e., it converges to the correct value as the sample size increase (asymptotically
unbiased).

We can resort to numerical optimization routines to find the value of the maximum like-
lihood estimate, or sometimes derive closed-form expressions for the estimator, starting
from the log likelihood. The right panel of Figure 3.1 shows the exponential log likelihood,
which attains a maximum at λ̂ = 28.935 second, the sample mean of the observations. The
function decreases to either side of these values as the data become less compatible with
the model. Given the values achieved here with a small sample, it is easy to see that direct
optimization of the likelihood function (rather than it’s natural logarithm) could lead to
numerical underflow, since already exp(−270) ≈ 5.5 × 10−118, and log values smaller than
−746 would be rounded to zero.

Example 3.3 (Calculation of the maximum likelihood of an exponential distribution).
As Figure 3.1 reveals that the exponential log likelihood function is unimodal and thus
achieves a single maximum, we can use calculus to derive an explicit expression for λ̂
based on the log likelihood

ℓ(λ) = −n lnλ− 1
λ

n∑
i=1

yi.

Taking first derivative and setting the result to zero, we find

dℓ(λ)
dλ = −n

λ
+ 1
λ2

n∑
i=1

yi = 0.

Rearranging this expression by taking −n/λ to the right hand side of the equality and mul-
tiplying both sides by λ2 > 0, we find that λ̂ =

∑n
i=1 yi/n. The second derivative of the

log likelihood is d2ℓ(λ)/dλ2 = n(λ−2 − 2λ−3y), and plugging λ = y gives −n/y2, which is
negative. Therefore, λ̂ is indeed a maximizer.

2Since in most instances we deal with a product of densities, taking the log leads to a sum of log density
contributions, which facilitates optimization.
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3.1 Maximum likelihood estimation

Example 3.4 (Normal samples). Suppose we have an independent normal sample of size
n with mean µ and variance σ2, where Yi ∼ normal(µ, σ2) are independent. Recall that the
density of the normal distribution is

f(y;µ, σ2) = 1
(2πσ2)1/2 exp

{
− 1

2σ2 (x− µ)2
}
.

For an simple random sample of size n, whose realization is y1, . . . , yn, the likelihood is

L(µ, σ2;y) =
n∏
i=1

1
(2πσ2)1/2 exp

{
− 1

2σ2 (yi − µ)2
}

=(2πσ2)−n/2 exp
{

− 1
2σ2

n∑
i=1

(yi − µ)2
}
.

and the log likelihood is

ℓ(µ, σ2;y) = −n

2 ln(2π) − n

2 ln(σ2) − 1
2σ2

n∑
i=1

(yi − µ)2.

One can show that the maximum likelihood estimators for the two parameters are

µ̂ = Y = 1
n

n∑
i=1

Yi, σ̂2 = 1
n

n∑
i=1

(Yi − Y )2.

The fact that the estimator of the theoretical mean µ is the sample mean is fairly intuitive
and one can show the estimator is unbiased for µ. The (unbiased) sample variance esti-
mator,

S2 = 1
n− 1

n∑
i=1

(Yi − Y )2

Since σ̂2 = (n − 1)/nS2, it follows that the maximum likelihood estimator of σ2 is biased,
but both estimators are consistent and will thus get arbitrarily close to the true value σ2 for
n sufficiently large.

Proposition 3.1 (Invariance of maximum likelihood estimators). If g(θ) : Rp 7→ Rk for
k ≤ p is a function of the parameter vector, then g(θ̂) is the maximum likelihood estimator
of the function.
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3 Likelihood-based inference

The invariance property explains the widespread use of maximum likelihood estimation.
For example, having estimated the parameter λ,we can now use the model to derive other
quantities of interest and get the “best” estimates for free. For example, we could com-
pute the maximum likelihood estimate of the probability of waiting more than one minute,
Pr(T > 60) = exp(−60/λ̂) = 0.126, or using R built-in distribution function pexp.

# Note: default R parametrization for the exponential is
# in terms of rate, i.e., the inverse scale parameter
pexp(q = 60, rate = 1/mean(waiting), lower.tail = FALSE)
#> [1] 0.126

Another appeal of the invariance property is the possibility to compute the MLE in the
most suitable parametrization, which is convenient if the support is restricted. If g is a
one-to-one function of θ, for example if θ > 0, taking g(θ) = ln θ or, if 0 ≤ θ ≤ 1, by
maximizing g(θ) = ln(θ) − ln(1 − θ) ∈ R removes the support constraints for the numerical
optimization.

Definition 3.3 (Score and information matrix). Let ℓ(θ), θ ∈ Θ ⊆ Rp, be the log likelihood
function. The gradient of the log likelihood U(θ) = ∂ℓ(θ)/∂θ is termed score function.

The observed information matrix is the hessian of the negative log likelihood

j(θ;y) = −∂2ℓ(θ;y)
∂θ∂θ⊤ ,

evaluated at the maximum likelihood estimate θ̂, so j(θ̂). Under regularity conditions, the
expected information, also called Fisher information matrix, is

i(θ) = E
{
U(θ;Y )U(θ;Y )⊤

}
= E {j(θ;Y )}

Both the Fisher (or expected) and the observed information matrices are symmetric and
encode the curvature of the log likelihood and provide information about the variability of
θ̂.

Example 3.5 (Information for the exponential model). The observed and expected infor-
mation of the exponential model for a random sample Y1, . . . , Yn, parametrized in terms
of scale λ, are

j(λ;y) = −∂2ℓ(λ)
∂λ2 = n

λ2 + 2
nλ3

n∑
i=1

yi

i(λ) = n

λ2 + 2
nλ3

n∑
i=1

E(Yi) = n

λ2
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3.1 Maximum likelihood estimation

since E(Yi) = λ and expectation is a linear operator.

We find i(λ̂) = j(λ̂) = n/y2.

The exponential model may be restrictive for our purposes, so we consider for the purpose
of illustration and as a generalization a Weibull distribution.

Definition 3.4 (Weibull distribution). The distribution function of a Weibull random vari-
able with scale λ > 0 and shape α > 0 is

F (x;λ, α) = 1 − exp {−(x/λ)α} , x ≥ 0, λ > 0, α > 0,

while the corresponding density is

f(x;λ, α) = α

λα
xα−1 exp {−(x/λ)α} , x ≥ 0, λ > 0, α > 0.

The quantile function, the inverse of the distribution function, isQ(p) = λ{− ln(1 −p)}1/α.
The Weibull distribution includes the exponential as special case when α = 1. The ex-
pected value of Y ∼ Weibull(λ, α) is E(Y ) = λΓ(1 + 1/α).

Example 3.6 (Score and information of the Weibull distribution). The log likelihood for
a simple random sample whose realizations are y1, . . . , yn of size n from a Weibull(λ, α)
model is

ℓ(λ, α) = n ln(α) − nα ln(λ) + (α− 1)
n∑
i=1

ln yi − λ−α
n∑
i=1

yαi .

The score, which is the gradient of the log likelihood, is easily obtained by differentiation3

U(λ, α) =
(
∂ℓ(λ,α)
∂λ

∂ℓ(λ,α)
∂α

)
=
(

−nα
λ + αλ−α−1∑n

i=1 y
α
i

n
α − n ln(λ) +

∑n
i=1 ln yi −

∑n
i=1

(yi
λ

)α × ln
(yi
λ

)
.

)

and the observed information is the 2 × 2 matrix-valued function

j(λ, α) = −
(
∂2ℓ(λ,α)
∂λ2

∂2ℓ(λ,α)
∂λ∂α

∂2ℓ(λ,α)
∂α∂λ

∂2ℓ(λ,α)
∂α2

)

=
(

λ−2 {−nα+ α(α+ 1)
∑n
i=1(yi/λ)2} λ−1∑n

i=1[1 − (yi/λ)α{1 + α ln(yi/λ)}]
λ−1∑n

i=1[1 − (yi/λ)α{1 + α ln(yi/λ)}] nα−2 +
∑n
i=1(yi/λ)α{ln(yi/θ)}2

)
3Using for example a symbolic calculator.
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3 Likelihood-based inference

Proposition 3.2 (Gradient-based optimization). To obtain the maximum likelihood esti-
mator, we will typically find the value of the vector θ that solves the score vector, meaning
U(θ̂) = 0p. This amounts to solving simultaneously a p-system of equations by setting the
derivative with respect to each element of θ to zero. If j(θ̂) is a positive definite matrix (i.e.,
all of it’s eigenvalues are positive), then the vector θ̂ is the maximum likelihood estimator.

We can use a variant of Newton–Raphson algorithm if the likelihood is thrice differentiable
and the maximum likelihood estimator does not lie on the boundary of the parameter space.
If we consider an initial value θ†, then a first order Taylor series expansion of the score like-
lihood in a neighborhood θ† of the MLE θ̂ gives

0p = U(θ̂) ·≃ ∂ℓ(θ)
∂θ

∣∣∣∣
θ=θ†

+ ∂2ℓ(θ)
∂θ∂θ⊤

∣∣∣∣∣
θ=θ†

(θ̂ − θ†)

= U(θ†) − j(θ†)(θ̂ − θ†)

and solving this for θ̂ (provided the p× p matrix j(θ̂) is invertible), we get

θ̂
·≃ θ† + j−1(θ†)U(θ†),

which suggests an iterative procedure from a starting value θ† in the vicinity of the mode
until the gradient is approximately zero. If the value is far from the mode, then the algorithm
may diverge to infinity. To avoid this, we may multiply the term j−1(θ†)U(θ†) by a damping
factor c < 1. A variant of the algorithm, termed Fisher scoring, uses the expected or Fisher
information i(θ) in place of the observed information, j(θ), for numerical stability and to
avoid situations where the latter is not positive definite. This is the optimization routine
used in the glm function in R.

Example 3.7 (Maximum likelihood of a Weibull sample). We turn to numerical optimiza-
tion to obtain the maximum likelihood estimate of the Weibull distribution, in the absence
of closed-form expression for the MLE. To this end, we create functions that encode the log
likelihood, here taken as the sum of log density contributions. The function nll_weibull
below takes as argument the vector of parameters, pars, and returns the negative of the log
likelihood which we wish to minimize4 We also code the gradient, although we can resort
to numerical differentiation at little additional costs. We then use optim, the default opti-
mization routine in R, to minimize nll_weibull. The function returns a list containing a
convergence code (0 indicating convergence), the MLE in par, the log likelihood ℓ(θ̂) and
the Hessian matrix, which is the matrix of second derivatives of the negative log likelihood
evaluated at θ̂. The log likelihood surface, for pairs of scale and shape vectors θ = (λ, α),

4Most optimization algorithms minimize functions with respect to their arguments, so we minimize the neg-
ative log likelihood, which is equivalent to maximizing the log likelihood.
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3.1 Maximum likelihood estimation

are displayed in Figure 3.3. We can see that the maximum likelihood value has converged,
and check that the score satisfies U(θ̂) = 0 at the returned optimum value.

# Load data vector
data(waiting, package = "hecstatmod")
# Negative log likelihood for a Weibull sample
nll_weibull <- function(pars, y){

# Handle the case of negative parameter values
if(isTRUE(any(pars <= 0))){ # parameters must be positive

return(1e10) # large value (not infinite, to avoid warning messages)
}
- sum(dweibull(x = y, scale = pars[1], shape = pars[2], log = TRUE))

}
# Gradient of the negative Weibull log likelihood
gr_nll_weibull <- function(pars, y){

scale <- pars[1]
shape <- pars[2]
n <- length(y)
grad_ll <- c(scale = -n*shape/scale + shape*scaleˆ(-shape-1)*sum(yˆshape),

shape = n/shape - n*log(scale) + sum(log(y)) -
sum(log(y/scale)*(y/scale)ˆshape))

return(- grad_ll)
}
# Use exponential submodel MLE as starting parameters
start <- c(mean(waiting), 1)
# Check gradient function is correctly coded!
# Returns TRUE if numerically equal to tolerance
isTRUE(all.equal(numDeriv::grad(nll_weibull, x = start, y = waiting),

gr_nll_weibull(pars = start, y = waiting),
check.attributes = FALSE))

#> [1] TRUE
# Numerical minimization using optim
opt_weibull <- optim(

par = start, # starting values
fn = nll_weibull, # pass function, whose first argument is the parameter vector
gr = gr_nll_weibull, # optional (if missing, numerical derivative)
method = "BFGS", # gradient-based algorithm, common alternative is "Nelder"
y = waiting, # vector of observations, passed as additional argument to fn
hessian = TRUE) # return matrix of second derivatives evaluated at MLE

# Alternative using pure Newton
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3 Likelihood-based inference

# nlm(f = nll_weibull, p = start, hessian = TRUE, y = waiting)
# Parameter estimates - MLE
(mle_weibull <- opt_weibull$par)
#> [1] 32.6 2.6
# Check gradient for convergence
gr_nll_weibull(mle_weibull, y = waiting)
#> scale shape
#> 0.0000142 0.0001136
# Is the Hessian of the negative positive definite (all eigenvalues are positive)
# If so, we found a maximum and the matrix is invertible
isTRUE(all(eigen(opt_weibull$hessian)$values > 0))
#> [1] TRUE

3.2 Sampling distribution

The sampling distribution of an estimator θ̂ is the probability distribution induced by the
underlying data, given that the latter inputs are random.

For simplicity, suppose we have a simple random sample, so the log likelihood is a sum of
n terms and information accumulates linearly with the sample size: the data carry more
information about the unknown parameter vector, whose true value we denote θ0. Under
suitable regularity conditions, cf. Section 4.4.2 of Davison (2003), for large sample size n,
we can perform a Taylor series of the score vector and apply the central limit theorem.
Since U(θ) and i(θ) are the sum of n independent random variables, and that E{U(θ)} =
0p, and Var{U(θ)} = i(θ), application of the central limit theorem yields

i(θ0)−1/2U(θ0) ·∼ normalp(0, Ip).

We can use this to obtain approximations to the sampling distribution of θ̂, given that

θ̂
·∼ normalp{θ0, i

−1(θ)}

where the covariance matrix is the inverse of the Fisher information. In practice, since the
true parameter value θ0 is unknown, we replace it with either i−1(θ̂) or the inverse of the
observed information j−1(θ̂), as both of these converge to the true value.

As the sample size grows, the θ̂ becomes centered around the value θ0 that minimizes the
discrepancy between the model and the true data generating process. In large samples, the
sampling distribution of the maximum likelihood estimator is approximately quadratic.
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3.2 Sampling distribution

Example 3.8 (Covariance matrix and standard errors for the Weibull distribution). We use
the output of our optimization procedure to get the observed information matrix and the
standard errors for the parameters of the Weibull model. The latter are simply the square
root of the diagonal entries of the inverse Hessian matrix, [diag{j−1(θ̂)}]1/2.

# The Hessian matrix of the negative log likelihood
# evaluated at the MLE (observed information matrix)
obsinfo_weibull <- opt_weibull$hessian
vmat_weibull <- solve(obsinfo_weibull)
# Standard errors
se_weibull <- sqrt(diag(vmat_weibull))

From these, one can readily Wald-based confidence intervals for parameters from θ.

Proposition 3.3 (Asymptotic normality and transformations). The asymptotic normality
result can be used to derive standard errors for other quantities of interest. If ϕ = g(θ) is a
differentiable function of θ whose gradient does not vanish at θ̂ then ϕ̂

·∼ normal(ϕ0,Vϕ),
with Vϕ = ∇ϕ⊤Vθ∇ϕ, where ∇ϕ = [∂ϕ/∂θ1, . . . , ∂ϕ/∂θp]⊤. The variance matrix and the
gradient are evaluated at the maximum likelihood estimate θ̂. This result readily extends to
vector ϕ ∈ Rk for k ≤ p, where Vϕis the Jacobian matrix of the transformation.

Example 3.9 (Probability of waiting for exponential model.). To illustrate the difference
between likelihood ratio and Wald tests (and their respective confidence intervals), we
consider the metro waiting time data and consider the probability of waiting more than
one minute, ϕ = g(λ) = exp(−60/λ). The maximum likelihood estimate is, by invari-
ance, 0.126 and the gradient of g with respect to the scale parameter is ∇ϕ = ∂ϕ/∂λ =
60 exp(−60/λ)/λ2.

lambda_hat <- mean(waiting)
phi_hat <- exp(-60/lambda_hat)
dphi <- function(lambda){60*exp(-60/lambda)/(lambdaˆ2)}
V_lambda <- lambda_hatˆ2/length(waiting)
V_phi <- dphi(lambda_hat)ˆ2 * V_lambda
(se_phi <- sqrt(V_phi))
#> [1] 0.0331
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3 Likelihood-based inference

3.3 Likelihood-based tests

We consider a null hypothesis H0 that imposes restrictions on the possible values of θ
can take, relative to an unconstrained alternative H1. We need two nested models: a full
model, and a reduced model that is a subset of the full model where we impose q restric-
tions. For example, the exponential distribution is a special case of the Weibull one ifα = 1.
The testing procedure involves fitting the two models and obtaining the maximum likeli-
hood estimators of each of H1 and H0, respectively θ̂ and θ̂0 for the parameters under
H0. The null hypothesis H0 tested is: ‘the reduced model is an adequate simplification of
the full model’ and the likelihood provides three main classes of statistics for testing this
hypothesis: these are

• likelihood ratio tests statistics, denoted R, which measure the drop in log likelihood
(vertical distance) from ℓ(θ̂) and ℓ(θ̂0).

• Wald tests statistics, denoted W, which consider the standardized horizontal dis-
tance between θ̂ and θ̂0.

• score tests statistics, denoted S, which looks at the scaled slope of ℓ, evaluated only
at θ̂0 (derivative of ℓ).

Figure 3.2: Log-likelihood curve: the three likelihood-based tests, namely Wald, likelihood
ratio and score tests, are shown on the curve. The tests use different informa-
tion about the function.

The three main classes of statistics for testing a simple null hypothesis H0 : θ = θ0 against
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3.3 Likelihood-based tests

the alternative Ha : θ ̸= θ0 are the Wald, likelihood ratio, and the score test statistics,
defined respectively as

W = (θ̂ − θ0)⊤j(θ̂)(θ̂ − θ0), R = 2
{
ℓ(θ̂) − ℓ(θ0)

}
,

S = U⊤(θ0)i−1(θ0)U(θ0),

where θ̂ is the maximum likelihood estimate under the alternative and θ0 is the null value
of the parameter vector. Asymptotically, all the test statistics are equivalent (in the sense
that they lead to the same conclusions about H0). If H0 is true, the three test statistics
follow asymptotically a χ2

q distribution under a null hypothesis H0, where the degrees of
freedom q are the number of restrictions.

w(θ0) = (θ̂ − θ0)/se(θ̂)

r(θ0) = sign(θ̂ − θ)
[
2
{
ℓ(θ̂) − ℓ(θ)

}]1/2

s(θ0) = j−1/2(θ0)U(θ0)

We call r(θ0) the directed likelihood root.

The likelihood ratio test statistic is normally the most powerful of the three likelihood tests.
The score statistic S only requires calculation of the score and information under H0 (be-
cause by definition U(θ̂) = 0), so it can be useful in problems where calculations of the
maximum likelihood estimator under the alternative is costly or impossible.

The Wald statistic W is the most widely encountered statistic and two-sided 95% confi-
dence intervals for a single parameter θ are of the form

θ̂ ± z1−α/2se(θ̂),

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution; for a 95% con-
fidence interval, the 0.975 quantile of the normal distribution is z0.975 = 1.96. The Wald-
based confidence intervals are by construction symmetric: they may include implausi-
ble values (e.g., negative values for if the parameter of interest θ is positive, such as vari-
ances).

Example 3.10 (Wald test to compare exponential and Weibull models). We can test
whether the exponential model is an adequate simplification of the Weibull distribution
by imposing the restriction H0 : α = 1. This imposes a single restriction to the model, so
we compare the square statistic to a χ2

1. Since α is directly a parameter of the distribution,
we have the standard errors for free.
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Figure 3.3: Profile log likelihood for α, shown as a dashed gray line (left) and as a transect
(right). The left panel shows the log likelihood surface for the Weibull model
applied to the waiting data with 10%, 20%, . . . , 90% likelihood ratio confidence
regions (white contour curves). Higher log likelihood values are indicated by
darker colors. The cross indicates the maximum likelihood estimate. The pro-
file on the right hand panel has been shifted vertically to be zero at the MLE;
the dashed horizontal lines denote the cutoff points for the 95% and 99% con-
fidence intervals.

# Calculate Wald statistic
wald_exp <- (mle_weibull[2] - 1)/se_weibull[2]
# Compute p-value
pchisq(wald_expˆ2, df = 1, lower.tail = FALSE)
#> [1] 3.61e-10
# p-value less than 5%, reject null
# Obtain 95% confidence intervals
mle_weibull[2] + qnorm(c(0.025, 0.975))*se_weibull[2]
#> [1] 2.1 3.1
# 1 is not inside the confidence interval, reject null

We reject the null hypothesis, meaning the exponential submodel is not an adequate sim-
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3.3 Likelihood-based tests

plification of the Weibull.

We can also check the goodness-of-fit of both models by drawing a quantile-quantile plot
(cf. Definition 1.16). It is apparent from Figure 3.4 that the exponential model is overesti-
mating the largest waiting times, whose dispersion in the sample is less than that implied
by the model. By contrast, the near perfect straight line for the Weibull model in the right
panel of Figure 3.4 suggests that the model fit is adequate.
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Figure 3.4: Quantile-quantile plots for exponential (left) and Weibull (right) models, with
95% pointwise simulation intervals.

Remark 3.1 (Lack of invariance of Wald-based confidence intervals). The Wald-based con-
fidence intervals are not parametrization invariant: if we want intervals for a nonlinear
continuous function g(θ), then in general CIW {g(θ)} ≠ g{CIW (θ)}.

For example, consider the exponential submodel. We can invert the Wald test statistic to
get a symmetric 95% confidence interval for ϕ, [0.061, 0.191]. If we were to naively trans-
form the confidence interval for λ into one for ϕ, we would get [0.063, 0.19], which high-
lights the invariance although the difference here is subtle. The Gaussian approximation
underlying the Wald test is reliable if the sampling distribution of the likelihood is near
quadratic, which happens when the likelihood function is roughly symmetric on either
side of the maximum likelihood estimator.

The likelihood ratio test is invariant to interest-preserving reparametrizations, so the test
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statistic for H0 : ϕ = ϕ0 and H0 : λ = −60/ ln(ϕ0) are the same. The Wald confidence
regions can be contrasted with the (better) ones derived using the likelihood ratio test:
these are found through a numerical search to find the limits of{

θ : 2{ℓ(θ̂) − ℓ(θ)} ≤ χ2
p(1 − α)

}
,

where χ2
p(1 − α) is the (1 − α) quantile of the χ2

p distribution. Such intervals, for α =
0.1, . . . , 0.9, appear in Figure 3.3 as contour curves. If θ is multidimensional, confidence
intervals for θi are derived using the profile likelihood, discussed in the sequel. Like-
lihood ratio-based confidence intervals are parametrization invariant, so CIR{g(θ)} =
g{CIR(θ)}.Because the likelihood is zero if a parameter value falls outside the range of pos-
sible values for the parameter, the intervals only include plausible values of θ. In general,
the intervals are asymmetric and have better coverage properties.

# Exponential log likelihood
ll_exp <- function(lambda){

sum(dexp(waiting, rate = 1/lambda, log = TRUE))
}
# MLE of the scale parameter
lambda_hat <- mean(waiting)
# Root search for the limits of the confidence interval
lrt_lb <- uniroot( # lower bound, using values below MLE

f = function(r){
2*(ll_exp(lambda_hat) - ll_exp(r)) - qchisq(0.95, 1)},

interval = c(0.5 * min(waiting), lambda_hat))$root
lrt_ub <- uniroot( # upper bound,

f = function(r){
2*(ll_exp(lambda_hat) - ll_exp(r)) - qchisq(0.95, 1)},

interval = c(lambda_hat, 2 * max(waiting)))$root

The likelihood ratio statistic 95% confidence interval for ϕ can be found by using a root
finding algorithm: the 95% confidence interval for λ is CIR(λ)[22.784, 37.515]. By invari-
ance, the 95% confidence interval for ϕ is CIR(ϕ) = [0.072, 0.202] = g{CIR(λ)}.

3.4 Profile likelihood

Sometimes, we may want to perform hypothesis test or derive confidence intervals for
selected components of the model. In this case, the null hypothesis only restricts part of

64



3.4 Profile likelihood

the space and the other parameters, termed nuisance, are left unspecified — the question
then is what values to use for comparison with the full model. It turns out that the values
that maximize the constrained log likelihood are what one should use for the test, and
the particular function in which these nuisance parameters are integrated out is termed a
profile likelihood.

Definition 3.5 (Profile log likelihood). Consider a parametric model with log likelihood
function ℓ(θ) whose p-dimensional parameter vector θ = (ψ,φ) can be decomposed into
a q-dimensional parameter of interestψ and a (p− q)-dimensional nuisance vector φ.

The profile likelihood ℓp, a function of ψ alone, is obtained by maximizing the likelihood
pointwise at each fixed valueψ0 over the nuisance vector φψ0 ,

ℓp(ψ) = max
φ

ℓ(ψ,φ) = ℓ(ψ, φ̂ψ).

Example 3.11 (Profile log likelihood for the Weibull shape parameter). Consider the shape
parameter ψ ≡ α as parameter of interest, and the scale φ ≡ λ as nuisance parameter. Us-
ing the gradients derived in Example 3.7, we find that the value of the scale that maximizes
the log likelihood for given α is

λ̂α =
(

1
n

n∑
i=1

yαi

)1/α

.

and plugging in this value gives a function of α alone, thereby also reducing the optimiza-
tion problem for the Weibull to a line search along ℓp(α). The left hand panel of Figure 3.3
shows the ridge along the direction of α corresponding to the log likelihood surface. If one
thinks of these contours lines as those of a topographic map, the profile likelihood corre-
sponds in this case to walking along the ridge of both mountains along the ψ direction,
with the right panel showing the elevation gain/loss. The corresponding elevation profile
on the right of Figure 3.3 with cutoff values. We would need to obtain numerically using a
root finding algorithm the limits of the confidence interval on either side of α̂, but it’s clear
that α = 1 is not inside the 99% interval.

lambda_alpha <- function(alpha, y = waiting){
(mean(yˆalpha))ˆ(1/alpha)

}
# Profile likelihood for alpha
prof_alpha_weibull <- function(par, y = waiting){

sapply(par, function(a){
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nll_weibull(pars = c(lambda_alpha(a), a), y = y)
})

}

Example 3.12 (Profile log likelihood for the Weibull mean). As an alternative, we can use
numerical optimization to compute the profile for another function. Suppose we are in-
terested in the expected waiting time, which according to the model is µ = E(Y ) = λΓ(1 +
1/α). To this effect, we reparametrize the model in terms of (µ, α), where λ = µ/Γ(1+1/α).
We then make a wrapper function that optimizes the log likelihood for fixed value of µ,
then returns α̂µ, µ and ℓp(µ).

To get the confidence intervals for a scalar parameter, there is a trick that helps with the
derivation. We compute the signed likelihood root r(ψ) = sign(ψ − ψ̂){2ℓp(ψ̂) − 2ℓp(ψ)}1/2

over a fine grid of ψ, then fit a smoothing spline to the equation flipping the axis (thus, the
model has response y = ψ and x = r(ψ)). We then predict the curve at the standard normal
quantiles zα/2 and z1−α/2, and return these values as confidence interval. Figure 3.5 shows
how these value correspond to the cutoff points on the log likelihood ratio scale, where the
vertical line is given by −c(1 − α)/2 where c denotes the quantile of a χ2

1 random variable.

# Compute the MLE for the expected value via plug-in
mu_hat <- mle_weibull[1]*gamma(1+1/mle_weibull[2])
# Create a profile function
prof_weibull_mu <- function(mu){

# For given value of mu
alpha_mu <- function(mu){
# Find the profile by optimizing (line search) for fixed mu and the best alpha

opt <- optimize(f = function(alpha, mu){
# minimize the negative log likelihood
nll_weibull(c(mu/gamma(1+1/alpha), alpha), y = waiting)},

mu = mu,
interval = c(0.1,10) #search region
)
# Return the value of the negative log likelihood and alpha_mu
return(c(nll = opt$objective, alpha = opt$minimum))
}
# Create a data frame with mu and the other parameters
data.frame(mu = mu, t(sapply(mu, function(m){alpha_mu(m)})))

}
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3.4 Profile likelihood

# Create a data frame with the profile
prof <- prof_weibull_mu(seq(22, 35, length.out = 101L))
# Compute signed likelihood root r
prof$r <- sign(prof$mu - mu_hat)*sqrt(2*(prof$nll - opt_weibull$value))

# Trick: fit a spline to obtain the predictions with mu as a function of r
# Then use this to predict the value at which we intersect the normal quantiles
fit.r <- stats::smooth.spline(x = cbind(prof$r, prof$mu), cv = FALSE)
pr <- predict(fit.r, qnorm(c(0.025, 0.975)))$y
# Plot the signed likelihood root - near linear indicates quadratic
g1 <- ggplot(data = prof,

mapping = aes(x = mu, y = r)) +
geom_abline(intercept = 0, slope = 1) +
geom_line() +
geom_hline(yintercept = qnorm(0.025, 0.975),

linetype = "dashed") +
labs(x = expression(paste("expectation ", mu)),

y = "signed likelihood root")
# Create a plot of the profile
g2 <- ggplot(data = prof,

mapping = aes(x = mu, y = opt_weibull$value - nll)) +
geom_line() +
geom_hline(yintercept = -qchisq(c(0.95), df = 1)/2,

linetype = "dashed") +
geom_vline(linetype = "dotted",
xintercept = pr) +
labs(x = expression(paste("expectation ", mu)),

y = "profile log likelihood")

g1 + g2

The maximum profile likelihood estimator behaves like a regular likelihood for most quan-
tities of interest and we can derive test statistics and confidence intervals in the usual way.
One famous example of profile likelihood is the Cox proportional hazard covered in Chap-
ter 7.
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Figure 3.5: Signed likelihood root (left) and shifted profile log likelihood (right) as a func-
tion of the expected value µ in the Weibull model.

3.5 Information criteria

The likelihood can also serve as building block for model comparison: the larger ℓ(θ̂), the
better the fit. However, the likelihood doesn’t account for model complexity in the sense
that more complex models with more parameters lead to higher likelihood. This is not a
problem for comparison of nested models using the likelihood ratio test because we look
only at relative improvement in fit. There is a danger of overfitting if we only consider the
likelihood of a model.

AIC and BIC are information criteria measuring how well the model fits the data, while
penalizing models with more parameters,

AIC = −2ℓ(θ̂) + 2p
BIC = −2ℓ(θ̂) + p ln(n),

where p is the number of parameters in the model. The smaller the value of AIC (or of BIC),
the better the model fit.

Note that information criteria do not constitute formal hypothesis tests on the parame-
ters, but they can be used to compare models that are not nested. Such tools work under

68



3.5 Information criteria

regularity conditions, and the estimated information criteria are quite noisy, so compar-
ison for non-nested models are hazardous although popular among practitioners. If we
want to compare likelihood from different probability models, we need to make sure they
include normalizing constant. The BIC is more stringent than AIC, as its penalty increases
with the sample size, so it selects models with fewer parameters. The BIC is consistent,
meaning that it will pick the true correct model from an ensemble of models with proba-
bility one as n → ∞. In practice, this is of little interest if one assumes that all models are
approximation of reality (it is unlikely that the true model is included in the ones we con-
sider). AIC often selects overly complicated models in large samples, whereas BIC chooses
models that are overly simple.

A cautionary warning: while you can compare regression models that are not nested using
information criteria, they can only be used when the response variable is the same. You
could compare a Poisson regression with a linear regression for some response Y using
information criteria provided you include all normalizing constants in your model. Soft-
ware often drops constant terms; this has no impact when you compare models with the
same constant factors, but it matters when these differ. However, you cannot compare
them to a log-linear model with response ln(Y ). Comparisons for log-linear and linear
models are valid only if you use the Box–Cox likelihood, as it includes the Jacobian of the
transformation.
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4 Linear regression models

4.1 Introduction

The linear regression model, or linear model, is one of the most versatile workhorse for
statistical inference. Linear regression is used primarily to evaluate the effects of explana-
tory variables (oftentimes treatment in an experimental setting) on the mean response of
a continuous response, or for prediction. The linear regression specifies the mean of a
response variable Y of a random sample of size n as a linear function of observed ex-
planatories (also called predictors or covariates) X1, . . . , Xp,

E(Yi | Xi = xi)
conditional mean

= µi = β0 + β1xi1 + · · · + βpxip
linear combination of explanatories

≡ xiβ. (4.1)

where xi = (1, xi1, . . . , xip) is a (p+ 1) row vector containing a constant and the explanato-
ries of observation i, and β = (β0, . . . , βp)⊤ is a p + 1 column vector of coefficients for the
mean. The model formulation is conditional on the values of the observed explanatories;
this amounts to treating the p explanatory variablesX1, . . . , Xp as non-random quantities,
or known in advance. The regression coefficients β is the same for all observations, but
the vector of explanatories xi may change from one observation to the next. The model is
linear in the coefficients β0, . . . , βp.

To simplify the notation, we aggregate observations into an n-vector Y and the explana-
tories into an n × (p + 1) matrix X by concatenating a column of ones and the p column
vectors X1, . . . ,Xp, each containing the n observations of the respective explanatories.
The matrix X is termed model matrix (or sometimes design matrix in experimental set-
tings), and it’s ith row is xi.

Assuming that the distribution of the response is drawn from a location family, we may
rewrite the linear model in terms of the mean plus an error term,

Yi
observation

= xiβ
mean µi

+ εi
error term

.

where εi is the error term specific to observation i, and we assume that the errors ε1, . . . , εn
are independent and identically distributed. We fix the expectation or theoretical mean
of εi to zero to encode the fact we do not believe the model is systematically off, so E(εi |
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Xi = xi) = 0 (i = 1, . . . , n). The variance term σ2 is included to take into account the fact
that no exact linear relationship linksXi and Yi, or that measurements of Yi are subject to
error.

The normal or Gaussian linear model specifies that responses follow a normal distribution,
with Yi | Xi = xi ∼ normal(xiβ, σ2). The normal distribution is a location-scale family, so
Y ∼ normal(µ, σ2) is equal in distribution with µ+ ε for ε ∼ normal(0, σ2).

4.1.1 Motivating examples

We present some motivating examples that are discussed in the sequel.

Example 4.1 (Consistency of product description). Study 1 of Lee and Choi (2019) con-
sidered descriptors and the impact on the perception of a product on the discrepancy be-
tween the text description and the image. In their first experience, a set of six toothbrushes
is sold, but the image shows either a pack of six, or a single one). The authors also mea-
sured the prior familiarity with the brand of the item. Participants were recruited using
an online panel, and the data in LC19_S1 includes the results of the n = 96 participants
who passed the attention check (one additional participant response was outlying and re-
moved). We could fit a linear model for the average product evaluation score, prodeval,
as a function of the familiarity of the brand familiarity, an integer ranging from 1 to 7,
and a dummy variable for the experimental factor consistency, coded 0 for consistent im-
age/text descriptions and 1 if inconsistent. The resulting model matrix is then 96 × 3. The
prodeval response is heavily discretized.

data(LC19_S1, package = "hecedsm")
modmat <- model.matrix( # extract model matrix

~ familiarity + consistency,
data = LC19_S1)

tail(modmat, n = 5L) # print first five lines
#> (Intercept) familiarity consistencyinconsistent
#> 92 1 6 1
#> 93 1 4 1
#> 94 1 7 1
#> 95 1 7 1
#> 96 1 7 1
dim(modmat) # dimension of the model matrix
#> [1] 96 3
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Example 4.2 (Teaching to read and pre-post experiments). The BSJ92 data in package
hecedsm contains the results of an experimental study by Baumann, Seifert-Kessell, and
Jones (1992) on the effectiveness of different reading strategies on understanding of chil-
dren. These are described in the abstract

Sixty-six fourth-grade students were randomly assigned to one of three exper-
imental groups: (a) a Think-Aloud (TA) group, in which students were taught
various comprehension monitoring strategies for reading stories (e.g., self-
questioning, prediction, retelling, rereading) through the medium of thinking
aloud; (b) a Directed Reading-Thinking Activity (DRTA) group, in which
students were taught a predict-verify strategy for reading and responding to
stories; or (c) a Directed Reading Activity (DRA) group, an instructed control,
in which students engaged in a noninteractive, guided reading of stories.

The data are balanced, as there are 22 observations in each of the three subgroups, of
which DR is the control. The researchers applied a series of three tests (an error detection
task for test 1, a comprehension monitoring questionnaire for test 2, and the Degrees of
Reading Power cloze test labelled test 3). Tests 1 and 2 were administered both before and
after the intervention: this gives us a change to establish the average improvement in stu-
dent by adding pretest1 as covariate for a regression of posttest, for example. The tests
1 were out of 16, but the one administered after the experiment was made more difficult
to avoid cases of students getting near full scores. The correlation between pre-test and
post-test 1 is (ρ̂1 = 0.57), much stronger than that for the second test (ρ̂2 = 0.21).

Example 4.3 (Gender discrimination in a US college). The college database consists of
observational data collected in a college in the United States. The goal of the administra-
tion was to investigate potential gender inequality in the salary of faculty members. The
data contains the following variables:

• salary: nine-month salary of professors during the 2008–2009 academic year (in
thousands USD).

• rank: academic rank of the professor (assistant, associate or full).
• field: categorical variable for the field of expertise of the professor, one of applied

or theoretical.
• sex: binary indicator for sex, either man or woman.
• service: number of years of service in the college.
• years: number of years since PhD.

Example 4.4. Study 1 of Moon and VanEpps (2023) considers proportion of donators to a
charity. Participants in the online panel were provided with an opportunity to win 25$ and
donate part of this amount to a charity of their choosing. The data provided include only
people who did not exceed this amount and indicated donating a non-zero amount.
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4.1.2 Exploratory data analysis

Exploratory data analysis (EDA) is an iterative procedure by which we query the data, us-
ing auxiliary information, summary statistics and data visualizations, to better inform our
modelling.

It is useful to get a better understanding of the features of the data (sampling frame, miss-
ing values, outliers), the nature of the observations, whether responses or explanatories
and the relationship between them.

See Chapter 11 of Alexander (2023) for examples. In particular, it is useful to check that

• categorical variables are properly code as factors.
• missing values are properly declared as such using NA (strings, 999, etc.)
• there is no missingness patterns (NA for some logical values)
• there are enough modalities of each level of categorical variables
• there is no explanatory variable derived from the response variable.
• the subset of observations used for statistical analysis is adequate.
• there are no anomalies or outliers that would distort the results.

Example 4.5 (Exploratory data analysis of the college data). Before drafting a model, it is
useful to perform an exploratory data analysis. If salary increases with year, there is more
heterogeneity in the salary of higher ranked professors: logically, assistant professors are
either promoted or kicked out after at most 6 years according to the data. The limited
number of years prevents large variability for their salaries.

Salary increases over years of service, but its variability also increases with rank. Note
the much smaller number of women in the sample: this will impact our power to detect
differences between sex. A contingency table of sex and academic rank can be useful to
see if the proportion of women is the same in each rank: women represent 16% of assistant
professors and 16% of associate profs, but only 7% of full professors and these are better
paid on average.

Table 4.1: Contingency table of the number of prof in the college by sex and academic rank.

assistant associate full

man 56 54 248
woman 11 10 18

Some of the potential explanatory variables of the college data are categorical (rank,
sex, field), the latter two being binary. The other two continuous variables, years and
service, are strongly correlated with a correlation of 0.91.
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Figure 4.1: Exploratory data analysis of college data: salaries of professors as a function
of the number of years of service and the academic ranking

Example 4.6 (Handling of missing values). The data for Moon and VanEpps (2023) should
be checked to ensure that the description of the data collection matches the structure of
the database. Since people who didn’t donate didn’t fill in the amount field, the latter indi-
cates a missing value. All donation amounts are between $0.25 and $25.

data(MV23_S1, package = "hecedsm")
str(MV23_S1)
#> tibble [869 x 4] (S3: tbl_df/tbl/data.frame)
#> $ before : int [1:869] 0 1 0 1 1 1 1 0 1 0 ...
#> $ donate : int [1:869] 0 0 0 1 1 0 1 0 0 1 ...
#> $ condition: Factor w/ 2 levels "open-ended","quantity": 1 1 1 1 2 2 2 1 1 1 ...
#> $ amount : num [1:869] NA NA NA 10 5 NA 20 NA NA 25 ...
summary(MV23_S1)
#> before donate condition amount
#> Min. :0.000 Min. :0.00 open-ended:407 Min. : 0.2
#> 1st Qu.:0.000 1st Qu.:0.00 quantity :462 1st Qu.: 5.0
#> Median :1.000 Median :1.00 Median :10.0
#> Mean :0.596 Mean :0.73 Mean :10.7
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#> 3rd Qu.:1.000 3rd Qu.:1.00 3rd Qu.:15.0
#> Max. :1.000 Max. :1.00 Max. :25.0
#> NA's :1 NA's :235

If we include amount as response variable, the 235 missing observations will be removed by
default by procedures. This is okay if we want to compare the average amount of people
who donated, but we need to transform NAs to zeros otherwise. The donate binary vari-
able should not be included as an explanatory variable in a regression model, since it is a
perfect predictor of zero amounts.

4.1.3 Mean model specification

The first step of an analysis is deciding which explanatory variables should be added to
the mean model specification, and under what form. Models are but approximations of
reality; Section 2.1 of Venables (2000) argues that, if we believe the true mean function
linking explanatories X and the response Y is of the form E(Y | X) = f(X) for f suf-
ficiently smooth, then the linear model is a first-order approximation. For interpretation
purposes, it makes sense to mean-center any continuous explanatory, as this facilitates
interpretation.

In an experimental setting, where the experimental group or condition is randomly al-
located, we can directly compare the different treatments and draw causal conclusions
(since all other things are constant, any detectable difference is due on average to our ma-
nipulation). Although we usually refrain from including any other explanatory to keep the
design simple, it may be nevertheless helpful to consider some concomitant variables that
explain part of the variability to filter background noise and increase power. For exam-
ple, for the Baumann, Seifert-Kessell, and Jones (1992) data, our interest is in comparing
the average scores as a function of the teaching method, we would include group. In this
example, it would also make sense to include the pretest1 result as an explanatory. This
way, we will model the average difference in improvement from pre-test to post-test rather
than the average score.

In an observational setting, people self-select in different groups, so we need to account
for differences. Linear models in economics and finance often add control variables to the
model to account for potential differences due to socio-demographic variables (age, rev-
enue, etc.) that would be correlated to the group. Any test for coefficients would capture
only correlation between the outcome Y and the postulated explanatory factor of inter-
est.
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Figure 4.2: Difference between experimental and observational studies by Andrew Heiss
CC-BY 4.0

4.1.4 Continuous explanatories

Continuous explanatories are typically specified by including a single linear term, leading
to the simple linear regression of the form Y | X = x ∼ normal(β0+βx, σ2). In this situation
β0 is the intercept (the mean value of Y when x = 0) and β1 is the slope, i.e., the average
increase of Y when x increases by one unit. Figure 4.3 shows such an example of a model
with a single explanatory. As revealed by the exploratory data analysis of Example 4.3, this
model is simplistic and clearly insufficient to explain differences in salary.

The intercept β0 is the value when all of x1, . . . , xp are zero. The interpretation of the other
mean parameters in the model depends crucially on the parametrization and on potential
interactions or higher order terms.

Generally, we can increase Xj by one unit and compare the increase in the mean, here for
Xj

E(Y | Xj = xj + 1,X−j = x−j) − E(Y | Xj = xj ,X−j = x−j) = βj .

Another common perspective is to consider the effect of a change in the value of an ex-
planatory variable by looking at the slope. If µ = xβ, then the marginal effect of the j
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Figure 4.3: Simple linear regression model for the salary of professors as a function of the
number of years of service.

explanatory Xj = xj (j = 1, . . . , p) is the partial derivative of the mean with respect to this
value, namely ∂µ/∂xj .

If the relationship between explanatory X and response Y , as assessed from a scatterplot,
is not linear, we may consider more complicated function of the explanatories, as Exam-
ple 4.7 shows.

Example 4.7 (Quadratic curve for the automobile data). We consider a linear regression
model for the fuel autonomy of cars as a function of the power of their motor (measured
in horsepower) from the auto dataset. The postulated model,

mpgi = β0 + β1horsepoweri + β2horsepower2
i + εi,

includes a quadratic term. Figure 4.4 shows the scatterplot with the fitted regression
line, above which the line for the simple linear regression for horsepower is added. The
marginal effect of an increase of one unit in horsepower is β1 + 2β2horsepower, which
depends on the value of the explanatory.

To fit higher order polynomials, we use the poly as the latter leads to more numerical sta-
bility. For general transformations, the I function tells the software interpret the input “as
is”. Thus, lm(y~x+I(xˆ2)), would fit a linear model with design matrix [1n x x2].
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Figure 4.4: Linear regression models for the fuel autonomy of cars as a function of motor
power.

It appears graphically that the quadratic model fits better than the simple linear alterna-
tive: we will assess this hypothesis formally later. For the degree two polynomial, Figure 4.4
show that fuel autonomy decreases rapidly when power increases between 50 to 100, then
more slow until 189.35 hp. After that, the model postulates that autonomy increases again
as evidenced by the scatterplot, but beware of extrapolating (weird things can happen be-
yond the range of the data, as exemplified by Hassett’s cubic model for the number of daily
cases of Covid19 in the USA).

The representation in Figure 4.4 may seem counter-intuitive given that we fit a linear
model, but it is a 2D projection of 3D coordinates for the equation β0 + β1x− y + β2z = 0,
where x = horsepower, z = horsepower2 and y = mpg. Physics and common sense force
z = x2, and so the fitted values lie on a curve in a 2D subspace of the fitted plan, as shown
in grey in the three-dimensional Figure 4.5.

Remark 4.1 (Discretization of continuous covariates). Another option is to transform a
continuous variable X into a categorical variable by discretizing into bins and fitting a
piecewise-linear function ofX. The prime example of such option is treating a Likert scale
as a categorical variable. While this allows one to fit more flexible functional relations
betweenX and Y , this comes at the cost of additional coefficients for the same estimation
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4 Linear regression models

Figure 4.5: 3D graphical representation of the linear regression model for the auto data.

budget (fewer observations to estimate the effect of X results in lower precision of the
coefficients).

4.1.5 Categorical covariates

Dummies are variables (columns of explanatories from the model matrix) which only in-
clude −1, 0 and 1 to give indicator of the level of groups. For a binary outcome, we can
create a column that has entries 1 for the treatment and 0 for the control group.

Example 4.8 (Linear models with a single binary variable). Moon and VanEpps (2023) con-
sider the impact of providing suggested amounts for donations to a charity (as opposed to
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Figure 4.6: Piecewise-linear model for the fuel autonomy of cars as a function of motor
power.

an open-ended request). In Study 1, participants were given the chance of winning 25$
and giving part of this amount to charity.

Consider for example a linear model that includes the amount (in dollars, from 0 for people
who did not donate, up to 25 dollars) as a function of

condition =
{

0, open-ended,

1, suggested quantity

The equation of the simple linear model that includes the binary variable condition is

E(amount | condition) = β0 + β11condition=quantity.

=
{
β0, condition = 0,
β0 + β1 condition = 1.

Let µ0 denote the theoretical average amount for the open-ended amount and µ1 that of
participants of the treatment quantity group. A linear model that only contains a binary
variableX as regressor amounts to specifying a different mean for each of two groups: the
average of the treatment group is β0 + β1 = µ1 and β1 = µ1 − µ0 represents the difference
between the average donation amount of people given open-ended amounts and those
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who are offered suggested amounts (quantity), including zeros for the amount of people
who did not donate. The parametrization of the linear model with β0 and β1 is in terms of
pairwise differences relative to the baseline category and is particularly useful if we want
to test for mean difference between the groups, as this amounts to testing H0 : β1 = 0.
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Figure 4.7: Simple linear model for the MV23_S1 data using the binary variable condition
as explanatory even if the equation defines a line, only its values in 0/1 are real-
istic.

Even if the linear model defines a line, the latter is only meaningful when evaluated at
0 or 1; Figure 4.7 shows it in addition to sample observations (jittered horizontally) and
a density estimate for each condition. The colored dot represents the mean, which will
coincide with the estimates.

It is clear that the data are heavily discretized, with lots of ties and zeros. However, given
the sample size of 869 observations, we can easily draw conclusions in each group.

Let us consider categorical variables with K > 2 levels, which in R are of class factor.
The default parametrization for factors are in terms of treatment contrast: the reference
level of the factor (by default, the first value in alphanumerical order) will be treated as
the reference category and assimilated to the intercept. The software will then create a set
of K − 1 dummy variables for a factor with K levels, each of which will have ones for the
relevant value and zero otherwise.
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Example 4.9 (Dummy coding for categorical variables). Consider the Baumann, Seifert-
Kessell, and Jones (1992) study and the sole inclusion of the group variable. The data are
ordered by group: the first 22 observations are for group DR, the 22 next ones for group
DRTA and the last 22 for TA. If we fit a model with group as categorical variables

class(BSJ92$group) # Check that group is a factor
#> [1] "factor"
levels(BSJ92$group) # First level shown is reference
#> [1] "DR" "DRTA" "TA"
# Print part of the model matrix
# (three individuals from different groups)
model.matrix(~ group, data = BSJ92)[c(1,23,47),]
#> (Intercept) groupDRTA groupTA
#> 1 1 0 0
#> 23 1 1 0
#> 47 1 0 1
# Compare with levels of factors recorded
BSJ92$group[c(1,23,47)]
#> [1] DR DRTA TA
#> Levels: DR DRTA TA

The mean model specification is

E(Y | group) = β0 + β11group=DRTA + β21group=TA.

Since the variable group is categorical with K = 3 levels, we need K − 1 = 2 dummy
explanatories to include the effect and obtain one average per group. With the default
parametrization, we obtain

• 1group=DRTA = 1 if group=DRTA and zero otherwise.
• 1group=TA = 1 if group=TA and zero otherwise.

Because the model includes an intercept and the model ultimately describes three group
averages, we only need two additional variables. With the treatment parametrization, the
group mean of the reference group equals the intercept coefficient, µDR = β0,
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Table 4.2: Parametrization of dummies for a categorical variable with the default treatment
contrasts.

(Intercept) groupDRTA groupTA

DR 1 0 0
DRTA 1 1 0
TA 1 0 1

When group=DR (baseline), both indicator variables groupDRTA and groupTA are zero. The
average in each group is µDR = β0, µDRTA = β0 + β1 and µTA = β0 + β2. We thus find that β1
is the difference in mean between group DRTA and group DR, and similarly β2 = µTA − µDR.

Remark 4.2 (Sum-to-zero constraints). The parametrization discussed above, which is
the default for the lm function, isn’t the only one available. We consider an alternative
ones: rather than comparing each group mean with that of a baseline category, the default
parametrization for analysis of variance models is in terms of sum-to-zero constraints,
whereby the intercept is the equiweighted average of every group, and the parameters
β1, . . . , βK−1 are differences to this average.

model.matrix(
~ group,
data = BSJ92,
contrasts.arg = list(group = "contr.sum"))

Table 4.3: Parametrization of dummies for the sum-to-zero constraints for a categorical
variable.

(Intercept) group1 group2

DR 1 1 0
DRTA 1 0 1
TA 1 -1 -1

In the sum-to-zero constraint, we again only get two dummy variables, labelled group1
and group2, along with the intercept. The value of group1 is 1 if group=DR, 0 if group=DRTA
and −1 if group=TA. Using the invariance property, we find µDR = β0 + β1, µDRTA = β0 + β2
and µTA = β0 − β1 − β2 (more generally, the intercept minus the sum of all the other mean
coefficients). Some algebraic manipulation reveals that β0 = (µDR + µDRTA + µTA)/3.
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If we removed the intercept, then we could include three dummies for each treatment
group and each parameter would correspond to the average. This isn’t recommended in R
because the software treats models without the intercept differently and some output will
be nonsensical (e.g., the coefficient of determination will be wrong).

Example 4.10 (Wage inequality in an American college). We consider a linear regression
model for the college data that includes sex, academic rank, field of study and the number
of years of service as explanatories.

The postulated model is

salary = β0 + β1sexwoman + β2fieldtheoretical

+ β3rankassociate + β4rankfull + β5service + ε.

Table 4.4: Estimated coefficients of the linear model for the college (in USD, rounded to
the nearest dollar).

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5

86596 -4771 -13473 14560 49160 -89

The interpretation of the coefficients is as follows:

• The estimated intercept is β̂0 = 86596 dollars; it corresponds to the mean salary of
men assistant professors who just started the job and works in an applied domain.

• everything else being equal (same field, academic rank, and number of years of ser-
vice), the estimated salary difference between a woman and is estimated at β̂1 =
−4771 dollars.

• ceteris paribus, the salary difference between a professor working in a theoretical
field and one working in an applied field is β2 dollars: our estimate of this difference
is −13473 dollars, meaning applied pays more than theoretical.

• ceteris paribus, the estimated mean salary difference between associate and assistant
professors is β̂3 = 14560 dollars.

• ceteris paribus, the estimated mean salary difference between full and assistant pro-
fessors is β̂4 = 49160 dollars.

• within the same academic rank, every additional year of service leads to a mean
salary increase of β̂5 = −89 dollars.

Example 4.11 (Parameter interpretation for analysis of covariance). We consider a pre-
post model for the error detection task test of Baumann, Seifert-Kessell, and Jones (1992).
We fit a linear model with the pre-test score and the experimental condition.
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data(BSJ92, package = "hecedsm") #load data
str(BSJ92) # Check that categorical variables are factors
#> tibble [66 x 6] (S3: tbl_df/tbl/data.frame)
#> $ group : Factor w/ 3 levels "DR","DRTA","TA": 1 1 1 1 1 1 1 1 1 1 ...
#> $ pretest1 : int [1:66] 4 6 9 12 16 15 14 12 12 8 ...
#> $ pretest2 : int [1:66] 3 5 4 6 5 13 8 7 3 8 ...
#> $ posttest1: int [1:66] 5 9 5 8 10 9 12 5 8 7 ...
#> $ posttest2: int [1:66] 4 5 3 5 9 8 5 5 7 7 ...
#> $ posttest3: int [1:66] 41 41 43 46 46 45 45 32 33 39 ...
# Check summary statistics for posttest1
BSJ92 |> # compute group average

group_by(group) |>
summarize(mean_pre = mean(pretest1),

mean_post = mean(posttest1),
diff_impr = mean_post - mean_pre)

#> # A tibble: 3 x 4
#> group mean_pre mean_post diff_impr
#> <fct> <dbl> <dbl> <dbl>
#> 1 DR 10.5 6.68 -3.82
#> 2 DRTA 9.73 9.77 0.0455
#> 3 TA 9.14 7.77 -1.36
# Fit the ANOVA for the difference
linmod1 <- lm(

posttest1 - pretest1 ~ group,
data = BSJ92)

coef(linmod1) # Mean model coefficients
#> (Intercept) groupDRTA groupTA
#> -3.82 3.86 2.45
# Fit a linear regression
linmod2 <- lm(

posttest1 ~ pretest1 + group,
data = BSJ92 |>

dplyr::mutate( # mean-center pretest result
pretest1 = pretest1 - mean(pretest1)))

coef(linmod2) # Mean model coefficients
#> (Intercept) pretest1 groupDRTA groupTA
#> 6.188 0.693 3.627 2.036

With the ANOVA model for the group as a function of the improvement and using the de-
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fault treatment parameterization„ the intercept is the average of post-test minus pre-test
score for group DR, and the other two coefficients are the difference between groups DRTA
and DR, and the difference between groups TA and DR. Thus, the higher average improve-
ment is for DRTA, then TA, then the baseline DR.

Consider next a linear model in which we allow the post-test score to be a linear function of
the pre-test. We find that, for each point score on the pre-test, the post-test score increases
by 0.693 marks regardless of the group. The DRTA group (respectively TA) has an average,
ceteris paribus, that is 3.627 (respectively 2.036) points higher than that of the baseline
group DR for two people with the same pre-test score. If we center the continuous covariate
pretest1, the intercept β0 is the average post-test score of a person from the DR group who
scored the overall average of all 66 students in the pre-test.

4.2 Parameter estimation

The linear model includes p + 1 mean parameters and a standard deviation σ, which is
assumed constant for all observations. Given a design or model matrix X and a linear
model formulation E(Yi) = xiβ, we can try to find the parameter vector β ∈ Rp+1 that
minimizes the mean squared error, i.e., the average squared vertical distance between the
fitted values ŷi = xiβ̂ and the observations yi.

Proposition 4.1 (Ordinary least squares). Consider the optimization problem

β̂ = argminβ∈Rp+1

n∑
i=1

(yi − xiβ)2

= (y − Xβ)⊤(y − Xβ).

We can compute the derivative of the right hand side with respect toβ, set it to zero and solve
for β̂,

0n = ∂

∂β
(y − Xβ)⊤(y − Xβ)

= ∂(y − Xβ)
∂β

∂(y − Xβ)⊤(y − Xβ)
∂(y − Xβ)

= 2X⊤(y − Xβ)
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Figure 4.8: Ordinary residuals ei (vertical vectors) added to the regression line in the scatter
(x, y) (left) and the fit of response yi against fitted values ŷi. The ordinary least
squares line minimizes the average squared length of the ordinary residuals.

using the chain rule. Distributing the terms leads to the so-called normal equation

X⊤Xβ = X⊤y.

If the n× p matrix X is full-rank, meaning that it’s columns are not linear combinations of
one another, the quadratic form X⊤X is invertible and we obtain the solution to the least
square problems,

β̂ =
(
X⊤X

)−1
X⊤y. (4.2)

This is the ordinary least squares estimator (OLS). The explicit solution means that no
numerical optimization is needed for linear models.

We could also consider maximum likelihood estimation. Proposition 4.1 shows that, as-
suming normality of the errors, the least square estimators of β coincide with the maxi-
mum likelihood estimator of β.

Proposition 4.2 (Maximum likelihood estimation of the normal linear model). The linear
regression model specifies that the observations Yi ∼ normal(xiβ, σ2) are independent. The

88

http://www.stat.rice.edu/~dobelman/notes_papers/math/Matrix.Calculus.AppD.pdf


4.2 Parameter estimation

linear model has p + 2 parameters (β and σ2) and the log likelihood is, abstracting from
constant terms,

ℓ(β, σ) ∝ −n

2 ln(σ2) − 1
2σ2

{
(y − Xβ)⊤(y − Xβ)

}2
.

Maximizing the log likelihood with respect to β is equivalent to minimizing the sum of
squared errors

∑n
i=1(yi − xiβ)2, regardless of the value of σ, and we recover the OLS esti-

mator β̂. The maximum likelihood estimator of the variance σ̂2 is thus

σ̂2 = argmaxσ2ℓ(β̂, σ2).

The profile log likelihood for σ2, excluding constant terms that don’t depend on σ2, is

ℓp(σ2) ∝ −1
2

{
n ln σ2 + 1

σ2 (y − Xβ̂)⊤(y − Xβ̂)
}
.

Differentiating each term with respect to σ2 and setting the gradient equal to zero yields the
maximum likelihood estimator

σ̂2 = 1
n

(Y − Xβ̂)⊤(Y − Xβ̂)

= 1
n

n∑
i=1

(yi − xiβ̂)2

= SSe
n

;

where SSe is the sum of squared residuals. The usual unbiased estimator of σ2 calculated
by software is S2 = SSe/(n − p − 1), where the denominator is the sample size n minus the
number of mean parameters β, p+ 1.

Remark 4.3 (Invariance). One direct consequence of likelihood estimation is that the fitted
values ŷi for two model matrices Xa and Xb, are the same if they generate the same linear
span, as in Example 4.9. The interpretation of the coefficients will however change. If we
include an intercept term, then we get the same output if the columns of explanatory are
mean-centered.

The value of β is such that it will maximize the correlation between Y and Ŷ . In the case
of a single categorical variable, we will obtain fitted values ŷ that correspond to the sample
mean of each group.

Remark 4.4 (Geometry). The vector of fitted values ŷ = Xβ̂ = HXy is the projection of
the response vector y on the linear span generated by the columns of X. The matrix HX =
X(X⊤X)−1X⊤, often called hat matrix, is an orthogonal projection matrix, so HX = H⊤

X
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and HXHX = HX and HXX = X. Since the vector of residuals e = (e1, . . . , en)⊤, which
appear in the sum of squared errors, is defined as y − ŷ and ŷ = Xβ, simple algebraic
manipulations show that the inner product between ordinary residuals and fitted values
is zero, since

ŷ⊤e = β̂
⊤X⊤(y − Xβ̂)

= y⊤X(X⊤X)−1X⊤(y − X(X⊤X)−1X⊤y)
= y⊤HXy − X(X⊤X)−1X⊤X(X⊤X)−1X⊤y

= 0

where we use the definition of ŷ and e = y − ŷ on the first line, then substitute the OLS
estimator β̂ = (X⊤X)−1X⊤y and distribute terms. Similarly, X⊤e = 0p+1. The ordinary
residuals are thus orthogonal to both the model matrix X and to the fitted values.

A direct consequence of this fact is that the sample linear correlation between e and ŷ is
zero; we will use this property to build graphical diagnostics.

Since the inner product is zero, the mean of emust be zero provided that 1n is in the linear
span of X.

Proposition 4.3 (Information matrix for normal linear regression models). The entries of
the observed information matrix of the normal linear model are

−∂2ℓ(β, σ2)
∂β∂β⊤ = 1

σ2
∂X⊤(y − Xβ)

∂β⊤ = X⊤X
σ2

−∂2ℓ(β, σ2)
∂β∂σ2 = −X⊤(y − Xβ)

σ4

−∂2ℓ(β, σ2)
∂(σ2)2 = − n

2σ4 + (y − Xβ)⊤(y − Xβ)
σ6 .

If we evaluate the observed information at the MLE, we get

j(β̂, σ̂2) =

X⊤X
σ̂2

0p+1

0⊤
p+1

n

2σ̂4


since σ̂2 = SSe/n and the residuals are orthogonal to the model matrix. Since E(Y | X) =
Xβ, the Fisher information is

i(β, σ2) =
(

X⊤X
σ2 0p+1

0⊤
p+1

n
2σ4

)
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Since zero off-correlations in normal models amount to independence, the MLE for σ2 and
β are independent. Provided the (p + 1) square matrix X⊤X is invertible, the large-sample
variance of the ordinary least squares estimator is σ2(X⊤X)−1 and that of the MLE of the
variance is 2σ4/n.

4.2.1 Fitting linear models with software

Although we could build the model matrix ourselves and use the least square formula
of Equation 4.2, the numerical routines implemented in software are typically better be-
haved. The lm function in R fits linear models, as does glm with the default arguments.
Objects of class lm have multiple methods allow you to extract specific objects from lm
objects. For example, the functions coef, resid, fitted, model.matrix will return the co-
efficients β̂, the ordinary residuals e, the fitted values ŷ and the model matrix X.

data(BSJ92, package = "hecedsm") #load data
str(BSJ92) # Check that categorical variables are factors
# Fit the linear regression
linmod <- lm(posttest1 ~ pretest1 + group,

data = BSJ92)
beta_hat <- coef(linmod) # beta coefficients
vcov_beta <- vcov(linmod) # Covariance matrix of betas
summary(linmod) # summary table
beta_ci <- confint(linmod) # Wald confidence intervals for betas
yhat <- fitted(linmod) # fitted values
e <- resid(linmod) # ordinary residuals

# Check OLS formula
X <- model.matrix(linmod) # model matrix
y <- college$salary
isTRUE(all.equal(

c(solve(t(X) %*% X) %*% t(X) %*% y),
as.numeric(coef(linmod))

))

The summary method is arguably the most useful: it will print mean parameter estimates
along with standard errors, t values for the Wald test of the hypothesis H0 : βi = 0 and the
associated P -values. Other statistics and information about the sample size, the degrees
of freedom, etc., are given at the bottom of the table. Note that the lm function uses the
unbiased estimator of the variance σ2.
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Remark 4.5 (Linearity). The model is linear in the coefficients β, so the quadratic curve
β0 + β1x + β2x

2 is a linear model because it is a sum of coefficients times functions of
explanatories. By contrast, the model β0 + β1x

β2 is nonlinear in β.

4.3 Coefficient of determination

When we specify a model, the error term ε accounts for the fact no perfect linear relation-
ship characterizes the data (if it did, we wouldn’t need statistic to begin with). Once we
have fitted a model, we estimate the variance σ2; one may then wonder which share of the
total variance in the sample is explained by the model.

The total sum of squares, defined as the sum of squared residuals from the intercept-only
model, serves as comparison — the simplest model we could come up with would involv-
ing every observation by the sample mean of the response and so this gives (up to scale)
the variance of the response, SSc =

∑n
i=1(yi−y)2. We can then compare the variance of the

original data with that of the residuals from the model with covariate matrix X, defined as
SSe =

∑n
i=1 e

2
i with ei = yi − β̂0 −

∑p
j=1 β̂jXj . We define the coefficient of determination,

or squared multiple correlation coefficient of the model, R2, as

R2 = 1 − SSe
SSc

=
∑n
i=1(yi − y)2 −

∑n
i=1 e

2
i∑n

i=1(yi − y)2 .

An alternative decomposition shows thatR2 = cor2(y, ŷ), i.e., the coefficient of determina-
tion can be interpreted as the square of Pearson’s linear correlation between the response
y and the fitted values ŷ.

Its important to note thatR2 is not a goodness-of-fit criterion, like the log likelihood: some
phenomena are inherently noisy and even a good model will fail to account for much of
the response’s variability. Moreover, one can inflate the value of R2 by including more
explanatory variables and making the model more complex, thereby improving the likeli-
hood and R2. Indeed, the coefficient is non-decreasing in the dimension of X, so a model
with p + 1 covariate will necessarily have a higher R2 values than only p of the explanato-
ries. For model comparisons, it is better to employ information criteria or else rely on the
predictive performance if this is the purpose of the regression. Lastly, a model with a high
R2 may imply high correlation, but the relation may be spurious: linear regression does
not yield causal models!
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4.4 Model assumptions

So far, we have fit models and tested significance of the parameters without checking the
model assumptions. The correctness of statements about the p-values and confidence in-
tervals depend on the (approximate) validity of the model assumptions, which all stem
from the distributional assumption for the error, assumed to be independent and identi-
cally distributed with εi

·∼ normal(0, σ2). This compact mathematical description can be
broken down into four assumptions.

• linearity: the mean of Y is β0 + β1X1 + · · · + βpXp.
• homoscedasticity: the error variance is constant
• independence of the errors/observations conditional on covariates.
• normality of the errors

This section reviews the assumptions made in order to allow statistical inference using the
linear model and different residuals that serve as building blocks for graphical diagnostics.
We investigate the consequences of violation of these assumptions and outline potential
mitigation strategies, many of which are undertaken in other chapters.

When we perform an hypothesis test, we merely fail to reject the null hypothesis, either
because the latter is true or else due to lack of evidence. The same goes for checking the
validity of model assumptions: scientific reasoning dictates that we cannot know for cer-
tain whether these hold true. Our strategy is therefore to use implications of the linear
model assumptions to create graphical diagnostic tools, so as to ensure that there is no
gross violation of these hypothesis. However, it is important to beware of over-interpreting
diagnostic plots: the human eye is very good at finding spurious patterns.

Other good references for the material in this section is:

• Forecasting: Principles and Practice, section 5.3

4.4.1 Residuals

Residuals are predictions of the errors ε and represent the difference between the observed
value Yi and the estimated value on the line. The ordinary residuals are

ei = Yi − Ŷi, i = 1, . . . , n.

The sum of the ordinary residuals is always zero by construction if the model includes an
intercept, meaning e = 0.
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Not all observations contribute equally to the adjustment of the fitted hyperplane. The
geometry of least squares shows that the residuals are orthogonal to the fitted values, and
e = (In − HX)Y , where HX = X(X⊤X)−1X⊤ is an n× n projection matrix that spans the
p-dimensional linear combination of the columns of X, S (X). If Va(Y ) = σ2In, it follows
that Va(e) = σ2(In − HX) because (In − HX) is a projection matrix, therefore idempo-
tent and symmetric. Because the matrix has rank n − p, the ordinary residuals cannot be
independent from one another.

If the errors are independent and homoscedastic, the ordinary residual ei has variance
σ2(1 − hi), where the leverage term hi = (HX)ii = xi(X⊤X)−1xi is the ith diagonal entry
of the projection matrix (HX) and xi is the ith row of the model matrix corresponding to
observation i.

We thus conclude that ordinary residuals do not all have the same standard deviation and
they are not independent. This is problematic, as we cannot make meaningful compar-
isons: points with low leverage are bound to deviate more from the fitted model than oth-
ers. To palliate to this, we can standardize the residuals so each has the same variance
under the null of independent homoscedastic errors — the leverage terms hi are readily
calculated from the model matrix X. The only remaining question is how to estimate the
variance. If we use the ith observation to estimate both the residual and the variance, we
introduce additional dependence. A better way is remove the ith observation and refit the
model with then−1 remaining observations to get of s2

(−i) (there are tricks and closed-form
expressions for these, so one doesn’t need to fit n different linear models). The jacknife
studentized residual ri = ei/{s(−i)(1 − hi)}, also termed externally studentized residuals,
are not independent, but they are identically distributed and follow a Student distribu-
tion with n − p − 2 degrees of freedom. These can be obtained in R with the command
rstudent.

When to use which residuals? By construction, the vector of ordinary residuals e is orthog-
onal to the fitted values ŷ and also to each column of the model matrix X: this means
a simple linear regression of e with any of these as covariate gives zero intercept and
zero slope. However, residual patterns due to forgotten interactions, nonlinear terms, etc.
could be picked up from pair plots of ordinary residuals against the explanatories.

While the jackknife studentized residuals ri are not orthogonal, they are not very different.
Use jackknife residuals r to check for equality of variance and distributional assumptions
(e.g., using quantile-quantile plots).

One thus typically uses ordinary residuals e for plots of fitted values/explanatories against
residuals and otherwise jackknife studentized residuals for any other graphical diagnostic
plot.
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4.4.2 Collinearity

The linearity assumption can be interpreted broadly to mean that all relevant covariates
have been included and that their effect is correctly specified in the equation of the mean.
Adding superfluous covariates to a model has limited impact: if the (partial) correlation
between a column vector Xk and the response variable Y is zero, then βk = 0 and the
estimated coefficient β̂k ≈ 0 because the least square estimators are unbiased. If we in-
clude many useless variables, say k, the lack of parsimony can however make interpreta-
tion more difficult. The price to pay for including the k additional covariates is an increase
in the variance of the estimators β̂.

It is nevertheless preferable to include more variables than to forget key predictors: if we
omit an important predictor, their effect may be picked up by other regressors (termed
confounders) in the model with are correlated with the omitted variable. The interpreta-
tion of the other effects can be severely affected by confounders. For example, the simple
linear model (or two-sample t-test) for salary as a function of sex for the college data is
invalid because sex is a confounder for rank. Since there are more men than women full
professor, the mean salary difference between men and women is higher than it truly is.
One way to account for this is to include control variables (such as rank), whose effect
we need not be interested in, but that are necessary for the model to be adequate. We
could also have used stratification, i.e., tested for wage discrimination within each aca-
demic rank. This is the reason why sociodemographic variables (sex, age, education level,
etc.) are collected as part of studies.

A linear model is not a causal model: all it does is capture the linear correlation between
an explanatory variable and the response. When there are more than one explanatory, the
effect of Xj given what has not already been explained by X−j . Thus, if we fail to reject
H0 : βj = 0 in favor of the alternative H1 : βj ̸= 0, we can only say that there is no sig-
nificant linear association between Xj and Y once the effect of other variables included in
the model has been accounted for. There are thus two scenarios: either the response is un-
correlated with Xj (uninteresting case, but easy to pick up by plotting both or computing
linear correlation), or else there is a strong correlation between Xj and both the response
Y as well as (some) of the other explanatory variables X1, . . . ,Xp. This problem is termed
(multi)collinearity.

One potential harm of collinearity is a decrease in the precision of parameter estimators.
With collinear explanatories, many linear combinations of the covariates represent the
response nearly as well. Due to the (near) lack of identifiability, the estimated coefficients
become numerically unstable and this causes an increase of the standard errors of the
parameters. The predicted or fitted values are unaffected. Generally, collinearity leads to
high estimated standard errors and the regression coefficients can change drastically when
new observations are included in the model, or when we include or remove explanatories.

95

https://xkcd.com/552/
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The individual β coefficients may not be statistically significant, but the global F -test will
indicate that some covariates are relevant for explaining the response. This however would
also be the case if there are predictors with strong signal, so neither is likely to be useful to
detect issues.

The added-variable plot shows the relation between the response Y and an explanatory Xj

after accounting for other variables: the slope β̂j of the simple linear regression is the same
of the full model. A similar idea can be used to see how much of Xj is already explained by
the other variables. For a given explanatory variable Xj , we define its variance inflation
factor as VIF(j) = (1 − R2(j))−1, where R2(j) is the coefficient of determination of the
model obtained by regressing Xj on all the other explanatory variables, i.e.,

Xj = β⋆0 + β⋆1X1 + · · · + β⋆j−1Xj−1 + β⋆j+1Xj+1 + · · · + β⋆pXp + ε⋆

By definition, R2(j) represents the proportion of the variance of Xj that is explained by all
the other predictor variables. Large variance inflation factors are indicative of problems
(typically covariates with VIF > 10 require scrutinity, and values in the hundreds or more
indicate serious problems).

Added-variable plots can also serve as diagnostics, by means of comparison of the partial
residuals with a scatterplot of the pair (Y,Xj); if the latter shows very strong linear relation,
but the slope is nearly zero in the added-variable plot, this hints that collinearity is an
issue.

What can one do about collinearity? If the goal of the study is to develop a predictive model
and we’re not interested in the parameters themselves, then we don’t need to do anything.
Collinearity is not a problem for the overall model: it’s only a problem for the individual
effects of the variables. Their joint effect is still present in the model, regardless of how the
individual effects are combined.

If we are interested in individual parameter estimates, for example, to see how (and to what
extent) the predictor variables explain the behaviour of Y , then things get more compli-
cated. Collinearity only affects the variables that are strongly correlated with one another,
so we only care if it affects one or more of the variables of interest. There sadly is no good
solution to the problem. One could

• try to obtain more data, so as to reduce the effects of collinearity appearing in specific
samples or that are due to small sample size.

• create a composite score by somehow combining the variables showing collinearity.
• remove one or more of the collinear variables. You need to be careful when doing

this not to end up with a misspecified model.
• use penalized regression. If X⊤X is (nearly) not invertible, this may restore the

uniqueness of the solution. Penalties introduce bias, but can reduce the variance of
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the estimators β. Popular choices include ridge regression (with an l2 penalty), lasso
(l1 penalty), but these require adjustment in order to get valid inference.

Whatever the method, it’s important to understand that it can be very difficult (and some-
times impossible) to isolate the individual effect of a predictor variable strongly correlated
with other predictors.

Example 4.12 (Collinearity in the college data). We consider the college data analysis
and include all the covariates in the database, including years, the number of years since
PhD. One can suspect that, unless a professor started his or her career elsewhere before
moving to the college, they will have nearly the same years of service. In fact, the corre-
lation between the two variables, service and years is 0.91. The variance inflation factor
for the five covariates

For categorical variables, the variance inflation factor definition would normally yield for
each level a different value; an alternative is the generalized variance inflation factor (Fox
and Monette 1992). Here, we are interested in gender disparities, so the fact that both
service and field are strongly correlated is not problematic, since the VIF for sex is not
high and the other variables are there to act as control and avoid confounders.

Table 4.5: (Generalized) variance inflation factor for the college data.

service years rank sex field

5.92 7.52 2.01 1.03 1.06

4.4.3 Leverage and outliers

The leverage hi of observation i measures its impact on the least square fit, since we can
write hi = ∂ŷi/∂yi. Leverage values tell us how much each point impacts the fit: they are
strictly positive, are bounded below by 1/n and above by 1. The sum of the leverage values
is
∑n
i=1 hi = p+ 1: in a good design, each point has approximately the same contribution,

with average weight (p+ 1)/n.

Points with high leverage are those that have unusual combinations of explanatories. An
influential observation (hi ≈ 1) pulls the fitted hyperplane towards itself so that ŷi ≈ yi. As
a rule of thumb, points with hi > 2(p+ 1)/n should be scrutinized.

It is important to distinguish betwen influential observations (which have unusual x
value, i.e., far from the overall mean) and outliers (unusual value of the response y). If an
observation is both an outlier and has a high leverage, it is problematic.
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Figure 4.9: Outlier and influential observation. The left panel shows an outlier, whereas
the right panel shows an influential variable (rightmost x value).

If influential observations can be detected by inspecting the leverage of each observation,
outliers are more difficult to diagnose.

An outlier stands out from the rest of the observations, either because it has an usual re-
sponse value, or because it falls far from the regression surface. Loosely speaking, an out-
lier is an unusual values of Y for a given combination of X that stands out from the rest.
Outliers can be detected during the exploratory data analysis or picked-up in residual plots
(large values of |ei| in plots of fitted versus residuals) or added-variable plots. One could
potentially test whether an jackknife studentized residual is an outlier (adjusting for the
fact we would consider only largest values). One can also consider Cook’s distance, Cj , a
statistic giving the scaled distance between the fitted values ŷ and the fitted values for the
model with all but the jth observation, ŷ(−j),

Cj = 1
(p+ 1)S2

n∑
i=1

{
ŷi − ŷ

(−j)
i

}2

Large values of Cj indicate that its residual ej is large relative to other observations or else
its leverage hj is high. A rule of thumb is to consider points for which Cj > 4/(n − p − 1).
In practice, if two observations are outlying and lie in the same region, their Cook distance
will be halved.
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Outliers and influential observations should not be disregarded because they don’t comply
with the model, but require further investigation. They may motivate further modelling
for features not accounted for. It is also useful to check for registration errors in the data
(which can be safely discarded).

Except in obvious scenarios, unusual observations should not be discarded. In very large
samples, the impact of a single outlier is hopefully limited. Transformations of the re-
sponse may help reduce outlyingness. Otherwise, alternative objective functions (as those
employed in robust regression) can be used; these downweight extreme observations, at
the cost of efficiency.

4.5 Diagnostic plots

We review the assumptions in turn and discuss what happens when the assumptions fail
to hold.

4.5.1 Independence assumption

Usually, the independence of the observations follows directly from the type of sampling
used — this assumption is implicitly true if the observations were taken from a random
sample from the population. This is generally not the case for longitudinal data, which
contains repeated measures from the same individuals across time. Likewise, time series
are bound not to have independent observations. If we want to include all the time points
in the analysis, we must take into account the possible dependence (correlation) between
observations. If we ignore correlation, the estimated standard errors are too small relative
to the truth, so the effective sample size is smaller than number of observations.

What is the impact of dependence between measurements? Heuristically, correlated mea-
surements carry less information than independent ones. In the most extreme case, there
is no additional information and measurements are identical, but adding them multiple
times unduly inflates the statistic and leads to more frequent rejections.

The lack of independence can also have drastic consequences on inference and lead to
false conclusions: Figure 4.10 shows an example with correlated samples within group (or
equivalently repeated measurements from individuals) with 25 observations per group.
The y-axis shows the proportion of times the null is rejected when it shouldn’t be. Here,
since the data are generated from the null model (equal mean) with equal variance, the
inflation in the number of spurious discoveries, false alarm or type I error is alarming and
the inflation is substantial even with very limited correlation between measurements.
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Figure 4.10: Percentage of rejection of the null hypothesis for the F -test of equality of
means for the one way ANOVA with data generated with equal mean and
variance from an equicorrelation model (within group observations are cor-
related, between group observations are independent). The nominal level of
the test is 5%.

The first source of dependence is clustered data, meaning measurements taken from sub-
jects that are not independent from one another (family, groups, etc.) More generally,
correlation between observations can arises from space-time dependence, roughly cate-
gorized into

• longitudinal data: repeated measurements are taken from the same subjects (few
time points)

• time series: observations observed at multiple time periods (many time points).

Time series require dedicated models not covered in this course. Because of autocorrela-
tion, positive errors tend to be followed by positive errors, etc. We can plot the residuals as
a function of time, and a scatterplot of lagged residuals ei versus ei−1 (i = 2, . . . , n).

However, lagged residuals plots only show dependence at lag one between observations.
For time series, we can look instead at a correlogram, i.e., a bar plot of the correlation
between two observations h units apart as a function of the lag h (Brockwell and Davis
2016, Definition 1.4.4).
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Figure 4.11: Lagged residual plots: there is no evidence against independence in the left
panel, whereas the right panel shows positively correlated residuals.

For y1, . . . , yn and constant time lags h = 0, 1, . . . units, the autocorrelation at lag h is

r(h) = γ(h)
γ(0) , γ(h) = 1

n

n−|h|∑
i=1

(yi − y)(yi+h) − y)

If the series is correlated, the sample autocorrelation will likely fall outside of the point-
wise confidence intervals, as shown in Figure 4.12. Presence of autocorrelation requires
modelling the correlation between observations explicitly using dedicated tools from the
time series literature. We will however examine AR(1) models as part of the chapter on
longitudinal data.

When observations are positively correlated, the estimated standard errors reported by the
software are too small. This means we are overconfident and will reject the null hypothesis
more often then we should if the null is true (inflated Type I error, or false positive).

4.5.2 Linearity assumption

The second assumption of the linear model is that of linearity, which means that the mean
model is correctly specified, all relevant covariates have been included and their effect is
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Figure 4.12: Correlogram of independent observations (left) and the ordinary residuals of
the log-linear model fitted to the air passengers data (right). While the mean
model of the latter is seemingly correctly specified, there is residual depen-
dence between monthly observations and yearly (at lag 12). The blue lines
give approximate pointwise 95% confidence intervals for white noise (uncor-
related observations).

correctly specified. To check that the response surface of the linear model is adequate, we
plot ei against ŷi or Xij (for j = 1, . . . , p). Since the linear correlation between e and ŷ (or
e and Xj) is zero by construction, patterns (e.g., quadratic trend, cycles, changepoints)
are indicative of misspecification of the mean model. One can add a smoother to detect
patterns. Figure 4.13 shows three diagnostics plots, the second of which shows no pattern
in the residuals, but skewed fitted values.

If there is residual structure in plots of ordinary residuals against either (a) the fitted values
or (b) the explanatory variables, a more complex model can be adjusted including inter-
actions, nonlinear functions, . . . If the effect of an explanatory variable is clearly nonlinear
and complicated, smooth terms could be added (we won’t cover generalized additive mod-
els in this course).

Plotting residuals against left-out explanatory variables can also serve to check that all of
the explanatory power of the omitted covariate is already explained by the columns of X.

If an important variable has been omitted and is not available in the dataset, then the
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Figure 4.13: Scatterplots of residuals against fitted values. The first two plots show no de-
parture from linearity (mean zero). The third plot shows a clear quadratic pat-
tern, suggesting the mean model is misspecified. Note that the distribution
of the fitted value need not be uniform, as in the second panel which shows
more high fitted values.

effect of that variable is captured by both the errors (the portion orthogonal to the model
matrix X, i.e., unexplained by the covariates included in the model) and the remaining
part is captured by other explanatories of the model that are correlated with the omitted
variable. These variables can act as confounders. There is little that can be done in either
case unless the data for the omitted variable are available, but subject-specific knowledge
may help make sense of the results.

4.5.3 Constant variance assumption

If the variance of the errors is the same for all observations (homoscedasticity), that of the
observations Y is also constant. The most common scenarios for heteroscedasticity are
increases in variance with the response, or else variance that depends on explanatory vari-
ables X, most notably categorical variables. For the former, a log-transform (or Box–Cox
transformation) can help stabilize the variance, but we need the response to be positive.
For the latter, we can explicitly model that variance and we will see how to include differ-
ent variance per group later on. A popular strategy in the econometrics literature, is to use
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robust (inflated) estimators of the standard errors such as White’s sandwich estimator of
the variance.

If the residuals (or observations) are heteroscedastic (non constant variance), the esti-
mated effects of the variables (the β parameters) are still valid in the sense that the ordinary
least squares estimator β̂ is unbiased. However, the estimated standard errors of the β̂ are
no longer reliable and, consequently, the confidence intervals and the hypothesis tests for
the model parameters will be incorrect. Indeed, if the variance of the errors differs from
one observation to the next, we will estimate an average of the different variance terms.
The standard errors of each term are incorrect (too small or too large) and the conclusions
of the tests (p-values) will be off because the formulas of both t-test and F -test statistics
include estimates of σ̂2.

Looking at the plot of jackknife studentized residuals against regressors (or fitted values)
is instructive — for example, we often see a funnel pattern when there is an increase in
variance in the plot of the jackknife studentized residuals against fitted value, or else in
boxplots with a categorical variable as in Figure 4.15. However, if we want to fit a local
smoother to observe trends, it is better to plot the absolute value of the jackknife studen-
tized residuals against regressors or observation number.
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Figure 4.14: Plot of the absolute value of jackknife studentized residuals against observa-
tion number. The left panel is typical of homoscedastic data, whereas the right
panel indicates an increase in the variance.
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Figure 4.15: Plot of jackknife studentized residuals against fitted value (left) and categori-
cal explanatory (right). Both clearly display heteroscedasticity.

An obvious extension of the linear model is to allow variance to vary according to explana-
tories, typically categorical covariates. In a likelihood framework, this is easy to do and we
will cover this approach in more detail.

We can perform hypothesis tests for the homogeneity (equal) variance assumption. The
most commonly used tests are Bartlett’s test, the likelihood ratio test under the assumption
of normally distributed data, with a Bartlett correction to improve the χ2 approximation to
the null distribution. The second most popular is Levene’s test (a more robust alternative,
less sensitive to outliers). For both tests, the null distribution is H0 : σ2

1 = · · · = σ2
K against

the alternative that at least two differ. The Bartlett test statistic has a χ2 null distribution
with K − 1 degrees of freedom, whereas Levene’s test has an F -distribution with (K − 1,
n − K) degrees of freedom: it is equivalent to computing the one-way ANOVA F -statistic
with the absolute value of the centered residuals, |yik − µ̂k|, as observations.

What are the impacts of unequal variance if we use the F -test instead? For one, the pooled
variance will be based on a weighted average of the variance in each group, where the
weight is a function of the sample size. This can lead to size distortion (meaning that the
proportion of type I error is not the nominal levelα as claimed) and potential loss of power.
The following toy example illustrates this.

Example 4.13 (Violation of the null hypothesis of equal variance).
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Figure 4.16: Histogram of the null distribution of p-values obtained through simulation us-
ing the classical analysis of variance F -test (left) and Welch’s unequal variance
alternative (right), based on 10 000 simulations. Each simulated sample con-
sist of 50 observations from a Normal(0, 1) distribution and 10 observations
from Normal(0, 9). The uniform distribution would have 5% in each of the 20
bins used for the display.

We consider for simplicity a problem with K = 2 groups, which is the two-sample t-test.
We simulated 50 observations from a Normal(0, 1) distribution and 10 observations from
Normal(0, 9), comparing the distribution of the p-values for the Welch and theF -test statis-
tics. Figure 4.16 shows the results. The percentage of p-values less than α = 0.05 based on
10 000 replicates is estimated to be 4.76% for the Welch statistic, not far from the level.
By contrast, we reject 28.95% of the time with the one-way ANOVA global F -test: this is a
large share of innocents sentenced to jail based on false premises! While the size distor-
tion is not always as striking, heterogeneity should be accounted in the design by requiring
sufficient sample sizes (whenever costs permits) in each group to be able to estimate the
variance reliably and using an adequate statistic.

There are alternative graphical ways of checking the assumption of equal variance, many
including the standardized residuals rik = (yik − µ̂k)/σ̂ against the fitted values µ̂k. We will
cover these in later sections.

Oftentimes, unequal variance occurs because the model is not additive. You could use

106



4.5 Diagnostic plots

variance-stabilizing transformations (e.g., log for multiplicative effects) to ensure approx-
imately equal variance in each group. Another option is to use a model that is suitable
for the type of response you have (including count and binary data). Lastly, it may be
necessary to explicitly model the variance in more complex design (including repeated
measures) where there is a learning effect over time and variability decreases as a result.
Consult an expert if needed.

4.5.4 Normality assumption

The normality assumption is mostly for convenience: if the errors are assumed normally
distributed, then the least square and the maximum likelihood estimators of β coincide.
The maximum likelihood estimators ofβ are asymptotically normal under mild conditions
on the model matrix and t-tests are surprisingly robust and unaffected by departure from
the normality assumption. This means that inference is valid in large samples, regardless
of the distribution of the errors/residuals (even if the null distribution are not exact). It is
important to keep in mind that, for categorical explanatory variables, the sample size in
each group must be sufficiently large for the central limit theorem to kick in since coeffi-
cients represent group average.

Sometimes, transformations can improve normality: if the data is right-skewed and the re-
sponse is strictly positive, a log-linear model may be more adequate Section 4.6.1. This can
be assessed by looking at the quantile-quantile plot of the externally studentized residu-
als. If the response Y is not continuous (including binary, proportion or count data), linear
models give misleading answers and generalized linear models are more suitable.

The inference will be valid for large samples even if the errors are not normally distributed
by virtue of the central limit theorem. If the errors εi ∼ normal(0, σ2), then the jacknnife
studentized residuals should follow a Student distribution, with ri ∼ Student(n − p − 2),
(identically distributed, but not independent). A Student quantile-quantile plot can thus
be used to check the assumption (and for n large, the normal plotting positions could be
used as approximation if n− p > 50). One can also plot a histogram of the residuals. Keep
in mind that if the mean model is not correctly specified, some residuals may incorporate
effect of leftover covariates.

Quantile-quantile plots are discussed in Definition 1.16 but their interpretation requires
training. For example, Figure 4.18 shows many common scenarios that can be diagnosed
using quantile-quantile plots: discrete data is responsible for staircase patterns, positively
skewed data has too high low quantiles and too low high quantiles relative to the plotting
positions, heavy tailed data have high observations in either tails and bimodal data leads
to jumps in the plot.
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Figure 4.17: Histogram (left) and Student quantile-quantile plot (right) of the jackknife stu-
dentized residuals. The left panel includes a kernel density estimate (black),
with the density of Student distribution (blue) superimposed. The right panel
includes pointwise 95% confidence bands calculated using a bootstrap.

Example 4.14 (Diagnostic plots for the college data.). We can look at the college data to
see if the linear model assumptions hold.

Based on the plots of Figure 4.19, we find that there is residual heteroscedasticity, due to
rank. Since the number of years in the first rank is limited and all assistant professors
were hired in the last six years, there is less disparity in their income. It is important not
to mistake the pattern on the x-axis for the fitted value (due to the large effect of rank
and field, both categorical variable) with patterns in the residuals (none apparent). Fix-
ing the heteroscedasticity would correct the residuals and improve the appearance of the
quantile-quantile plot.
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Figure 4.18: Quantile-quantile plots of non-normal data, showing typical look of be-
haviour of discrete (top left), heavy tailed (top right), skewed (bottom left) and
bimodal data (bottom right).

4.6 Extensions of the model

4.6.1 Transformation of the response

If the response is strictly positive, there are some options that can alleviate lack of ad-
ditivity, more specifically multiplicative mean-variance relationships.If the data is right-
skewed and the response is strictly positive, a log-linear model may be more adequate and
the parameters can be interpreted. Theory sometimes dictates a multiplicative model: for
example, the Cobb–Douglas production function in economics is P = αLβ1Cβ2 , where
P stands for production, L for labor and C for capital; all inputs are positive, so taking a
log-transform yields a model that is linear in β, with β0 = ln(α).
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Figure 4.19: Diagnostic plots for the college data example: ordinary residuals against fitted
values (top left), absolute value of the jacknnife studentized residuals against
fitted values (top right), box and whiskers plot of jacknnife studentized residu-
als (bottom left) and detrended Student quantile-quantile plot (bottom right).
There is clear group heteroscedasticity.

We can rewrite the log-linear model in the original response scale as

Y = exp

β0 +
p∑
j=1

βjXj + ε


= exp

β0 +
p∑
j=1

βjXj

 · exp(ε),

and thus

E(Y | X) = exp(β0 + β1X1 + · · · + βpXp) × E{exp(ε) | X}.

If ε | X ∼ normal(µ, σ2), then E{exp(ε) | X} = exp(µ+σ2/2) and exp(ε) follows a log-normal
distribution.

An increase of one unit ofXj leads to a βj increase of lnY without interaction or nonlinear
term for Xj , and this translates into a multiplicative increase of a factor exp(βj) on the
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4.6 Extensions of the model

original data scale for Y . Indeed, we can compare the ratio of E(Y | X1 = x + 1) to E(Y |
X1 = x),

E(Y | X1 = x+ 1, X2, . . . , Xp)
E(Y | X1 = x,X2, . . . , Xp)

= exp{β1(x+ 1)}
exp(β1x) = exp(β1).

Thus, exp(β1) represents the ratio of the mean of Y when X1 = x + 1 in comparison to
that when X1 = x, ceteris paribus (and provided this statement is meaningful). If βj =
0, the multiplicative factor one is the identity, whereas negative values of the regression
coefficient βj < 0 leads to exp(βj) < 1. The percentage change is 1 − exp(βj) if βj < 0 and
exp(βj) − 1 if βj > 0

Sometimes, we may wish to consider a log transformation of both the response and
some of the continuous positive explanatories, when this make sense (a so-called log-log
model). Consider the case where both Y and X1 is log-transformed, so the equation for
the mean on the original data scale reads

Y = Xβ1
1 exp(β0 + β2X2 + · · · + βpXp + ε)

Taking the derivative of the left hand side with respect to X1 > 0, we get

∂Y

∂X1
= β1X

β1−1
1 exp(β0 + β2X2 + · · · + βpXp + ε)

= β1Y

X1

and thus we can rearrange the expression so that

∂X1
X1

β1 = ∂Y

Y
;

this is a partial elasticity, so β1 is interpreted as a β1 percentage change in Y for each
percentage increase of X1, ceteris paribus.

Example 4.15 (Log-log model). Consider for example the Cobb–Douglas production func-
tion (Douglas 1976), which specifies that economic output Y is related to labour L and
capital C via E(Y | L,C) = β0C

βL1−β with β ∈ (0, 1). If we take logarithms on both sides
(since all arguments are positive), then E(lnY | L,C) = β∗

0 +β1 lnC+(1−β1) lnL. We could
fit a linear model with response lnY − lnL and explanatory variable lnC − lnL, to obtain
an estimate of the coefficient β1, while β∗

0 = ln β0. A constrained optimization would be
potentially necessary to estimate the model parameters of the resulting linear model if the
estimates lie outside of the parameter space.
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4 Linear regression models

Proposition 4.4 (Box–Cox transformation). If the data are strictly positive, one can consider
a Box–Cox transformation,

y(λ) =
{

(yλ − 1)/λ, λ ̸= 0
ln(y), λ = 0.

The cases λ = −1 (inverse), λ = 1 (identity) and λ = 0 (log-linear model) are perhaps the
most important because they yield interpretable models.

If we assume that Y (λ) ∼ normal(Xβ, σ2In), then the likelihood is

L(λ,β, σ;y,X) = (2πσ2)−n/2J(λ,y)×

exp
[
− 1

2σ2 {y(λ) − Xβ}⊤{y(λ) − Xβ}
]
,

where J denotes the Jacobian of the Box–Cox transformation, J(λ,y) =
∏n
i=1 y

λ−1
i . For each

given value of λ, the maximum likelihood estimator is that of the usual regression model,
withy replaced byy(λ), namely β̂λ = (X⊤X)−1X⊤y(λ) and σ̂2

λ = n−1{y(λ)−Xβ̂λ}⊤{y(λ)−
Xβ̂λ}.

The profile log likelihood is

ℓp(λ) = −n

2 ln(2πσ̂2
λ) − n

2 + (λ− 1)
n∑
i=1

ln(yi)

The maximum profile likelihood estimator is the value λ minimizes the sum of squared
residuals from the linear model with y(λ) as response.

The Box–Cox is not a panacea and should be reserved to cases where the transformation
reduces heteroscedasticity (unequal variance) or creates a linear relation between explana-
tories and response: theory provides a cogent explanation of the data. Rather than an ad hoc
choice of transformation, one could choose a log transformation if the value 0 is included
within the 95% confidence interval since this improves interpretability.

Example 4.16 (Box–Cox transform for the poison data). Box and Cox (1964) considered
survival time for 48 animals based on a randomized trial; these data are analyzed in Exam-
ple 8.25 of Davison (2003). Three poisons were administered with four treatments; each
factor combination contained four animals, chosen at random. There is strong evidence
that both the choice of poison and treatment affect survival time.

We could consider a two-way analysis of variance model for these data without interaction,
given the few observations for each combination. The model would be of the form

Y = β0 + β1poison2 + β2poison3 + β3treatment2

+ β4treatment3 + β5treatment4 + ε
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4.7 Concluding remarks

The plot of fitted values against residuals shows that the model is not additive; there is also
indications that the variance increases with the mean response. The model is inadequate:
lowest survival times are underpredicted, meaning the residuals are positive and likewise
the middle responses is positive. A formal test of non-additivity based on constructed
variables further point towards non-additivity (Davison 2003, Example 8.24). Overall, the
model fit is poor and any conclusion drawn from it dubious.

One could consider using a Box–Cox to find a suitable transformation of the residuals so as
to improve normality. The profile log likelihood at the bottom left of Figure 4.20 suggests
that λ ≈ −1 would be a good choice. This has the benefit of being interpretable, as the
reciprocal response Y −1 corresponds to the speed of action of the poison depending on
both poison type and treatment. The diagnostics plots also indicate that the model for the
reciprocal has no residual structure and the variance appears constant.

4.7 Concluding remarks

Linear regression is the most famous and the most widely used statistical model around.
The name may appear reductive, but many tests statistics (t-tests, ANOVA, Wilcoxon,
Kruskal–Wallis) can be formulated using a linear regression, while models as diverse as
trees, principal components and deep neural networks are just linear regression model
in disguise. What changes under the hood between one fancy model to the next are the
optimization method (e.g., ordinary least squares, constrained optimization or stochastic
gradient descent) and the choice of explanatory variables entering the model (spline basis
for nonparametric regression, indicator variable selected via a greedy search for trees,
activation functions for neural networks).
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Figure 4.20: Diagnostic plots for the poison data. The top panel shows the ordinary resid-
uals for the linear model for survival time as a function of poison and treat-
ment, with jittered observations. The middle left plot shows the fitted values
against residuals, which display evidence of trend and increase in variance
with the survival time. The quantile-quantile plot in the middle right plot
shows some evidence of departure from the normality, but the non-linearity
and heteroscedasticity obscure this. The bottom panel shows the profile log
likelihood for the Box–Cox transform, suggesting a value of −1 would be within
the 95% confidence interval. After fitting the same additive model with main
effect only to the reciprocal survival time, there is no more evidence of resid-
ual structure and unequal variance.
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