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Welcome

This book is a web complement to MATH 80667A Experimental Designs and Statistical Meth-
ods, a graduate course offered at HEC Montréal in the joint Ph.D. program in Management.
Consult the course webpage for more details.

These notes are licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License and were last compiled on Tuesday, November 26
2024.

The objective of the course is to teach basic principles of experimental designs and statistical
inference using the R programming language. We will pay particular attention to the correct
reporting and interpretation of results and learn how to review critically scientific papers
using experimental designs. The unifying theme of the book is that statistics are summary
of evidence, and statistic as a field is the science of decision-making in the presence of
uncertainty. We use examples drawn from published articles in management sciences to
illustrate core concepts.
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1 Introduction

The advancement of science is built on our ability to study and assess research hypotheses.
This chapter covers the basic concepts of experiments, starting with vocabulary associated
with the field. Emphasis is placed on the difference between experiments and observa-
tions.

This course covers experimental designs. In an experiment, the researcher manipulates
one or more features (say the complexity of a text the person must read, or the type of
advertisement campaign displayed, etc.) to study their impact. In general, however (Cox
1958)

effects under investigation tend to be masked by fluctuations outside the experi-
menter’s control.

The purpose of experiments is to arrange data collection so as to be capable of disentangling
the differences due to treatment from those due to the (often large) intrinsic variation of the
measurements. We typically expect differences between treatments (and thus the effect) to
be comparatively stable relative to the measurement variation.

, Learning objectives:

• Learning the terminology associated to experiments.
• Assessing the generalizability of a study based on the consideration of the sample

characteristics, sampling scheme and population.
• Distinguishing between observational and experimental studies.
• Understanding the rationale behind the requirements for good experimental

studies.

1.1 Study type

There are two main categories of studies: observational and experimental. The main
difference between the two is treatment assignment. In observational studies, a feature
or potential cause is measured, but not assigned by the experimenter. By contrast, the
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1 Introduction

treatment assignment mechanism is fully determined by the experimenter in the latter
case.

For example, an economist studying the impact of interest rates on the price of housing
can only look at historical records of sales. Similarly, surveys studying the labour market
are also observational: people cannot influence the type of job performed by employees
or their social benefits to see what could have happened. Observational studies can lead
to detection of association, but only an experiment in which the researcher controls the
allocation mechanism through randomization can lead to directly establish existence of a
causal relationship. Because everything else is the same in a well controlled experiment,
any treatment effect should be in principle caused by the experimental manipulation.1

Figure 1.1: Two by two classification matrix for experiments based on sampling and study
type. Source: Mine Çetinkaya-Rundel and OpenIntro, distributed under the CC
BY-SA license.

Figure 1.1 summarizes the two preceding sections. Random allocation of observational
units to treatment and random samples from the population lead to ideal studies, but may
be impossible due to ethical considerations.

1The preceding paragraph shouldn’t be taken to mean that one cannot get meaningful conclusions from
observational studies. Rather, I wish to highlight that controlling for the non-random allocation and
potential confounding is a much more complicated task, requires practitioners to make stronger (and
sometimes unverifiable) assumptions and requires using a different toolbox (including, but not limited
to differences in differences, propensity score weighting, instrumental variables). The book The Effect:
An Introduction to Research Design and Causality by Nick Huntington-Klein gives a gentle nontechnical
introduction to some of these methods.
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1.2 Terminology

1.2 Terminology

In its simplest form, an experimental design is a comparison of two or more treatments
(experimental conditions):

• The subjects (or experimental units) in the different groups of treatment have similar
characteristics and are treated exactly the same way in the experimentation except
for the treatment they are receiving. Formally, an experimental unit is the smallest
division such that any two units may receive different treatments.

• The observational unit is the smallest level (time point, individual) at which measure-
ment are recorded.

• Explanatories (independent variables) are variables that impact the response. They
can be continuous (dose) or categorical variables; in the latter case, they are termed
factors.

• The experimental treatments or conditions are manipulated and controlled by the
researcher. Oftentimes, there is a control or baseline treatment relative to which we
measure improvement (e.g., a placebo for drugs).

• After the different treatments have been administered to subjects participating in
a study, the researcher measures one or more outcomes (also called responses or
dependent variables) on each subject.

• Observed differences in the outcome variable between the experimental conditions
(treatments) are called treatment effects.

Example 1.1 (Pedagogical experience). Suppose we want to study the effectiveness of
different pedagogical approaches to learning. Evidence-based pedagogical researchs point
out that active learning leads to higher retention of information. To corroborate this
research hypothesis, we can design an experiment in which different sections of a course
are assigned to different teaching methods. In this example, each student in a class group
receives the same teaching assignment, so the experimental units are the sections and
the observational units are the individual students. The treatment is the teaching method
(traditional teaching versus flipped classroom).

� Your turn

The marketing department of a company wants to know the value of its brand by
determining how much more customers are willing to pay for their product relative
to the cheaper generic product offered by the store. Economic theory suggests a
substitution effect: while customers may prefer the brand product, they will switch to
the generic version if the price tag is too high. To check this theory, one could design
an experiment.

5



1 Introduction

As a researcher, how would you conduct this study? Identify a specific product. For
the latter, define

• an adequate response variable
• the experimental and observational units
• potential blocking factors

The main reason experiments should be preferred to collection of observational data is
that they allow us, if they are conducted properly, to draw causal conclusions about the
phenomenon of interest. If we take a random sample from the population of interest, split
it randomly and manipulate only certain aspects, then all differences between groups must
be due to those changes.

As Hariton and Locascio (2018) put it:

Randomised controlled trials (RCTs) are the reference standard for studying
causal relationships between interventions and outcomes as randomisation
eliminates much of the bias inherent with other study designs

\ Quasi experiments

Sometimes, it is impossible or unethical to conduct an experiment. This seemingly
precludes study many social phenomena, such as the effect on women and infantile
mortality of strict bans on abortions. When changes in legislation occur (such as
the Supreme court overturning Roe and Wade), this offers a window to compare
neighbouring states.
Canadian economist David Card was co-awarded the 2021 Nobel Memorial Prize in
Economic Sciences for his work in experimental economics. One of his most cited
paper is Card and Krueger (1994), a study that looked at the impact of an increase
in minimum wage on employment figures. Card and Krueger (1994) used a planned
increase of the minimum wage of $0.80 USD in New Jersey to make comparisons with
neighbouring Eastern Pennsylvania counties by studying 410 fast food outlets. The
authors found no evidence of a negative impact on employment of this hike.

, Point of terminology: internal and external validity

A study from which we can study causal relationships is said to have internal validity.
By design, good experiments should have this desirable property because the random
allocation of treatment guarantees, if randomization is well performed, that the effect
of interest is causal. There are many other aspects, not covered in the class, that can
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1.3 Review of basic concepts

threaten internal validity.
External validity refers directly to generalizability of the conclusions of a study: Fig-
ure 1.1 shows that external validity is directly related to random sampling from the
population

, Point of terminology: between-subjects and within-subjects designs

In between-subjects designs, subjects are randomly assigned to only one of the differ-
ent experimental conditions. On the contrary, participants receive many or all of the
experimental treatments in a within-subjects design, the order of assignment of the
conditions typically being random.
While within-subject designs allow for a better use of available ressources (it is cheaper
to have fewer participants perform multiple tasks), observations from within-design
are correlated and more subject to missingness and learning effects, all of which
require special statistical treatment.

1.3 Review of basic concepts

1.3.1 Variables

The choice of statistical model and test depends on the underlying type of the data collected.
There are many choices: quantitative (discrete or continuous) if the variables are numeric,
or qualitative (binary, nominal, ordinal) if they can be described using an adjective; I prefer
the term categorical, which is more evocative. The choice of graphical representation for
data is contingent on variable type. Specifically,

• a variable represents a characteristic of the population, for example the sex of an
individual, the price of an item, etc.

• an observation is a set of measures (variables) collected under identical conditions
for an individual or at a given time.

Most of the models we will deal with are so-called regression models, in which the mean of
a quantitative variable is a function of other variables, termed explanatories. There are two
types of numerical variables

• a discrete variable takes a countable number of values, prime examples being binary
variables or count variables.
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1 Introduction

• a continuous variable can take (in theory) an infinite possible number of values, even
when measurements are rounded or measured with a limited precision (time, width,
mass). In many case, we could also consider discrete variables as continuous if they
take enough values (e.g., money).

Categorical variables take only a finite of values. They are regrouped in two groups, nominal
if there is no ordering between levels (sex, colour, country of origin) or ordinal if they
are ordered (Likert scale, salary scale) and this ordering should be reflected in graphs or
tables. We will bundle every categorical variable using arbitrary encoding for the levels:
for modelling, these variables taking K possible values (or levels) must be transformed
into a set of K − 1 binary variables T1, . . . , TK , each of which corresponds to the logical
group k (yes = 1, no = 0), the omitted level corresponding to a baseline when all of the K − 1
indicators are zero. Failing to declare categorical variables in your software is a common
mistake, especially when these are saved in the database using integers (1,2, . . .) rather than
as text (Monday, Tuesday, . . .).

We can characterize the set of all potential values their measurements can take, together
with their frequency, via a distribution. The latter can be represented graphically using
an histogram or a density plot2 if the data are continuous, or a bar plot for discrete or
categorical measurements.

Example 1.2 (Die toss). The distribution of outcomes of a die toss is discrete and takes
values 1, . . . , 6. Each outcome is equally likely with probability 1/6.

Example 1.3 (Normal distribution). Mathematical theory suggests that, under general
conditions, the distribution of a sample average is approximately distributed according to
a normal (aka Gaussian) distribution: this result is central to most of statistics. Normally
distributed data are continuous; the distribution is characterized by a bell curve, light tails
and it is symmetric around it’s mean. The shape of the facade of Hallgrímskirkja church in
Reykjavik, shown in Figure 1.2, closely resembles the density a normal distribution, which
lead Khoa Vu to call it ‘a normal church’ (chuckles).

The normal distribution is fully characterized by two parameters: the average µ and the
standard deviation σ. The left panel of Figure 1.3 shows an arbitrary continuous distribution
and the values of a random sample of n = 1000 draws. The right panel shows the histogram
of the sample mean value based on a very large number of random samples of size n = 25,
drawn from the same distribution. The superimposed black curve is a normal density curve
whose parameters match those given by the central limit theorem: the approximation is
seemingly quite accurate.

2Since continuous data can take any value in the interval, we can’t talk about the probability of a specific value.
Rather, the density curve encodes the probability for any given area: the higher the curve, the more likely
the outcome.
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1.3 Review of basic concepts

Figure 1.2: Photography of the Hallgrímskirkja church in Reykjavik, Iceland by Dolf van der
Haven, reproduced under a CC BY-ND-NC 2.0 license.

This fact explains the omnipresence of the normal distribution in introductory data science
courses, as well as the prevalence of sample mean and sample variance as key summary
statistics.3

ñ Thinking outside the box

One key aspect, often neglected in studies, is the discussion of the metric used for
measurement of the response. While previous research may have identified instru-
ments (like questionnaires) and particular wording for studying a particular aspect
of individuals, there is a lot of free room for researchers to choose from that may
impact conclusions. For example, if one uses a Likert scale, what should be the range
of the scale? Too coarse a choice may lead to limited capability to detect, but more
truthfulness, while there may be larger intrinsic measurement with a finer scale.
Likewise, many continuous measures (say fMRI signal) can be discretized to provide a
single numerical value. Choosing the average signal, range, etc. as outcome variable
may lead to different conclusions.

3The parameters of most commonly used theoretical distributions do not directly relate to the mean and the
variance, unlike the normal distribution.
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Figure 1.3: Graphical representation of the distribution of a continuous variable, with his-
togram of a sample of n = 1000 observations drawn from the distribution (left)
and distribution of the sample mean, obtained by repeatedly drawing random
sample of n = 25 observations and computing their average (right). The curve
shows the normal distribution approximation based on the central limit theo-
rem.

Choosing a particular instrument or metric could be in principle done by studying
(apriori) the distribution of the values for the chosen metric using a pilot study: this
will give researchers some grasp of the variability of those measures.

At the heart of most analysis are measurements. The data presented in the course have
been cleaned and oftentimes the choice of explanatory variables and experimental factor4

is evident from the context. In applications, however, this choice is not always trivial.

4A factor is a categorical variable, thus the experimental factor encodes the different groups to compare
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1.3 Review of basic concepts

1.3.2 Population and samples

Only for well-designed sampling schemes does results generalize beyond the group ob-
served. It is thus of paramount importance to define the objective and the population of
interest should we want to make conclusions.

Generally, we will seek to estimate characteristics of a population using only a sample (a
sub-group of the population of smaller size). The population of interest is a collection
of individuals which the study targets. For example, the Labour Force Survey (LFS) is a
monthly study conducted by Statistics Canada, who define the target population as “all
members of the selected household who are 15 years old and older, whether they work
or not.” Asking every Canadian meeting this definition would be costly and the process
would be long: the characteristic of interest (employment) is also a snapshot in time and
can vary when the person leaves a job, enters the job market or become unemployed. In
this example, collecting a census would be impossible and too costly.

In general, we therefore consider only samples to gather the information we seek to obtain.
The purpose of statistical inference is to draw conclusions about the population, but using
only a share of the latter and accounting for sources of variability. The pollster George
Gallup made this great analogy between sample and population:

One spoonful can reflect the taste of the whole pot, if the soup is well-stirred

A sample is a sub-group of individuals drawn at random from the population. We won’t
focus on data collection, but keep in mind the following information: for a sample to be
good, it must be representative of the population under study.

� Your turn

The Parcours AGIR at HEC Montréal is a pilot project for Bachelor in Administration
students that was initiated to study the impact of flipped classroom and active learning
on performance.
Do you think we can draw conclusions about the efficacy of this teaching method by
comparing the results of the students with those of the rest of the bachelor program?
List potential issues with this approach addressing the internal and external validity,
generalizability, effect of lurking variables, etc.

Because the individuals are selected at random to be part of the sample, the measurement
of the characteristic of interest will also be random and change from one sample to the next.
While larger samples typically carry more information, sample size is not a guarantee of
quality, as the following example demonstrates.
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1 Introduction

Example 1.4 (Polling for the 1936 USA Presidential Election). The Literary Digest surveyed
10 millions people by mail to know voting preferences for the 1936 USA Presidential Election.
A sizeable share, 2.4 millions answered, giving Alf Landon (57%) over incumbent President
Franklin D. Roosevelt (43%). The latter nevertheless won in a landslide election with 62% of
votes cast, a 19% forecast error. Biased sampling and differential non-response are mostly
responsible for the error: the sampling frame was built using “phone number directories,
drivers’ registrations, club memberships, etc.’ ’, all of which skewed the sample towards rich
upper class white people more susceptible to vote for the GOP.

In contrast, Gallup correctly predicted the outcome by polling (only) 50K inhabitants. Read
the full story here.

ñ Thinking outside the box

What are the considerations that could guide you in determining the population of
interest for your study?

1.3.3 Sampling

Because sampling is costly, we can only collect limited information about the variable of
interest, drawing from the population through a sampling frame (phone books, population
register, etc.) Good sampling frames can be purchased from sampling firms.

In general, randomization is necessary in order to obtain a representative sample5, one
that match the characteristics of the population. Failing to randomize leads to introduction
of bias and generally the conclusions drawn from a study won’t be generalizable.

Even when observational units are selected at random to participate, there may be bias
introduced due to non-response. In the 1950s, conducting surveys was relatively easier
because most people were listed in telephone books; nowadays, sampling firms rely on a
mix of interactive voice response and live callers, with sampling frames mixing landlines,
cellphones and online panels together with (heavy) weighting to correct for non-response.
Sampling is a difficult problem with which we engage only cursorily, but readers are urged
to exercise scrutiny when reading papers.

5Note this randomization is different from the one in assigning treatments to experimental units!
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1.3 Review of basic concepts

ñ Thinking outside the box

Reflect on the choice of platform used to collect answers and think about how it
could influence the composition of the sample returned or affect non-response in a
systematic way.

Before examining problems related to sampling, we review the main random sampling
methods. The simplest is simple random sampling, whereby n units are drawn completely
at random (uniformly) from the N elements of the sampling frame. The second most
common scheme is stratified sampling, whereby a certain numbers of units are drawn
uniformly from strata, namely subgroups (e.g., gender). Finally, cluster sampling consists
in sampling only from some of these subgroups.

Example 1.5 (Sampling schemes in a picture). Suppose we wish to look at student satisfac-
tion regarding the material taught in an introductory statistics course offered to multiple
sections. The population consists of all students enrolled in the course in a given semester
and this list provides the sampling frame. We can define strata to consist of class group. A
simple random sample would be obtaining by sampling randomly abstracting from class
groups, a stratified sample by drawing randomly a number from each class group and a
cluster sampling by drawing all students from selected class groups. Cluster sampling is
mostly useful if all groups are similar and if the costs associated to sampling from multiple
strata are expensive.

Figure 1.4 shows three sampling schemes: the middle corresponds to stratum (e.g., age
bands) whereas the right contains clusters (e.g., villages or classrooms).

Stratified sampling is typically superior if we care about having similar proportions of
sampled in each group and is useful for reweighting: in Figure 1.4, the true proportion of
sampled is 1/3, with the simple random sampling having a range of [0.22, 0.39] among the
strata, compared to [0.31, 0.33] for the stratified sample.

ñ Thinking outside the box

The credibility of a study relies in large part on the quality of the data collection. Why
is it customary to report descriptive statistics of the sample and a description of the
population?

There are other instances of sampling, most of which are non-random and to be avoided
whenever possible. These include convenience samples, consisting of observational units
that are easy to access or include (e.g., friends, students from a university, passerby in the
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1 Introduction

Figure 1.4: Illustration of three sampling schemes from nine groups: simple random sam-
pling (left), stratified sampling (middle) and cluster sampling (right).

street). Much like for anecdotal reports, these observational units need not be representative
of the whole population and it is very difficult to understand how they relate to the latter.

In recent years, there has been a proliferation of studies employing data obtained from web
experimentation plateforms such as Amazon’s Mechanical Turk (MTurk), to the point that
the Journal of Management commissioned a review (Aguinis, Villamor, and Ramani 2021).
These samples are subject to self-selection bias and articles using them should be read
with a healthy dose of skepticism. Unless good manipulation checks are conducted (e.g., to
ensure participants are faithful and answer in a reasonable amount of time), I would reserve
these tools for paired samples (e.g., asking people to perform multiple tasks presented in
random order) for which the composition of the population is less important. To make
sure your sample matches the target population, you can use statistical tests and informal
comparison and compare the distribution of individuals with the composition obtained
from the census.
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1.4 Examples of experimental designs

1.4 Examples of experimental designs

The field of experimental design has a long history, starting with agricultural field trials.

Example 1.6 (Agricultural field trials at the Rothamsted Research Station.). The Rothamsted
Research Station in the UK has been conducting experiments since 1843. Ronald A. Fisher,
who worked 14 years at Rothamsted from 1919, developed much of the statistical theory
underlying experimental design, inspired from his work there. Yates (1964) provides a
recollection of his contribution to the field.

Figure 1.5: 1958 plan for the Highfield Ley–Arable Experiment. Source: Rothamsted Re-
search Station, reproduced under the CC BY 4.0 license.

Experimental design revolves in large part in understanding how best to allocate our re-
sources, determine the impact of policies or choosing the most effective “treatment” from a
series of option.

Example 1.7 (Modern experiments and A/B testing). Most modern experiments happen
online, with tech companies running thousands of experiments on an ongoing basis in
order to discover improvement to their interfaces that lead to increased profits. An Harvard
Business Review article (Kohavi and Thomke 2017) details how small tweaks to the display
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1 Introduction

of advertisements in the Microsoft Bing search engine landing page lead to a whooping
12% increase in revenues. Such randomized control trials, termed A/B experiments, involve
splitting incoming traffic into separate groups; each group will see different views of the
webpage that differ only ever slightly. The experimenters then compare traffic and click
revenues. At large scale, even small effects can have major financial consequences and can
be learned despite the large variability in customer behaviour.

There are also multiple examples of randomized control experiments used for policy mak-
ing.

Example 1.8 (Experiments on wellness programs). Song and Baicker (2019) conducted a
large randomized trial over a period of 18 months to study the impact of wellness programs
in US companies. The industry, worth more than 8 billions USD, has significantly increased
following the passage of the Affordable Care Act, aka Obamacare. The findings are vulgar-
ized in a press release by Jake Miller from Harvard News & Research: they show that, while
there was seemingly an impact on physical activity and well-being, there were no evidence
of changes in absenteeism, job tenure and job performance. Jones, Molitor, and Reif (2019)
reach similar conclusion.

These findings are strikingly different from previous observational studies, which found
increase participation in sportive activities, increased job duration, reduced medical spend-
ings.

Example 1.9 (STAR). The Tennessee’s Student Teacher Achievement Ratio (STAR) project
(Achilles et al. 2008) is another important example of large scale experiment with broad
ramifications. The study suggested that smaller class sizes lead to better outcomes of pupils.

Over 7,000 students in 79 schools were randomly assigned into one of 3 inter-
ventions: small class (13 to 17 students per teacher), regular class (22 to 25
students per teacher), and regular-with-aide class (22 to 25 students with a
full-time teacher’s aide). Classroom teachers were also randomly assigned to
the classes they would teach. The interventions were initiated as the students
entered school in kindergarten and continued through third grade.

Example 1.10 (RAND health care programs). In a large-scale multiyear experiment con-
ducted by the RAND Corporation (Brook et al. 2006), participants who paid for a share of
their health care used fewer health services than a comparison group given free care. The
study concluded that cost sharing reduced “inappropriate or unnecessary” medical care
(overutilization), but also reduced “appropriate or needed” medical care.
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1.5 Requirements for good experiments

The HIE was a large-scale, randomized experiment conducted between 1971
and 1982. For the study, RAND recruited 2,750 families encompassing more than
7,700 individuals, all of whom were under the age of 65. They were chosen from
six sites across the United States to provide a regional and urban/rural balance.
Participants were randomly assigned to one of five types of health insurance
plans created specifically for the experiment. There were four basic types of
fee-for-service plans: One type offered free care; the other three types involved
varying levels of cost sharing — 25 percent, 50 percent, or 95 percent coinsurance
(the percentage of medical charges that the consumer must pay). The fifth type
of health insurance plan was a nonprofit, HMO-style group cooperative. Those
assigned to the HMO received their care free of charge. For poorer families
in plans that involved cost sharing, the amount of cost sharing was income-
adjusted to one of three levels: 5, 10, or 15 percent of income. Out-of-pocket
spending was capped at these percentages of income or at $1,000 annually
(roughly $3,000 annually if adjusted from 1977 to 2005 levels), whichever was
lower.

Families participated in the experiment for 3–5 years. The upper age limit for
adults at the time of enrollment was 61, so that no participants would become
eligible for Medicare before the experiment ended. To assess participant service
use, costs, and quality of care, RAND served as the families’ insurer and pro-
cessed their claims. To assess participant health, RAND administered surveys at
the beginning and end of the experiment and also conducted comprehensive
physical exams. Sixty percent of participants were randomly chosen to receive
exams at the beginning of the study, and all received physicals at the end. The
random use of physicals at the beginning was intended to control for possible
health effects that might be stimulated by the physical exam alone, independent
of further participation in the experiment.

There are many other great examples in the dedicated section of Chapter 10 of Telling stories
with data by Rohan Alexander (Alexander 2022). Section 1.4 of Berger, Maurer, and Celli
(2018) also lists various applications of experimental designs in a variety of fields.

1.5 Requirements for good experiments

Section 1.2 of Cox (1958) describes the various requirements that are necessary for experi-
ments to be useful. These are

1. absence of systematic error
2. precision
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1 Introduction

3. range of validity
4. simplicity

We review each in turn.

1.5.1 Absence of systematic error

This point requires careful planning and listing potential confounding variables that could
affect the response.

Example 1.11 (Systematic example). Suppose we wish to consider the differences in student
performance between two instructors. If the first teaches only morning classes, while the
second only teaches in the evening, it will be impossible to disentangle the effect of timing
with that of instructor performance. Such comparisons should only be undertaken if there
is compelling prior evidence that timing does not impact the outcome of interest.

The first point raised by Cox is thus that we

ensure that experimental units receiving one treatment differ in no systematic
way from those receiving another treatment.

This point also motivates use of double-blind procedures (where both experimenters and
participants are unaware of the treatment allocation) and use of placebo in control groups
(to avoid psychological effects, etc. associated with receiving treatment or lack thereof).

Randomization6 is at the core of achieving this goal, and ensuring measurements are
independent of one another also comes out as corollary.

1.5.2 Variability

The second point listed by Cox (1958) is that of the variability of estimator. Much of the
precision can be captured by the signal-to-noise ratio, in which the difference in mean
treatment is divided by its standard error, a form of effect size. The intuition should be that
it’s easier to detect something when the signal is large and the background noise is low. The
latter is a function of

6The percentage of participants need not be equiprobable, nor do we need to assign the same probability
to each participant. However, going away from equal number of people per group has consequences and
makes the statistical analysis more complicated.
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1.5 Requirements for good experiments

(a) the accuracy of the experimental work and measurements apparatus and the intrinsic
variability of the phenomenon under study,

(b) the number of experimental and observational units (the sample size).
(c) the choice of design and statistical procedures.

Point (a) typically cannot be influenced by the experimenter outside of choosing the re-
sponse variable to obtain more reliable measurements. Point (c) related to the method of
analysis, is usually standard unless there are robustness considerations. Point (b) is at the
core of the planning, notably in choosing the number of units to use and the allocation of
treatment to the different (sub)-units.

1.5.3 Generalizability

Most studies are done with an objective of generalizing the findings beyond the particular
units analyzed. The range of validity thus crucially depends with the choice of population
from which a sample is drawn and the particular sampling scheme. Non-random sampling
severely limits the extrapolation of the results to more general settings. This leads Cox to
advocate having

not just empirical knowledge about what the treatment differences are, but also
some understanding of the reasons for the differences.

Even if we believe a factor to have no effect, it may be wise to introduce it in the experiment
to check this assumption: if it is not a source of variability, it shouldn’t impact the findings
and at the same time would provide some more robustness.

If we look at a continuous treatment, than it is probably only safe to draw conclusions
within the range of doses administered. Comic in Figure 2.3 is absurd, but makes this
point.

Example 1.12 (Generalizability). Replication studies done in university often draw par-
ticipants from students enrolled in the institutions. The findings are thus not necessarily
robust if extrapolated to the whole population if there are characteristics for which they
have strong (familiarity to technology, acquaintance with administrative system, political
views, etc). These samples are often convenience samples.

Example 1.13 (Spratt-Archer barley in Ireland). Example 1.9 in Cox (1958) mentions rec-
ollections of “Student”7 on Spratt-Archer barley, a new variety of barley that performed
well in experiments and whose culture the Irish Department of Agriculture encouraged.

7William Sealy Gosset
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Figure 1.6: xkcd comic 605 (Extrapolating) by Randall Munroe. Alt text: By the third
trimester, there will be thousands of babies inside you. Cartoon reprinted under
the CC BY-NC 2.5 license.

Fuelled by a district skepticism with the new variety, the Department ran an experiment
comparing the yield of the Spratt-Archer barley with that of the native race. Their findings
surprised the experimenters: the native barley grew more quickly and was more resistant to
weeds, leading to higher yields. It was concluded that the initial experiments were mislead-
ing because Spratt-Archer barley had been experimented in well-farmed areas, exempt of
nuisance.

1.5.4 Simplicity

The fourth requirement is one of simplicity of design, which almost invariably leads to
simplicity of the statistical analysis. Randomized control-trials are often viewed as the
golden rule for determining efficacy of policies or treatments because the set of assumptions
they make is pretty minimalist due to randomization. Most researchers in management are
not necessarily comfortable with advanced statistical techniques and this also minimizes
the burden. Figure 1.7 shows an hypothetical graph on the efficacy of the Moderna MRNA
vaccine for Covid: if the difference is clearly visible in a suitable experimental setting, then
conclusions are easily drawn.

Randomization justifies the use of the statistical tools we will use under very weak assump-
tions, if units measurements are independent from one another. Drawing conclusions
from observational studies, in contrast to experimental designs, requires making often
unrealistic or unverifiable assumptions and the choice of techniques required to handle
the lack of randomness is often beyond the toolbox of applied researchers.
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1.5 Requirements for good experiments

Figure 1.7: xkcd comic 2400 (Statistics) by Randall Munroe. Alt text: We reject the null
hypothesis based on the ‘hot damn, check out this chart’ test. Cartoon reprinted
under the CC BY-NC 2.5 license.

� Your turn

• Define the following terms in your own word: experimental unit, factor, treat-
ment.

• What is the main benefit of experimental studies over observational studies?
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2 Hypothesis testing

In most applied domains, empirical evidences drive the advancement of the field and data
from well designed experiments contribute to the built up of science. In order to draw
conclusions in favour or against a theory, researchers turn (often unwillingly) to statistics
to back up their claims. This has led to the prevalence of the use of the null hypothesis
statistical testing (NHST) framework. One important aspect of the reproducibility crisis is
the misuse of p-values in journal articles: falsification of a null hypothesis is not enough to
provide substantive findings for a theory.

Because introductory statistics course typically present hypothesis tests without giving
much thoughts to the underlying construction principles of such procedures, users often
have a reductive view of statistics as a catalogue of pre-determined procedures. To make
a culinary analogy, users focus on learning recipes rather than trying to understand the
basics of cookery. This chapter focuses on understanding of key ideas related to testing.

, Key concept

Learning objectives:

• Understanding the role of uncertainty in decision making.
• Understanding the importance of signal-to-noise ratio as a measure of evidence.
• Knowing the basic ingredients of hypothesis testing and being capable of cor-

rectly formulating and identifying these components in a paper.
• Correctly interpreting p-values and confidence intervals for a parameter.

2.1 Hypothesis

The first step of a design is formulating a research question. Generally, this hypothesis will
specify potential differences between population characteristics due to some intervention
(a treatment) that the researcher wants to quantify. This is the step during which researchers
decide on sample size, choice of response variable and metric for the measurement, write
down the study plan, etc.
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2 Hypothesis testing

It is important to note that most research questions cannot be answered by simple tools.
Researchers wishing to perform innovative methodological research should contact experts
and consult with statisticians before they collect their data to get information on how best
to proceed for what they have in mind so as to avoid the risk of making misleading and false
claims based on incorrect analysis or data collection.

Figure 2.1: xkcd comic 2569 (Hypothesis generation) by Randall Munroe. Alt text: Frazzled
scientists are requesting that everyone please stop generating hypotheses for a
little bit while they work through the backlog. Cartoon reprinted under the CC
BY-NC 2.5 license.

2.2 Sampling variability

Given data, a researcher will be interested in estimating particular characteristics of the
population. We can characterize the set of all potential values their measurements can take,
together with their frequency, via a distribution.

The purpose of this section is to illustrate how we cannot simply use raw differences between
groups to make meaningful comparisons: due to sampling variability, samples will be alike
even if they are generated in the same way, but there will be always be differences between
their summary statistics. Such differences tend to attenuate (or increase) as we collect more
sample. Inherent to this is the fact that as we gather more data (and thus more information)
about our target, the portrait becomes more precise. This is ultimately what allows us to
draw meaningful conclusions but, in order to do so, we need first to determine what is
likely or plausible and could be a stroke of luck, and what is not likely to occur solely due to
randomness.
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2.2 Sampling variability

Example 2.1 (A/B testing). Consider two webpage design: one is the current version (status
quo) and the other implementation contains a clickable banner in a location where eye-
tracker suggest that viewers eyes spend more time or attention. The number of clicks on
those headlines are what generate longer viewing, and thus higher revenues from advertise-
ment. The characteristic of interest here would be the average click conversation rate for
each of the webpage design.

It is fairly simple to redirect traffic so that a random fraction gets assigned to the new design
for study. After a suitable period of time, the data can be analyzed to see if the new webpage
generates more clicks.

An hypothesis test will focus on one or multiple of these characteristics. Suppose for
simplicity that we have only two groups, control and treatment, whose population averages
are µC and µT we wish to compare. People commonly look at the difference in average, say
δ = µT − µC as a measure of the effectiveness of the treatment.1 If we properly randomized
observations in each subgroup and nothing else changes, then this measures the impact of
the treatment. Because we only have a sample at hand and not the whole population, we
don’t know for sure the values of µC and µT . These quantities exist, but are unknown to us
so the best we can do is estimate them using our sample. If we have a random sample from
the population, then the characteristics of the sample will be (noisy) proxys of those of the
population.

We call numerical summaries of the data statistics. Its important to distinguish between
procedures/formulas and their numerical values. An estimator is a rule or formula used
to calculate an estimate of some parameter or quantity of interest based on observed data
(like a recipe for cake). Once we have observed data we can actually compute the sample
mean, that is, we have an estimate — an actual value (the cake), which is a single realization
and not random. In other words,

• an estimand is our conceptual target, like the population characteristic of interest
(population mean).

• an estimator is the procedure or formula telling us how to transform the sample data
into a numerical summary that is a proxy of our target.

• an estimate is a number, the numerical value obtained once we apply the formula to
observed data.

For example, we may use as estimand the population average of Y1, . . ., say µ. The estimator
will be sample mean, i.e., the sum of the elements in the sample divided by the sample size,
Y = (Y1 + · · ·+ Yn)/n. The estimate will be a numerical value, say 4.3.

1We could look at the ratio µT /µC instead.
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2 Hypothesis testing

(a) Estimand

(b) Estimator

(c) Estimate

Figure 2.2: Estimand (left), estimator (middle) and estimate (right) illustrated with cakes
and based on an original idea of Simon Grund. Cake photos shared under CC
BY-NC 2.0 license.

Because the inputs of the estimator are random, the output is also random and change
from one sample to the next: even if you repeat a recipe, you won’t get the exact same result
every time, as in Figure 2.3.

Figure 2.3: xkcd comic 2581 (Health Stats) by Randall Munroe. Alt text: You will live on
forever in our hearts, pushing a little extra blood toward our left hands now and
then to give them a squeeze. Cartoon reprinted under the CC BY-NC 2.5 license.

To illustrate this point, Figure 2.4 shows five simple random samples of size n = 10 drawn
from an hypothetical population with mean µ and standard deviation σ, along with their
sample mean y. Because of the sampling variability, the sample means of the subgroups will
differ even if they originate from the same distribution. You can view sampling variability
as noise: our goal is to extract the signal (typically differences in means) but accounting for
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2.2 Sampling variability

spurious results due to the background noise.
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Figure 2.4: Five samples of size n = 10 drawn from a common population with mean µ
(horizontal line). The colored segments show the sample means of each sample.

The astute eye might even notice that the sample means (thick horizontal segments) are less
dispersed around the full black horizontal line representing the population average µ than
are the individual measurements. This is a fundamental principle of statistics: information
accumulates as you get more data.

Values of the sample mean don’t tell the whole picture and studying differences in mean
(between groups, or relative to a postulated reference value) is not enough to draw conclu-
sions. In most settings, there is no guarantee that the sample mean will be equal to it’s true
value because it changes from one sample to the next: the only guarantee we have is that
it will be on average equal to the population average in repeated samples. Depending on
the choice of measurement and variability in the population, there may be considerable
differences from one observation to the next and this means the observed difference could
be a fluke.

To get an idea of how certain something is, we have to consider the variability of an obser-
vation Yi. This variance of an observation drawn from the population is typically denoted
σ2 and it’s square root, the standard deviation, by σ.
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2 Hypothesis testing

The sample variance Sn is an estimator of the standard deviation σ, where

S2
n = 1

n− 1

n∑
i=1

(Yi − Y )2

is the sum of squared difference between observations and the sample average, scaled by a
factor proportional to the sample size.

The standard deviation of a statistic is termed standard error; it should not be confused with
the standard deviation σ of the population from which the sample observations Y1, . . . , Yn

are drawn. Both standard deviation and standard error are expressed in the same units as
the measurements, so are easier to interpret than variance. Since the standard error is a
function of the sample size, it is however good practice to report the estimated standard
deviation in reports.

Example 2.2 (Sample proportion and uniform draws). To illustrate the concept of sampling
variability, we follow the lead of Matthew Crump and consider samples from a uniform
distribution on {1, 2, . . . , 10} each number in this interval is equally likely to be sampled.
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Figure 2.5: Histograms for 10 random samples of size n = 20 from a discrete uniform
distribution.
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2.3 Hypothesis testing

Even if they are drawn from the same population, the 10 samples in Figure 2.5 look quite
different. The only thing at play here is the sample variability: since there are n = 20
observations in total, there should be on average 10% of the observations in each of the 10
bins, but some bins are empty and others have more counts than expected. This fluctuation
is due to randomness, or chance.

How can we thus detect whether what we see is compatible with the model we think
generated the data? The key is to collect more observations: the bar height is the sample
proportion, an average of 0/1 values with ones indicating that the observation is in the bin
and zero otherwise.

Consider now what happens as we increase the sample size: the top panel of Figure 2.6
shows uniform samples for increasing samples size. The histogram looks more and more
like the true underlying distribution (flat, each bin with equal frequency) as the sample size
increases. The sample distribution of points is nearly indistinguishable from the theoretical
one (straight line) when n = 10000.2 The bottom panel, on the other hand, isn’t from a
uniform distribution and larger samples come closer to the population distribution. We
couldn’t have spotted this difference in the first two plots, since the sampling variability is
too important; there, the lack of data in some bins could have been attributed to chance, as
they are comparable with the graph for data that are truly uniform. This is in line with most
practical applications, in which the limited sample size restricts our capacity to disentangle
real differences from sampling variability. We must embrace this uncertainty: in the next
section, we outline how hypothesis testing helps us disentangle the signal from the noise.

2.3 Hypothesis testing

An hypothesis test is a binary decision rule (yes/no) used to evaluate the statistical evidence
provided by a sample to make a decision regarding the underlying population. The main
steps involved are:

• define the model parameters
• formulate the alternative and null hypothesis
• choose and calculate the test statistic
• obtain the null distribution describing the behaviour of the test statistic under H0
• calculate the p-value
• conclude (reject or fail to reject H0) in the context of the problem.

A good analogy for hypothesis tests is a trial for murder on which you are appointed juror.

2The formula shows that the standard error decreases by a tenfold every time the sample size increases by a
factor 100.
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Figure 2.6: Histograms of data from a uniform distribution (top) and non-uniform (bottom)
with increasing sample sizes of 10, 100, 1000 and 10 000 (from left to right).

• The judge lets you choose between two mutually exclusive outcome, guilty or not
guilty, based on the evidence presented in court.

• The presumption of innocence applies and evidences are judged under this optic: are
evidence remotely plausible if the person was innocent? The burden of the proof lies
with the prosecution to avoid as much as possible judicial errors. The null hypothesis
H0 is not guilty, whereas the alternative Ha is guilty. If there is a reasonable doubt,
the verdict of the trial will be not guilty.

• The test statistic (and the choice of test) represents the summary of the proof. The
more overwhelming the evidence, the higher the chance the accused will be declared
guilty. The prosecutor chooses the proof so as to best outline this: the choice of
evidence (statistic) ultimately will maximize the evidence, which parallels the power
of the test.

• The null distribution is the benchmark against which to judge the evidence (jurispru-
dence). Given the proof, what are the odds assuming the person is innocent? Since
this is possibly different for every test, it is common to report instead a p-value, which
gives the level of evidence on a uniform scale which is most easily interpreted.

• The final step is the verdict, a binary decision with outcomes: guilty or not guilty. For
an hypothesis test performed at level α, one would reject (guilty) if the p-value is less
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than α. Even if we declare the person not guilty, this doesn’t mean the defendant is
innocent and vice-versa.

2.3.1 Hypothesis

In statistical tests we have two hypotheses: the null hypothesis (H0) and the alternative
hypothesis (Ha). Usually, the null hypothesis (the ‘status quo’) is a single numerical value.
The alternative is what we’re really interested in testing. In Figure 2.4, we could consider
whether all five groups have the same mean H0 : µ1 = µ2 = · · · = µ5 against the alternative
that at least two of them are different. These two outcomes are mutually exclusive and cover
all possible scenarios. A statistical hypothesis test allows us to decide whether or not our
data provides enough evidence to reject H0 in favor of Ha, subject to some pre-specified
risk of error: while we know that the differences are just due to sampling variability in
Figure 2.4 because the data is simulated, in practice we need to assess the evidence using a
numerical summary.

Example 2.3 (A/B testing (continued)). We follow-up with our A/B test experiment. Given
µ1 the population average click conversation rate for the current webpage and µ2, that of
the redesign, we are interested in the one-sided hypothesis that H0 : µ2 ≤ µ1 against the
alternative (that we are trying to prove) Ha : µ2 > µ1. In choosing as null hypothesis that
the new design is no better or worst, we are putting all our weight to make sure the changes
carry forward if there is overwhelming evidence that the new design is better and allow us
to generate more revenues, given the costs associated to changes to the interface and the
resulting disruption.

One-sided hypothesis are directional: we care only about a specific direction, and so here
Ha : µ2 > µ1. Indeed, if the experiment suggests that the conversion rate is worst with the
new webpage design, we won’t go forward.

Since neither of these population averages µ1 and µ2 are known to us, we can work instead
with H0 : µ2 − µ1 ≥ 0. We can use as estimator for the difference µ2 − µ1 the difference in
sample average in each subgroup.

The null hypothesis here is an interval, but it suffices the consider the most beneficial
scenario, which is µ2 − µ1 = 0. Indeed, if we can disprove that there is no difference
and see an increase of the click rate with the updated version, all more extreme cases are
automatically discarded in favour of the alternative that the new design is better.

One-sided tests for which the evidence runs contrary to the hypothesis (say the mean
conversion rate is higher for the current design than for the new one) lead to p-values of 1,
since there is no proof against the null hypothesis that the old design (the status quo) is
better.
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The previous example illustrates the fact that, when writing down null and alternative
hypotheses, what we are trying to prove is typically the alternative.

In pairwise comparisons or contrasts, we can assign a directionality. The benefit is that, if
we are sure of the direction of the postulated effect, we only consider as extreme scenarios
that run in the direction we postulated3 However, if the empirical evidence runs contrary to
our guess, then there is no support for the hypothesis.

In more general statistical models, it helps to view the null hypothesis as a simplification of
a more complex model: the latter will fit the data better because it is more flexible, but we
would fail to reject the null unless this improvement is drastic. For example, in an analysis of
variance model, we compare different mean in each of K groups against a single common
average.

2.3.2 Test statistic

A test statistic T is a function of the data which takes the data as input and outputs a
summary of the information contained in the sample for a characteristic of interest, say
the population mean. In order to assess whether the numerical value for T is unusual, we
need to know what are the potential values taken by T and their relative probability if H0 is
true. We need to know what values we should expect if, e.g., there was no difference in the
averages of the different groups: this requires a benchmark.

Many statistics we will consider are of the form4

T = estimated effect− postulated effect
estimated effect variability

= θ̂ − θ0

se(θ̂)

where θ̂ is an estimator of θ, θ0 is the postulated value of the parameter and se(θ̂) is the
standard error of the test statistic θ̂. This quantity is designed so that, if our postulated value
θ0 is correct, T has approximately mean zero and variance one. This standardization makes
comparison easier; in fact, the form of the test statistic is chosen so that it doesn’t depend
on the measurement units.

For example, if we are interested in mean differences between treatment group and control
group, denoted µT and µC , then θ = µT − µC and H0 : µT = µC corresponds to H0 : θ = 0
for no difference. The two-sample t-test would have numerator θ̂ = Y T − Y C , where Y T is
the sample average in treatment group and Y C that of the control group. The postulated
value for the mean difference is zero.

3This implies that the level α is all on one side, rather than split equally between both tails of the distribution.
In practice, this translates into increased power of detection provided the effect is in the postulated direction.

4This class of statistic, which includes t-tests, are called Wald statistics.
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The numerator would thus consist of the difference in sample means and the denominator
the standard error of that quantity, calculated using a software.5

2.3.3 Null distribution and p-value

The p-value allows us to decide whether the observed value of the test statistic T is plausible
under H0. Specifically, the p-value is the probability that the test statistic is equal or more
extreme to the estimate computed from the data, assuming H0 is true. Suppose that based
on a random sample Y1, . . . , Yn we obtain a statistic whose value T = t. For a two-sided test
H0 : θ = θ0 vs. Ha : θ ̸= θ0, the p-value is Pr0(|T | ≥ |t|).6

How do we determine the null distribution given that the true data generating mechanism
is unknown to us? We ask a statistician! In simple cases, it might be possible to enumerate
all possible outcomes and thus quantity the degree of outlyingness of our observed statistic.
In more general settings, we can resort to simulations or to probability theory: the central
limit theorem says that the sample mean behaves like a normal random variable with mean
µ and standard deviation σ/

√
n for n large enough. The central limit theorem has broader

applications since most statistics can be viewed as some form of average or transformation
thereof, a fact used to derive benchmarks for most commonly used tests. Most software use
these approximations as proxy by default: the normal, Student’s t, χ2 and F distributions
are the reference distributions that arise the most often.

Figure 2.7 shows the distribution of p-values for two scenarios: one in which there are no
differences and the null is true, the other under an alternative. The probability of rejection
is obtained by calculating the area under the density curve between zero and α = 0.1, here
0.1 on the left. Under the null, the model is calibrated and the distribution of p-values is
uniform (i.e., a flat rectangle of height 1), meaning all values in the unit interval are equally
likely. Under the alternative (right), small p-values are more likely to be observed.

There are generally three ways of obtaining null distributions for assessing the degree of
evidence against the null hypothesis

• exact calculations
• large sample theory (aka ‘asymptotics’ in statistical lingo)
• simulation

While desirable, the first method is only applicable in simple cases (such as counting
the probability of getting two six if you throw two fair die). The second method is most
commonly used due to its generality and ease of use (particularly in older times where

5Assuming equal variance, the denominator is estimated using the pooled variance estimator.
6If the distribution of T is symmetric around zero, the p-value reduces to p = 2 × Pr0(T ≥ |t|).
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Figure 2.7: Density of p-values under the null hypothesis (left) and under an alternative
with a signal-to-noise ratio of 0.5 (right).

computing power was scarce), but fares poorly with small sample sizes (where ‘too small’
is context and test-dependent). The last approach can be used to approximate the null
distribution in many scenarios, but adds a layer of randomness and the extra computations
costs sometimes are not worth it.

2.4 Confidence intervals

A confidence interval is an alternative way to present the conclusions of an hypothesis
test performed at significance level α by giving a range of all values for which the null
isn’t rejected at the chosen level. It is often combined with a point estimator θ̂ to give an
indication of the variability of the estimation procedure. Wald-based (1− α) confidence
intervals for a scalar parameter θ are of the form

θ̂ + critical value se(θ̂)
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based on the Wald statistic W ,

W = θ̂ − θ

se(θ̂)
,

and where θ represents the postulated value for the fixed, but unknown value of the pa-
rameter. The critical values are quantile of the null distribution and are chosen so that the
probability of being more extreme is α.

The bounds of the confidence intervals are random variables, since both estimators of the
parameter and its standard error, θ̂ and se(θ̂), are random: their values will vary from one
sample to the next.

For generic random samples, there is a 1− α probability that θ is contained in the random
confidence interval computed. Once we obtain a sample and calculate the confidence
interval, there is no more notion of probability: the true value of the parameter θ is either
inside the confidence interval or not. We can interpret confidence interval’s as follows: if
we were to repeat the experiment multiple times, and calculate a 1− α confidence interval
each time, then roughly 1− α of the calculated confidence intervals would contain the true
value of θ in repeated samples (in the same way, if you flip a coin, there is roughly a 50-50
chance of getting heads or tails, but any outcome will be either). Our confidence is in the
procedure we use to calculate confidence intervals and not in the actual values we obtain
from a sample.

If we are only interested in the binary decision rule reject/fail to reject H0, the confidence
interval is equivalent to a p-value since it leads to the same conclusion. Whereas the 1− α
confidence interval gives the set of all values for which the test statistic doesn’t provide
enough evidence to reject H0 at level α, the p-value gives the probability under the null
of obtaining a result more extreme than the postulated value and so is more precise for
this particular value. If the p-value is smaller than α, our null value θ will be outside of the
confidence interval and vice-versa.

2.4.1 Conclusion

The p-value allows us to make a decision about the null hypothesis. If H0 is true, the p-value
follows a uniform distribution, as shown in Figure 2.7. Thus, if the p-value is small, this
means observing an outcome more extreme than T = t is unlikely, and so we’re inclined to
think that H0 is not true. There’s always some underlying risk that we’re making a mistake
when we make a decision. In statistic, there are two type of errors:

• type I error: we reject the null hypothesis H0 when the null is true,
• type II error: we fail to reject the null hypothesis H0 when the alternative is true.
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Figure 2.8: 95% confidence intervals for the mean of a standard normal population for 100
random samples. On average, 5% of these intervals fail to include the true mean
value of zero (in red).

The two hypothesis are not judged equally: we seek to avoid error of type I (judicial errors,
corresponding to condamning an innocent). To prevent this, we fix a the level of the test, α,
which captures our tolerance to the risk of commiting a type I error: the higher the level
of the test α, the more often we will reject the null hypothesis when the latter is true. The
value of α ∈ (0, 1) is the probability of rejecting H0 when H0 is in fact true,

α = Pr0 ( reject H0) .

The level α is fixed beforehand, typically 1%, 5% or 10%. Keep in mind that the probability
of type I error is α only if the null model for H0 is correct (sic) and correspond to the data
generating mechanism.

The focus on type I error is best understood by thinking about costs of moving away from
the status quo: a new website design or branding will be costly to implement, so you want
to make sure there are enough evidence that the proposal is the better alternative and will
lead to increased traffic or revenues.
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Decision \ true model H0 Ha

fail to reject H0 ✓ type II error
reject H0 type I error ✓

To make a decision, we compare our p-value P with the level of the test α:

• if P < α, we reject H0;
• if P ≥ α, we fail to reject H0.

Do not mix up level of the test (a probability fixed beforehand by the researcher) and the
p-value. If you do a test at level 5%, the probability of type I error (condemning an innocent
by mistake) is by definition α and does not depend on the p-value. The latter is a conditional
probability of observing a more extreme statistic given the null distribution H0 is true.

\ Pitfall

The American Statistical Association (ASA) published a list of principles guiding
(mis)interpretation of p-values, some of which are reproduced below:

(2) P-values do not measure the probability that the studied hypothesis
is true.

(3) Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

(4) P-values and related analyses should not be reported selectively.

(5) p-value, or statistical significance, does not measure the size of an
effect or the importance of a result.

2.4.2 Examples

Example 2.4 (Gender inequality and permutation tests). We consider data from Rosen and
Jerdee (1974), who look at sex role stereotypes and their impacts on promotion and opportu-
nities for women candidates. The experiment took place in 1972 and the experimental units,
which consisted of 95 male bank supervisors, were submitted to various memorandums
and asked to provide ratings or decisions based on the information provided.
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We are interested in Experiment 1 related to promotion of employees: managers were
requested to decide on whether or not to promote an employee to become branch manager
based on recommendations and ratings on potential for customer and employee relations.

The authors intervention focused on the description of the nature (complexity) of the
manager’s job (either simple or complex) and the sex of the candidate (male or female): all
files were otherwise similar.

We consider for simplicity only sex as a factor and aggregate over job for the n = 93 replies.
Table 2.2 shows the counts for each possibility.

Table 2.2: Promotion recommandation to branch manager based on sex of the applicant.

male female

promote 32 19
hold file 12 30

The null hypothesis of interest here that sex has no impact, so the probability of promotion
is the same for men and women. Let pm and pw denote these respective probabilities; we
can thus write mathematically the null hypothesis as H0 : pm = pw against the alternative
Ha : pm ̸= pw.

The test statistic typically employed for contingency tables is a chi-square test7, which
compares the overall proportions of promoted to that in for each subgroup. The sample
proportion for male is 32/42 = ~76%, compared to 19/49 or ~49% for female. While it seems
that this difference of 16% is large, it could be spurious: the standard error for the sample
proportions is roughly 3.2% for male and 3.4% for female.

If there was no discrimination based on sex, we would expect the proportion of people
promoted to be the same overall; this is 51/93 =0.55 for the pooled sample. We could simply
do a test for the mean difference, but rely instead on the Pearson contingency X2

p (aka
chi-square) test, which compares the expected counts (based on equal promotion rates) to
the observed counts, suitably standardized. If the discrepancy is large between expected
and observed, than this casts doubt on the validity of the null hypothesis.

If the counts of each cell are large, the null distribution of the chi-square test is well approx-
imated by a χ2 distribution. The output of the test includes the value of the statistic, 10.79,
the degrees of freedom of the χ2 approximation and the p-value, which gives the probability
that a random draw from a χ2

1 distribution is larger than the observed test statistic assuming

7If you have taken advanced modelling courses, this is a score test obtained by fitting a Poisson regression
with sex and action as covariates; the null hypothesis corresponding to lack of interaction term between
the two.
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the null hypothesis is true. The p-value is very small, 0.001, which means such a result is
quite unlikely to happen by chance if there was no sex-discrimination.

Another alternative to obtain a benchmark to assess the outlyingness of the observed odds
ratio is to use simulations: permutation tests are well illustrated by Jared Wilber. Consider
a database containing the raw data with 93 rows, one for each manager, with for each an
indicator of action and the sex of the hypothetical employee presented in the task.

Table 2.3: First five rows of the database in long format for experiment 1 of Rosen and Jerdee.

action sex

promote male
hold file female
promote male
hold file female
hold file male

Under the null hypothesis, sex has no incidence on the action of the manager. This means
we could get an idea of the “what-if” world by shuffling the sex labels repeatedly. Thus, we
could obtain a benchmark by repeating the following steps multiple times:

1. permute the labels for sex,
2. recreate a contingency table by aggregating counts,
3. calculate a test statistic for the simulated table.

As test statistic, we use odds ratio: the odds of an event is the ratio of the number of success
over failure: in our example, this would be the number of promoted over held files. The odds
of promotion for male is 32/12, whereas that of female is 19/30. The odds ratio for male
versus female is thus OR = (32/12)/(19/30) = 4.21. Under the null hypothesis, H0 : OR = 1
(same probability of being promoted) (why?)

The histogram in Figure 2.9 shows the distribution of the odds ratio based on 10 000
permutations. Reassuringly, we again get roughly the same approximate p-value, here
0.002.8

The article concluded (in light of the above and further experiments)

Results confirmed the hypothesis that male administrators tend to discrimi-
nate against female employees in personnel decisions involving promotion,
development, and supervision.

8The p-value obtained for the permutation test would change from one run to the next since it’s input is
random. However, the precision of the proportion statistic is sufficient for decision making purposes.
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Figure 2.9: Histogram of the simulated null distribution of the odds ratio statistic obtained
using a permutation test; the vertical red line indicates the sample odds ratio.

Recap

• Model parameters: probability of promotion for men and women, respectively pm

and pw.
• Hypotheses: no discrimination based on gender, meaning equal probability of pro-

motion (null hypothesis H0 : pm = pw, versus alternative hypothesis Ha : pm ̸= pw).
• Test statistic: (1) chi-square test for contingency tables and (2) odds ratio.
• p-value: (1) .0010 and (2) .0024 based on permutation test.
• Conclusion: reject null hypothesis, as there is evidence of a gender-discrimination

with different probability of promotion for men and women.

Following the APA guidelines, the χ2 statistic would be reported as χ2(1, n = 93) = 10.79,
p = .001 along with counts and sample proportions.

\ Pitfall

In the first experiment, managers were also asked to rank applications on their poten-
tial for both employee and customer relations using a Likert scale of six items ranging
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from (1) extremely unfavorable to (6) extremely favorable. However, only the averages
are reported in Table 1 along with (Rosen and Jerdee 1974)

Mean rating for the male candidate was 4.73 compared to a mean rating of
4.25 for the female candidate (F = 4.76, df = 1/80, p < .05)

The degrees of freedom (80) are much too few compared to the number of observations,
implying non-response that isn’t discussed.
Partial or selective reporting of statistical procedures hinders reproducibility. In gen-
eral, the presentation should explicitly state the name of the test statistic employed,
the sample size, mean and variance estimates, the null distribution used to assess
significance and its parameters, if any. Without these, we are left to speculate.

Example 2.5 (“The Surprise of Reaching Out”). Liu et al. (2023) studies social interactions
and the impact of surprise on people reaching out if this contact is unexpected. Experiment
1 focuses on questionnaires where the experimental condition is the perceived appreciation
of reaching out to someone (vs being reached to). The study used a questionnaire adminis-
tered to 200 American adults recruited on the Prolific Academic platform. The response
index consists of the average of four questions measured on a Likert scale ranging from 1 to
7, with higher values indicating higher appreciation.

We can begin by inspecting summary statistics for the sociodemographic variables (gender
and age) to assess whether the sample is representative of the general population as a whole.
The proportion of other (including non-binary people) is much higher than that of the
general census, and the population skews quite young according to Table 2.4.

Table 2.4: Summary statistics of the age of participants, and counts per gender

gender min max mean n

male 18 78 32.03 105
female 19 68 36.50 92
other 24 30 27.67 3

Table 2.5: Mean ratings, standard deviation and number of participants per experimental
condition.

role mean sd n

initiator 5.50 1.28 103
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responder 5.87 1.27 97

Since there are only two groups, initiator and responder, we are dealing with a pairwise
comparison. The logical test one could use is a two sample t-test, or a variant thereof.
Using Welch two sample t-test statistic, both group average and standard deviation are
estimated using the data provided and the latter are used to build a statistic. This explains
the non-integer degrees of freedom.

The software returns t(197.52) = −2.05, p = .041, which leads to the rejection of the null
hypothesis of no difference in appreciation depending on the role of the individual (initiator
or responder). The estimated mean difference is ∆M = −0.37, 95% CI [−0.73,−0.01]; since
0 is not included in the confidence interval, we also reject the null hypothesis at level 5%.
The estimate suggests that initiators underestimate the appreciation of reaching out.9

Recap

• Model parameters: average expected appreciation score µi and µr of initiators and
responder, respectively

• Hypothesis: expected appreciation score is the same for initiator and responders,
H0 : µi = µr against alternative H0 : µi ̸= µr that they are different.

• Test statistic: Welch two sample t-test
• p-value: 0.041
• Conclusion: reject the null hypothesis, average appreciation score differs depending

on the role

Example 2.6 (Virtual communication curbs creative idea generation). A Nature study
performed an experiment to see how virtual communications teamwork by comparing the
output both in terms of ideas generated during a brainstorming session by pairs and of
the quality of ideas, as measured by external referees. The sample consisted of 301 pairs of
participants who interacted via either videoconference or face-to-face.

The authors compared the number of creative ideas, a subset of the ideas generated with
creativity score above average. The mean number of the number of creative ideas for
face-to-face 7.92 ideas (sd 3.40) relative to videoconferencing 6.73 ideas (sd 3.27).

Brucks and Levav (2022) used a negative binomial regression model: in their model, the
expected number creative ideas generated is

E(ncreative) = exp(β0 + β1video)

9Assuming that the variance of each subgroup were equal, we could have used a two-sample t-test instead.
The difference in the conclusion is immaterial, with a nearly equal p-value.
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where video = 0 if the pair are in the same room and video = 1 if they interact instead via
videoconferencing.

The mean number of ideas for videoconferencing is thus exp(β1) times that of the face-to-
face: the estimate of the multiplicative factor is exp(β1) is 0.85 95% CI [0.77, 0.94].

No difference between experimental conditions translates into the null hypothesis as
H0 : β1 = 0 vs H0 : β1 ̸= 0 or equivalently H0 : exp(β1) = 1. The likelihood ratio test
comparing the regression model with and without video the statistic is R = 9.89 (p-value
based on χ2

1 of .002). We conclude the average number of ideas is different, with summary
statistics suggesting that virtual pairs generate fewer ideas.

If we had resorted to a two sample t-test, we would have found a mean difference in number
of creative idea of ∆M = 1.19, 95% CI [0.43, 1.95], t(299) = 3.09, p = .002.

Both tests come with slightly different sets of assumptions, but yield similar conclusions:
there is evidence of a smaller number of creative ideas when people interact via videocon-
ferencing.

2.5 Conclusion

This chapter has focused on presenting the tools of the trade and some examples outlining
the key ingredients that are common to any statistical procedure and the reporting of the
latter. The reader is not expected to know which test statistic to adopt, but rather should
understand at this stage how our ability to do (scientific) discoveries depends on a number
of factors.

Richard McElreath in the first chapter of his book (McElreath 2020) draws a parallel between
statistical tests and golems (i.e., robots): neither

discern when the context is inapropriate for its answers. It just knows its own
procedure [. . . ] It just does as it’s told.

The responsibility therefore lies with the user to correctly use statistical procedures and be
aware of their limitations. A p-value does not indicate whether the hypothesis is reasonable,
whether the design is proper, whether the choice of measurement is adequate, etc.

� Your turn

Pick a journal paper (e.g., one of the dataset documented in the course webpage) and
a particular study.
Look up for the ingredients of the testing procedure (parameters, hypotheses, test
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statistic name and value, summary statistics, p-value, conclusion).
You may encounter other measures, such as effect size, that will be discussed later.
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3 Completely randomized designs

This chapter focuses on experiments where potentially multiple factors of interest are
manipulated by the experimenter to study their impact. If the allocation of observational
units to each treatment combination is completely random, the resulting experiment is a
completely randomized design.

The one-way analysis of variance describes the most simple experimental setup one can
consider: completely randomized experiments with one factor, in which we are solely
interested in the effect of a single treatment variable with multiple levels.

3.1 One-way analysis of variance

The focus is on comparisons of the average of a single outcome variable with K different
treatments levels, each defining a sub-population differing only in the experimental condi-
tion they received. A one-way analysis of variance compares the sample averages of each
treatment group T1, . . . , TK to try and determine if the population averages could be the
same. Since we have K groups, there will be K averages (one per group) to estimate.

Let µ1, . . . , µK denote the theoretical (unknown) mean (aka expectation) of each of the K
sub-populations defined by the different treatments. Lack of difference between treatments
is equivalent to equality of means, which translates into the hypotheses

H0 :µ1 = · · · = µK

Ha :at least two treatments have different averages,

The null hypothesis is, as usual, a single numerical value, µ. The alternative consists of
all potential scenarios for which not all expectations are equal. Going from K averages to
one requires imposing K − 1 restrictions (the number of equality signs), as the value of the
global mean µ is left unspecified.
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3.1.1 Parametrizations and contrasts

This section can be skipped on first reading. It focuses on the interpretation of the coeffi-
cients obtained from a linear model or analysis of variance model.

The most natural parametrization is in terms of group averages: the (theoretical unknown)
average for treatment Tj is µj , so we obtain K parameters µ1, . . . , µK whose estimates are
the sample averages µ̂1, . . . , µ̂K . One slight complication arising from the above is that
the values of the population average are unknown, so this formulation is ill-suited for
hypothesis testing because none of the µi values are known in practice and we need to
make comparisons in terms of a known numerical value.

The most common parametrization for the linear model is in terms of differences to a
baseline, say T1. The theoretical average of each group is written as µ1 + ai for treatment Ti,
where a1 = 0 for T1 and ai = µi − µ1 otherwise. The parameters are µ1, a2, . . . , aK .

An equivalent formulation writes for each treatment group the average of subpopulation j
as µj = µ + δj , where δj is the difference between the treatment average µj and the global
average of all groups. Imposing the constraint δ1 + · · ·+ δK = 0 ensures that the average of
effects equals µ. Thus, if we know any K − 1 of {δ1, . . . , δK}, we automatically can deduce
the last one.

Example 3.1 (Impact of encouragement on teaching). In R, the lm function fits a linear
model based on a formula of the form response ~ explanatory. If the explanatory is
categorical (i.e., a factor), the parameters of this model are the intercept, which is the
sample average of the baseline group and the other parameters are simply contrasts, i.e.,
the ai’s.

The sum-to-zero parametrization is obtained with contrasts = list(... = contr.sum),
where the ellipsis is replaced by the name of the categorical variable; an easier alternative is
aov, which enforces this parametrization by default. With the sum-to-zero parametrization,
the intercept is the average of each treatment average, (µ̂1 + · · · + µ̂5)/5; this need not
coincide with the (overall) mean of the response µ̂ = y unless the sample the number
of observations in each group is the same.1 The other coefficients of the sum-to-zero
parametrization are the differences between this intercept and the group means.

We show the function call to fit a one-way ANOVA in the different parametrizations along
with the sample average of each arithmetic group (the two controls who were taught
separately and the groups that were praised, reproved and ignored in the third class). Note
that the omitted category changes depending on the parametrization.

1We say a sample is balanced if each (sub)group contains the same number of observations.
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mod_contrast <- lm(score ~ group,
data = arithmetic)

mod_sum2zero <- lm(score ~ group,
data = arithmetic,
contrasts = list(group = contr.sum))

Table 3.1: Coefficients of the analysis of variance model for the arithmetic scores using
different parametrizations.

group mean contrasts sum-to-zero

intercept 19.67 21.00
control 1 19.67 -1.33
control 2 18.33 -1.33 -2.67
praise 27.44 7.78 6.44
reprove 23.44 3.78 2.44
ignore 16.11 -3.56

We can still assess the hypothesis by comparing the sample means in each group, which are
noisy estimates of the population mean: their inherent variability will limit our ability to
detect differences in averages if the signal-to-noise ratio is small.

3.1.2 Sum of squares decomposition

The following section can be safely skipped on first reading: it attempts to shed some light
into how the F -test statistic works as a summary of evidence, as it isn’t straightforward in
the way it appears.

The usual notation for the sum of squares decomposition is as follows: suppose yik repre-
sents the ith person in the kth treatment group (k = 1, . . . , K) and the sample size n can be
split between groups as n1, . . . , nK ; in the case of a balanced sample, n1 = · · · = nK = n/K
and the number of observations in each group is the same. We denote by µ̂k the sample
average in group k and µ̂ the overall average (y11 + · · ·+ ynKK)/n =

∑
k

∑
i yik/n, where

∑
i

denotes the sum over all individuals in the group.

Under the null model, all groups have the same mean, so the natural estimator for the latter
is the sample average of the pooled sample µ̂ and likewise the group averages µ̂1, . . . , µ̂K

are the best estimators for the group averages if each group has a (potentially) different
mean. The more complex model, which has more parameters, will always fit better because
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3 Completely randomized designs

it has more possibility to accommodate differences observed in a group, even if these are
spurious. The sum of squares measures the (squared) distance between the observation
and the fitted values, with the terminology total, within and between sum of squares linked
to the decomposition∑

i

∑
k

(yik − µ̂)2

total sum of squares

=
∑

i

∑
k

(yik − µ̂k)2

within sum of squares

+
∑

k

ni(µ̂k − µ̂)2

between sum of squares

.

The term on the left is a measure of the variability for the null model (µ1 = · · · = µK) under
which all observations are predicted by the overall average µ̂. The within sum of squares
measures the distance between observations and their group mean, which describes the
alternative model in which each group has (potentially) a different average, but the same
variability.

We can measure how much worst we do with the alternative model (different average per
group) relative to the null by calculating the between sum of square. This quantity in itself
varies with the sample size (the more observations, the larger it is) so we must standardize
as usual this quantity so that we have a suitable benchmark.

The F -statistic is

F = between-group variability
within-group variability

= between sum of squares/(K − 1)
within sum of squares/(n−K)

(3.1)

If there is no mean difference (null hypothesis), the numerator is an estimator of the popula-
tion variance, and so is the denominator of eq. 3.1 and the ratio of the two is approximately
1 on average. However, the between sum of square is more variable and this induces skew-
ness: for large enough sample, the null distribution of the F -statistic is approximately an
F -distribution, whose shape is governed by two parameters named degrees of freedom
which appear in Equation 3.1 as scaling factors to ensure proper standardization. The first
degree of freedom is the number of restrictions imposed by the null hypothesis (K − 1, the
number of groups minus one for the one-way analysis of variance), and the second degree
of freedom is the number of observations minus the number of parameters estimates for
the mean (n−K, where n is the overall sample size and K is the number of groups).2

Figure 3.1 shows how the difference between these distances can encompass information
that the null is wrong. The sum of squares is obtained by computing the squared length of
these vectors and adding them up. The left panel shows strong signal-to-noise ratio, so that,

2There are only K parameter estimates for the mean, since the overall mean is full determined by the other
averages with nµ̂ = n1µ̂1 + · · · + nK µ̂K .
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3.1 One-way analysis of variance

on average, the black segments are much longer than the colored ones. This indicates that
the model obtained by letting each group have its own mean is much better than the other.
The picture in the right panel is not as clear: on average, the colored arrows are shorter, but
the difference in length is much smaller relative to the colored arrows.
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Figure 3.1: Observations drawn from three groups from a model with a strong (left) and
weak (right) signal-to-noise ratio, along with their sample mean (colored hori-
zontal segments) and the overall average (horizontal line). Arrows indicate the
magnitude of the difference between the observation and the (group/average)
mean.

The F -distribution is what we call a large sample approximation to the behaviour of the
statistic if there is truly no difference between group averages (and if model assumptions
are satisfied): it tells us what to expect if there is nothing going on. The quality of the
approximation depends on the sample size in each group: it is more accurate when there
are more observations in each group, as average estimation becomes more reliable3.

As was alluded to in the last chapter, large sample approximations are not the only option
for assessing the null, but they are cheap and easy to obtain. If the distributions are the
same under the null and alternative except for a location shift, we could instead resort to a
permutation-based approach to generate those alternative samples by simply shuffling the

3Mostly because the central limit theorem kicks in
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3 Completely randomized designs

labels. We see in Figure 3.2 that the histogram of the F -statistic values obtained from 1000
permutations closely matches that of the large-sample F -distribution when there are on
average 20 observations per group (right), so the computational burden associated with
running this simulation outweights the benefits. However, with smaller samples (left), the
large sample approximation appears underdispersed relative to the permutation-based
distribution, with more extreme outcomes; the latter should be viewed as more accurate in
this setting.
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Figure 3.2: One-way analysis of variance for a sample of size 20 (left) and 100 (right),
split in five groups. The histograms shows the computed test values based
on 1000 permutations, which are compared to the density of the large-sample
F -distribution.

More interestingly perhaps is what happens to the values taken by the statistic when not all
of the averages are the same. We can see in Figure 3.3 that, when there are some difference
between group means, the values taken by the statistic for a random sample are more to the
right than the null distribution: the larger those differences, the more the curve will shift to
the right and the more often we will obtain a value in the rejection region (in red).

If there are only two groups, then one can show that the F -statistic is mathematically
equivalent to squaring the t-statistic: the null distributions are St(n−K) and F(1, n−K)
and lead to the same p-values and thus same statistical inference and conclusions.
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3.2 Graphical representation

null hypothesis is true
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Figure 3.3: Distribution of the F -test statistic for the one-way analysis of variance when the
true group means are equal (top) and under a specific alternative when they are
not (bottom). Any value falling within the red region leads to rejection of the
null hypothesis at level α = 0.05.

3.2 Graphical representation

How to represent data for a one-way analysis in a publication? The purpose of the visu-
alization is to provide intuition that extends beyond the reported descriptive statistics
and to check the model assumptions. Most of the time, we will be interested in averages
and dispersion, but plotting the raw data can be insightful. It is also important to keep
in mind that summary statistics are estimators of population quantities that are perhaps
unreliable (much too variable) in small samples to be meaningful quantities. Since the
mean estimates will likely be reported in the text, the graphics should be used to convey
additional information about the data. If the samples are extremely large, then graphics
will be typically be used to present salient features of the distributions.

In a one-way analysis of variance, the outcome is a continuous numerical variable, whereas
the treatment or explanatory is a categorical variable. Basic graphics include dot plots,
histograms and density plots, or rugs for the raw data.
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Figure 3.4: Two graphical representations of the arithmetic data: dynamite plot (left) show-
ing the sample average with one standard error above and below, and dot plot
with the sample mean (right).

Typically, scatterplots are not a good option because observations get overlaid. There are
multiple workarounds, involving transparency, bubble plots for discrete data with ties,
adding noise (jitter) to every observation or drawing values using a thin line (rugs) if the
data are continuous and take on few distinct values.

Journals are plagued with poor vizualisations, a prime example of which is the infamous
dynamite plot: it consists of a bar plot with one standard error interval. The problem with
this (or with other summary statistics) is that they hide precious information about the
spread and values taken by the data, as many different data could give rise to the same
average while being quite different in nature. The height of the bar is the sample average and
the bars extend beyond one standard error: this makes little sense as we end up comparing
areas, whereas the mean is a single number. The right panel of Figure 3.4 shows instead a
dot plot for the data, i.e., sample values with ties stacked for clarity, along with the sample
average and a 95% confidence interval for the latter as a line underneath. In this example,
there are not enough observations per group to produce histograms, and a five number
summary of nine observations isn’t really necessary so boxplot are useless. Weissgerber et
al. (2015) discusses alternative solutions and can be referenced when fighting reviewers
who insist on bad visualizations.

If we have a lot of data, it sometimes help to represent selected summary statistics or group
data. A box-and-whiskers plot (or boxplot) is a commonly used graphic representing the
whole data distribution using five numbers

• The box gives the quartiles, say q1, q2 (median) and q3 of the distribution: 50% of the
observations are smaller or larger than q2, 25% are smaller than q1 and 75% are smaller
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3.3 Pairwise tests

than q3 for the sample.
• The whiskers extend up to 1.5 times the box width (q3 − q1) (so the largest observation

that is smaller than q3 + 1.5(q3 − q1), etc.)

Observations beyond the whiskers are represented by dots or circles, sometimes termed
outliers. However, beware of this terminology: the larger the sample size, the more values
will fall outside the whiskers (about 0.7% for normal data). This is a drawback of boxplots,
which were conceived at a time where big data didn’t exist. If you want to combine boxplots
with the raw data, remove the display of outliers to avoid artefacts.

Figure 3.5: Box-and-whiskers plot

Weissgerber et al. (2019) contains many examples of how to build effective visualizations,
including highlighting particular aspects using color, jittering, transparency and how to
adequately select the display zone.

3.3 Pairwise tests

If the global test of equality of mean for the one-way ANOVA leads to rejection of the null,
the conclusion is that one of the group has a different mean. However, the test does not
indicate which of the groups differ from the rest nor does it say how many are different.
There are different options: one is custom contrasts, a special instance of which is pairwise
comparisons.

We are interested in looking at the difference between the (population) average of group i
and j, say. The null hypothesis of no difference translate into µi − µj = 0, so the numerator
of our statistic will be the estimator µ̂i − µ̂j of the difference in sample mean, minus zero.

Assuming equal variances, the two-sample t-test statistic is

tij = (µ̂i − µ̂j)− 0
se(µ̂i − µ̂j) = µ̂i − µ̂j

σ̂
(

1
ni

+ 1
nj

)1/2 ,
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3 Completely randomized designs

where µ̂i and ni are respectively the sample average and the number of observations of
group i, and σ̂ is the estimator of the standard deviation derived using the whole sample
(assuming equal variance). As usual, the denominator of tij is the standard error of the
µ̂i − µ̂j , whose postulated difference is zero. We can compare the value of the observed
statistic to a Student-t distribution with n−K degrees of freedom, denoted St(n−K). For a
two-sided alternative, we reject if |tij | > t1−α/2, for t1−α/2 the 1−α/2 quantile of St(n−K).

Figure 3.6 shows the density of the benchmark distribution for pairwise comparisons in
mean for the arithmetic data. The blue area under the curve defines the set of values for
which we fail to reject the null hypothesis, whereas all values of the test statistic falling in
the red area lead to rejection at level 5%.
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Figure 3.6: Student-t null distribution and rejection region for a t-test.

We fail to reject H0 as tα/2 ≤ tij ≤ t1−α/2
4: this gives us another way of presenting the same

conclusion in terms of the set of mean differences δij = µi − µj for which

tα/2 ≤
δ̂ij − δij

se
(
δ̂ij

) ≤ t1−α/2

which is equivalent upon rearranging to the (1− α) confidence interval for δij ,

CI =
[
δ̂ij − t1−α/2se

(
δ̂ij

)
, δ̂ij − tα/2se

(
δ̂ij

)]
.

4Note that the Student-t distribution is symmetric, so t1−α/2 = −tα/2.
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Example 3.2 (Calculation of pairwise comparisons). We consider the pairwise average
difference in scores between the praised (group C) and the reproved (group D) of the
arithmetic study. The sample averages are respectively µ̂C = 27.4 and µ̂D = 23.4 and the
estimated pooled standard deviation for the five groups is 1.15. Thus, the estimated average
difference between groups C and D is δ̂CD = 4 and the standard error for the difference is
se(δ̂CD) = 1.6216; all of these are calculated by software.

If we take as null hypothesis H0 : δCD = 0, the t statistic is

t = δ̂CD − 0
se(δ̂CD)

= 4
1.6216 = 2.467

and the p-value is p = 0.018. We therefore reject the null hypothesis at level α = 0.05 to
conclude that there is a significant difference (at level α = 0.05) between the average scores
of students praised and reproved.

3.4 Model assumptions

So far, we have brushed all of the model assumptions under the carpet. These are necessary
requirements for the inference to be valid: any statement related to p-values, etc. will
approximately hold only if a set of assumptions is met in the first place. This section is
devoted to the discussion of these assumptions, showcasing examples of where things can
go wrong.

It is customary to write the ith observation of the kth group in the one-way analysis of
variance model as

Yik
observation

= µk
mean of group k

+ εik
error term

, (3.2)

where the error terms εik, which account for unexplained variability and individual differ-
ences, are independent from one with mean zero and variance σ2.

3.4.1 Additivity

The basic assumption of most designs is that we can decompose the outcome into two
components (Cox 1958)(

quantity depending
on the treatment used

)
+
(

quantity depending only
on the particular unit

)
(3.3)
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This additive decomposition further assumes that each unit is unaffected by the treatment
of the other units and that the average effect of the treatment is constant. Thus, it is justified
to use difference in sample mean to estimate the treatment effect since on average, the
individual effect is zero.

The decomposition of observations in terms of group average and mean-zero noise in
Equation 3.2 suggests that we could plot the error term εik against observations, or against
other factors or explanatories, to see if there is any unusual structure unexplained by the
model and indicating problems with the randomization or additivity. However, we do
not have access to εik since both the true group mean µk and the error εik are unknown.
However, a good proxy is the ordinary residual eik = yik − µ̂k where µ̂k is the sample
mean of all observations in experimental group k. By construction, the sample mean of
the residuals will be zero, but local deviations may indicate violations of the analysis (for
example, plotting residuals against time could show a learning effect).

Many graphical diagnostics use residuals, i.e., some variant of the observations minus the
group mean yik − µ̂k, to look for violation of the assumptions.

_ _
_

_

_
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9

12

A B C D E
group

Figure 3.7: Data satisfying the assumptions of the one-way analysis of variance model, with
additive effects, independent observations and common variance.

More generally, the test statistic may make further assumptions. The F -test of the global null
µ1 = · · ·µK assumes that the ith observation of group k, say yik, has average E(Yik) = µk
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and variance Va(Yik) = σ2. The latter is estimated using all of the residuals, with σ̂2 =∑
k

∑
i(yik − µ̂k)2/(n−K). Under these assumptions, the F -test statistic for the global null

µ1 = · · · = µK is the most powerful because it uses all of the data to get a more precise
estimation of the variability. Generally, there may be other considerations than power
that may guide the choice of test statistic, including robustness (sensitivity to extremes
and outliers). For unequal variance, other statistics than the F -test statistic may be more
powerful.

Example 3.3 (Additivity and transformations). Chapter 2 of Cox (1958) discusses the as-
sumption of additivity and provides useful examples showing when it cannot be taken
for granted. One of them, Example 2.3, is a scenario in which the experimental units are
participants and they are asked to provide a ranking of different kindergarten students on
their capacity to interact with others in games, ranked on a scale of 0 to 100. A random
group of students receives additional orthopedagogical support, while the balance is in
the business-as-usual setting (control group). Since there are intrinsic differences at the
student level, one could consider a paired experiment and take as outcome the difference
in sociability scores at the beginning and at the end of the school year.

One can expect the treatment to have more impact on people with low sociability skills
who were struggling to make contacts: a student who scored 50 initially might see an
improvement of 20 points with support relative to 10 in the business-as-usual scenario,
whereas another who is well integrated and scored high initially may see an improvement of
only 5 more had (s)he been assigned to the support group. This implies that the treatment
effects are not constant over the scale, a violation of the additivity assumption. One way
to deal with this is via transformations: Cox (1958) discusses the transformation log{(x +
0.5)/(100.5− x)} to reduce the warping due to scale.

Another example is in experiments where the effect of treatment is multiplicative, so that
the output is of the form(

quantity depending only
on the particular unit

)
×
(

quantity depending
on the treatment used

)

Usually, this arises for positive responses and treatments, in which case taking natural
logarithms on both sides, with log(xy) = log x + log y yielding again an additive decomposi-
tion.

Example 3.4 (Inadequacy of additivity based on context). This example is adapted from
Cox (1958), Example 2.2. Children suffering from attention deficit hyperactivity disorder
(ADHD) may receive medication to increase their attention span, measured on a scale
of 0 to 100, with 0 indicating normal attention span. An experiment can be designed to
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assess the impact of a standardized dose in a laboratory by comparing performances of
students on a series of task before and after, when to a placebo. To make a case, suppose
that students with ADHD fall into two categories: low symptoms and strong symptoms.
In the low symptom group, the average attention is 8 per cent with the drug and 12 per
cent with the placebo, whereas for people with strong symptoms, the average is 40 per
cent among treated and 60 per cent with the placebo. If these two categories are equally
represented in the experiment and the population, we would estimate an average reduction
of 12 percent in the score (thus higher attention span among treated). Yet, this quantity is
artificial, and a better measure would be that symptoms are for the treatment are 2/3 of
those of the control (the ratio of proportions).

Equation 3.3 also implies that the effect of the treatment is constant for all individuals. This
often isn’t the case: in an experimental study on the impact of teaching delivery type (online,
hybrid, in person), it may be that the response to the choice of delivery mode depends on
the different preferences of learning types (auditory, visual, kinestetic, etc.) Thus, recording
additional measurements that are susceptible to interact may be useful; likewise, treatment
allotment must factor in this variability should we wish to make it detectable. The solution
to this would be to setup a more complex model (two-way analysis of variance, general
linear model) or stratify by the explanatory variable (for example, compute the difference
within each level).

3.4.2 Heterogeneity

The one-way ANOVA builds on the fact that the variance in each group is equal, so that
upon recentering, we can estimate it from the variance of the residuals yik − µ̂k. Specifically,
the unbiased variance estimator is the denominator of the F -statistic formula, i.e., the
within sum of squares divided by n−K with n the total number of observations and K the
number of groups under comparison.

For the time being, we consider hypothesis tests for the homogeneity (equal) variance
assumption. The most commonly used tests are Bartlett’s test5 and Levene’s test (a more
robust alternative, less sensitive to outliers). For both tests, the null distribution is H0 : σ2

1 =
· · · = σ2

K against the alternative that at least two differ. The Bartlett test statistic has a χ2

null distribution with K−1 degrees of freedom, whereas Levene’s test has an F -distribution
with (K − 1, n−K) degrees of freedom: it is equivalent to computing the one-way ANOVA
F -statistic with the absolute value of the centered residuals, |yik − µ̂k|, as observations.

5For the connoisseur, this is a likelihood ratio test under the assumption of normally distributed data, with a
Bartlett correction to improve the χ2 approximation to the null distribution.
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Figure 3.8: Difference in average response; while the treatment seems to lead to a decrease
in the response variable, a stratification by age group reveals this only occurs in
the younger population aged less than 25 years, with a seemingly reversed effect
for the older adults. Thus, the marginal model implied by the one-way analysis
of variance is misleading.

bartlett.test(score ~ group,
data = arithmetic)

Bartlett test of homogeneity of variances

data: score by group
Bartlett's K-squared = 2.3515, df = 4, p-value = 0.6714

car::leveneTest(score ~ group,
data = arithmetic,
center = mean)
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Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)

group 4 1.569 0.2013
40

# compare with one-way ANOVA
mod <- lm(score ~ group, data = arithmetic)
arithmetic$absresid <- abs(resid(mod)) #|y_{ik}-mean_k|
anova(aov(absresid ~ group, data = arithmetic))

Analysis of Variance Table

Response: absresid
Df Sum Sq Mean Sq F value Pr(>F)

group 4 17.354 4.3385 1.569 0.2013
Residuals 40 110.606 2.7652

We can see in both cases that the p-values are large enough to dismiss any concern about
the inequality of variance. However, should the latter be a problem, we can proceed with a
test statistic that does not require variances to be equal. The most common choice is a mod-
ification due to Satterthwaite called Welch’s ANOVA. It is most commonly encountered in
the case of two groups (K = 2) and is the default option in R with t.test or oneway.test.

What happens with the example of the arithmetic data when we use this instead of the
usual F statistic? Here, the evidence is overwhelming so no changes to the conclusion.
Generally, the only drawback of using Welch’s ANOVA over the usual F statistic is the need
to have enough observations in each of the group to reliably estimate a separate variance6.
For Welch’s ANOVA, we have to estimate 2K parameters (one mean and one variance per
group), rather than K + 1 parameters for the one-way ANOVA (one mean per group, one
overall variance).

# Welch ANOVA
oneway.test(score ~ group, data = arithmetic,

var.equal = FALSE)

6Coupled with a slight loss of power if the variance are truly equal, more on this later.
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One-way analysis of means (not assuming equal variances)

data: score and group
F = 18.537, num df = 4.000, denom df = 19.807, p-value = 1.776e-06

# Usual F-test statistic
oneway.test(score ~ group, data = arithmetic,

var.equal = TRUE)

One-way analysis of means

data: score and group
F = 15.268, num df = 4, denom df = 40, p-value = 1.163e-07

Notice how the degrees of freedom of the denominator have decreased. If we use
pairwise.t.test with argument pool.sd=FALSE, this amounts to running Welch t-tests
separately for each pair of variable.

What are the impacts of unequal variance if we use the F -test instead? For one, the pooled
variance will be based on a weighted average of the variance in each group, where the
weight is a function of the sample size. This can lead to size distortion (meaning that the
proportion of type I error is not the nominal level α as claimed) and potential loss of power.
The following toy example illustrates this.

Example 3.5 (Violation of the null hypothesis of equal variance).

We consider for simplicity a problem with K = 2 groups, which is the two-sample t-
test. We simulated 50 observations from a Normal(0, 1) distribution and 10 observations
from Normal(0, 9), comparing the distribution of the p-values for the Welch and the F -test
statistics. Figure 3.9 shows the results. The percentage of p-values less than α = 0.05 based
on 10 000 replicates is estimated to be 4.76% for the Welch statistic, not far from the level.
By contrast, we reject 28.95% of the time with the one-way ANOVA global F -test: this is a
large share of innocents sentenced to jail based on false premises! While the size distortion
is not always as striking, heterogeneity should be accounted in the design by requiring
sufficient sample sizes (whenever costs permits) in each group to be able to estimate the
variance reliably and using an adequate statistic.
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Figure 3.9: Histogram of the null distribution of p-values obtained through simulation
using the classical analysis of variance F -test (left) and Welch’s unequal variance
alternative (right), based on 10 000 simulations. Each simulated sample consist
of 50 observations from a Normal(0, 1) distribution and 10 observations from
Normal(0, 9). The uniform distribution would have 5% in each of the 20 bins
used for the display.

There are alternative graphical ways of checking the assumption of equal variance, many
including the standardized residuals rik = (yik − µ̂k)/σ̂ against the fitted values µ̂k. We will
cover these in later sections.

Oftentimes, unequal variance occurs because the model is not additive. You could use
variance-stabilizing transformations (e.g., log for multiplicative effects) to ensure approxi-
mately equal variance in each group. Another option is to use a model that is suitable for
the type of response you have (including count and binary data). Lastly, it may be necessary
to explicitly model the variance in more complex design (including repeated measures)
where there is a learning effect over time and variability decreases as a result. Consult an
expert if needed.
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3.4.3 Normality

There is a persistent yet incorrect claim in the literature that the data (either response,
explanatory or both) must be normal in order to use (so-called parametric) models like
the one-way analysis of variance. With normal data and equal variances, the eponymous
distributions of the F and t tests are exact: knowing the exact distribution does no harm
and is convenient for mathematical derivations. However, it should be stressed that this
condition is unnecessary: the results hold approximately for large samples by virtue of the
central limit theorem. This probability results dictates that, under general conditions nearly
universally met, the sample mean behaves like a normal distribution in large samples. This
applet lets you explore the impact of the underlying population from which the data are
drawn and the interplay with the sample size before the central limit theorem kicks in. You
can view this in Figure 3.2, where the simulated and theoretical large-sample distributions
are undistinguishable with approximately 20 observations per group.

While many authors may advocate rules of thumbs (sample size of n > 20 or n > 30 per
group, say), these rules are arbitrary: the approximation is not much worst at n = 19 than
at n = 20. How large must the sample size be for the approximation to hold? It largely
depends on the distribution in the population: the more extremes, skewness, etc. you have,
the larger the number of observation must be in order for the approximation to be valid.
Figure 3.10 shows a skewed to the right bimodal distribution and the distribution of the
sample mean under repeated sampling. Even with n = 5 observations (bottom left), the
approximation is not bad but it may still be very far off with n = 50 for heavy-tailed data.

It is important to keep in mind that all statistical statements are typically approximate and
their reliability depends on the sample size: too small a sample may hampers the strength of
your conclusions. The default graphic for checking whether a sample matches a postulated
distribution is the quantile-quantile plot.

3.4.4 Independence

While I am not allowed to talk of independence as a Quebecer7, this simply means that
knowing the value of one observation tells us nothing about the value of any other in the
sample. Independence may fail to hold in case of group structure (family dyads, cluster
sampling) which have common characteristics or more simply in the case of repeated
measurements. Random assignment to treatment is thus key to ensure that the measure
holds, and ensuring at the measurement phase that there is no spillover.

7All credits for this pun are due to C. Genest
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Figure 3.10: Graphical representation of the central limit theorem. Top left: density of the
underlying population from which samples are drawn. Top right: a sample of 20
observations with its sample mean (vertical red). Bottom panels: histogram of
sample averages for samples of size 5 (left) and 20 (right) with normal approxi-
mation superimposed. As the sample size increases, the normal approximation
for the mean is more accurate and the standard error decreases.

Example 3.6 (Independence of measurements). There are many hidden ways in which mea-
surements can impact the response. Physical devices that need to be calibrated before use
(scales, microscope) require tuning: if measurements are done by different experimenters
or on different days, it may impact and add systematic shift in means for the whole batch.

What is the impact of dependence between measurements? Heuristically, correlated mea-
surements carry less information than independent ones. In the most extreme case, there
is no additional information and measurements are identical, but adding them multiple
times unduly inflates the statistic and leads to more frequent rejections.

The lack of independence can also have drastic consequences on inference and lead to
false conclusions: Figure 3.11 shows an example with correlated samples within group (or
equivalently repeated measurements from individuals) with 25 observations per group.
The y-axis shows the proportion of times the null is rejected when it shouldn’t be. Here,
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Figure 3.11: Percentage of rejection of the null hypothesis for the F -test of equality of means
for the one way ANOVA with data generated with equal mean and variance from
an equicorrelation model (within group observations are correlated, between
group observations are independent). The nominal level of the test is 5%.

since the data are generated from the null model (equal mean) with equal variance, the
inflation in the number of spurious discoveries, false alarm or type I error is alarming and
the inflation is substantial even with very limited correlation between measurements.
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4 Contrasts and multiple testing

, Key concept

Learning objectives:

• Specifying contrast weights to test for differences between groups
• Understanding the problem of multiple testing and the danger for selective

reporting
• Adjusting for multiple testing to control the global error rate.

4.1 Contrasts

Suppose we perform an analysis of variance and the F -test for the (global) null hypothesis
that the averages of all groups are equal is very large: we reject the null hypothesis in favor of
the alternative, which states that at least one of the group average is different. The follow-up
question will be where these differences lie. Indeed, in an experimental context, this implies
one or more of the manipulation has a different effect from the others on the mean response.
Oftentimes, this isn’t interesting in itself: we could be interested in comparing different
options relative to a status quo (e.g., for new drugs or medical treatment), or determine
whether specific combinations work better than separately, or find the best treatment by
comparing all pairs.

The scientific question of interest that warranted the experiment may lead to a specific set
of hypotheses, which can be formulated by researchers as comparisons between means of
different subgroups. We can normally express these as contrasts. As Dr. Lukas Meier puts it,
if the global F -test for equality of means is equivalent to a dimly lit room, contrasts are akin
to spotlight that let one focus on particular aspects of differences in treatments.

Formally speaking, a contrast is a linear combination of averages: in plain English, this
means we assign a weight to each group average and add them up, and then compare
that summary to a postulated value a, typically zero. Contrasts encode research question
of interest: if ci denotes the weight of group average µi (i = 1, . . . , K), then we can write

67

https://stat.ethz.ch/~meier


4 Contrasts and multiple testing

the contrast as C = c1µ1 + · · · + cKµK with the null hypothesis H0 : C = a for a two-
sided alternative. The sample estimate of the linear contrast is obtained by replacing the
unknown population average µi by the sample average of that group, µ̂i = yi. We can easily
obtain the standard error of the linear combination C.1 We can then build a t statistic as
usual by looking at the difference between our postulated value and the observed weighted
mean, suitably standardized. If the global F -test leads to rejection of the null, there exists a
contrast which is significant at the same level.

4.1.1 Orthogonal contrasts

Sometimes, linear contrasts encode disjoint bits of information about the sample: for
example, one contrast that compares groups the first two groups versus one that compares
the third and fourth is in effect using data from two disjoint samples, as contrasts are
based on sample averages. Whenever the contrasts vectors are orthogonal, the tests will be
uncorrelated. Mathematically, if we let ci and c∗

i denote weights attached to the mean of
group i comprising ni observations, contrasts are orthogonal if c1c∗

1/n1 + · · ·+cKc∗
K/nK = 0;

if the sample is balanced with the same number of observations in each group, n/K =
n1 = · · · = nK , we can consider the dot product of the two contrast vectors and neglect the
subsample sizes.

If we have K groups, there are K − 1 contrasts for pairwise differences, the last one being
captured by the sample mean for the overall effect2. If we care only about difference
between groups (as opposed to the overall effect of all treatments), we impose a sum-
to-zero constraint on the weights so c1 + · · · + cK = 0. Keep in mind that, although
independent tests are nice mathematically, contrasts should encode the hypothesis of
interest to the researchers: we choose contrasts because they are meaningful, not because
they are orthogonal.

Example 4.1 (Contrasts for encouragement on teaching). The arithmetic data example
considered five different treatment groups with 9 individuals in each. Two of them were
control groups, one received praise, another was reproved and the last was ignored.

1Should you ever need the formula, the standard error assuming subsample size of n1, . . . , nK and a common

variance σ2 is
√

Va(Ĉ), where

Va(Ĉ) = σ̂2
(

c2
1

n1
+ · · · + c2

K

nK

)
.

2The constraint c1 + · · · + cK = 0 ensures that linear contrasts are orthogonal to the mean, which has weight
ci = ni/n and for balanced samples ci = 1/n.
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4.1 Contrasts

Suppose that researchers were interested in assessing whether the experimental manipula-
tion had an effect, and whether the impact of positive and negative feedback is the same on
students.3

Suppose we have five groups in the order (control 1, control 2, praised, reproved, ignored).
We can express these hypothesis as

• H01: µpraise = µreproved
• H02:

1
2(µcontrol1 + µcontrol2) = 1

3µpraised + 1
3µreproved + 1

3µignored

Note that, for the hypothesis of control vs experimental manipulation, we look at average
of the different groups associated with each item. Using the ordering, the weights of the
contrast vector are (1/2, 1/2,−1/3,−1/3,−1/3) and (0, 0, 1,−1, 0). There are many equiva-
lent formulation: we could multiply the weights by any number (different from zero) and
we would get the same test statistic, as the latter is standardized.

library(emmeans)
data(arithmetic, package = "hecedsm")
linmod <- aov(score ~ group, data = arithmetic)
linmod_emm <- emmeans(linmod, specs = 'group')
contrast_specif <- list(

controlvsmanip = c(0.5, 0.5, -1/3, -1/3, -1/3),
praisedvsreproved = c(0, 0, 1, -1, 0)

)
contrasts_res <-

contrast(object = linmod_emm,
method = contrast_specif)

# Obtain confidence intervals instead of p-values
confint(contrasts_res)

Table 4.1: Contrasts estimates for the arithmetic data

contrast estimate std. error df lower (CI) upper (conf. limit)CI)

control vs manip -3.33 1.05 40 -5.45 -1.22
praised vs reproved 4.00 1.62 40 0.72 7.28

3These would be formulated at registration time, but for the sake of the argument we proceed as if they were.
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Example 4.2 (Teaching to read). We consider data from Baumann, Seifert-Kessell, and
Jones (1992). The abstract of the paper provides a brief description of the study

This study investigated the effectiveness of explicit instruction in think aloud
as a means to promote elementary students’ comprehension monitoring abil-
ities. Sixty-six fourth-grade students were randomly assigned to one of three
experimental groups: (a) a Think-Aloud (TA) group, in which students were
taught various comprehension monitoring strategies for reading stories (e.g.,
self-questioning, prediction, retelling, rereading) through the medium of think-
ing aloud; (b) a Directed reading-Thinking Activity (DRTA) group, in which
students were taught a predict-verify strategy for reading and responding to
stories; or (c) a Directed reading Activity (DRA) group, an instructed control, in
which students engaged in a noninteractive, guided reading of stories.

Looking at Table 4.2, we can see that DRTA has the highest average, followed by TA and
directed reading (DR).

library(emmeans) #load package
data(BSJ92, package = "hecedsm")
mod_post <- aov(posttest1 ~ group, data = BSJ92)
emmeans_post <- emmeans(object = mod_post,

specs = "group")

Table 4.2: Estimated group averages with standard errors and 95% confidence intervals for
post-test 1.

terms marg. mean std. err. dof lower (CI) upper (CI)

DR 6.68 0.68 63 5.32 8.04
DRTA 9.77 0.68 63 8.41 11.13
TA 7.77 0.68 63 6.41 9.13

The purpose of Baumann, Seifert-Kessell, and Jones (1992) was to make a particular com-
parison between treatment groups. From the abstract:

The primary quantitative analyses involved two planned orthogonal contrasts—
effect of instruction (TA + DRTA vs. 2 x DRA) and intensity of instruction (TA
vs. DRTA)—for three whole-sample dependent measures: (a) an error detection
test, (b) a comprehension monitoring questionnaire, and (c) a modified cloze
test.
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4.1 Contrasts

The hypothesis of Baumann, Seifert-Kessell, and Jones (1992) is H0 : µTA + µDRTA = 2µDRA
or, rewritten slightly,

H0 : −2µDR + µDRTA + µTA = 0.

with weights (−2, 1, 1); the order of the levels for the treatment are (DRA, DRTA, TA)
and it must match that of the coefficients. An equivalent formulation is (2,−1,−1) or
(1,−1/2,−1/2): in either case, the estimated differences will be different (up to a constant
multiple or a sign change). The vector of weights for H0 : µTA = µDRTA is (0, −1, 1): the
zero appears because the first component, DRA doesn’t appear. The two contrasts are
orthogonal since (−2× 0) + (1×−1) + (1× 1) = 0.

# Identify the order of the level of the variables
with(BSJ92, levels(group))

[1] "DR" "DRTA" "TA"

# DR, DRTA, TA (alphabetical)
contrasts_list <- list(

"C1: DRTA+TA vs 2DR" = c(-2, 1, 1),
# Contrasts: linear combination of means, coefficients sum to zero
# 2xDR = DRTA + TA => -2*DR + 1*DRTA + 1*TA = 0 and -2+1+1 = 0
"C1: average (DRTA+TA) vs DR" = c(-1, 0.5, 0.5),
#same thing, but halved so in terms of average
"C2: DRTA vs TA" = c(0, 1, -1),
"C2: TA vs DRTA" = c(0, -1, 1)
# same, but sign flipped

)
contrasts_post <-

contrast(object = emmeans_post,
method = contrasts_list)

contrasts_summary_post <- summary(contrasts_post)

Table 4.3: Estimated contrasts for post-test 1.

contrast estimate std. err. dof stat p-value
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C1: DRTA+TA vs 2DR 4.18 1.67 63 2.51 0.01
C1: average (DRTA+TA) vs DR 2.09 0.83 63 2.51 0.01
C2: DRTA vs TA 2.00 0.96 63 2.08 0.04
C2: TA vs DRTA -2.00 0.96 63 -2.08 0.04

We can look at these differences; since DRTA versus TA is a pairwise difference, we could have
obtained the t-statistic directly from the pairwise contrasts using pairs(emmeans_post).
Note that the two different ways of writing the comparison between DR and the average of
the other two methods yield different point estimates, but same inference (i.e., the same
p-values). For contrast C1b, we get half the estimate (but the standard error is also halved)
and likewise for the second contrasts we get an estimate of µDRTA − µTA in the first case
(C2) and µTA − µDRTA: the difference in group averages is the same up to sign.

What is the conclusion of our analysis of contrasts? It looks like the methods involving
teaching aloud have a strong impact on reading comprehension relative to only directed
reading. The evidence is not as strong when we compare the method that combines directed
reading-thinking activity and thinking aloud.

Example 4.3 (Paper or plastic). Sokolova, Krishna, and Döring (2023) consider consumer
bias when assessing how eco-friendly packages are. Items such as cereal are packaged
in plastic bags, which themselves are covered in a box. They conjecture (and find) that
consumers tend to view the packaging as being more eco-friendly when the amount of
cardboard or paper surrounding the box is large, relative to the sole plastic package. We
consider the data Study 2A, which measures the perceived environmental friendliness (PEF)
as a function of the proportion of paper wrapping (either none, half of the area of the plastic,
equal or twice). The authors are interested in comparing none with other choices.

If µ0, µ0.5, µ1, µ2 denote the true mean of the PEF score as a function of the proportion of
paper, we are interested in pairwise differences, but only relative to the reference µ0:

µ0 = µ0.5 ⇐⇒ 1µ0 − 1µ0.5 + 0µ1 + 0µ2 = 0
µ0 = µ1 ⇐⇒ 1µ0 + 0µ0.5 − 1µ1 + 0µ2 = 0
µ0 = µ2 ⇐⇒ 1µ0 + 0µ0.5 + 0µ1 − 1µ2 = 0

so contrast vectors (1,−1, 0, 0), (1, 0,−1, 0) and (1, 0, 0,−1) would allow one to test the
hypothesis.
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data(SKD23_S2A, package = "hecedsm") # load data
linmod <- lm(pef ~ proportion, data = SKD23_S2A) # fit simple linear regression
anova(linmod) # check for significance of slope
coef(linmod) # extract intercept and slope
anovamod <- lm(pef ~ factor(proportion), data = SKD23_S2A) # one-way ANOVA
margmean <- anovamod |> emmeans::emmeans(specs = "proportion") # group means
contrastlist <- list( # specify contrast vectors

refvshalf = c(1, -1, 0, 0),
refvsone = c(1, 0, -1, 0),
refvstwo = c(1, 0, 0, -1))

# compute contrasts relative to reference
margmean |> emmeans::contrast(method = contrastlist)

The group averages are reported in Table 9.1, match those reported by the authors in the
paper. They suggest an increased perceived environmental friendliness as the amount of
paper used in the wrapping increases. We could fit a simple regression model to assess
the average change, treating the proportion as a continuous explanatory variable. The
estimated slope for the change in PEF score, which ranges from 1 to 7 in increments of
0.25, is 0.53 per area of paper. There is however strong evidence, given the data, that the
change isn’t quite linear, as the fit of the linear regression model is significantly worse than
the corresponding linear model.

Table 4.4: Estimated group averages of PEF per proportion with standard errors

proportion marg. mean std. err. dof lower (CI) upper (CI)

0.0 2.16 0.093 798 1.98 2.34
0.5 2.91 0.093 798 2.73 3.09
1.0 3.06 0.092 798 2.88 3.24
2.0 3.34 0.089 798 3.17 3.52

Table 4.5: Estimated contrasts for differences of PEF to no paper.

contrast estimate std. err. dof stat p-value

refvshalf -0.75 0.13 798 -5.71 0
refvsone -0.90 0.13 798 -6.89 0
refvstwo -1.18 0.13 798 -9.20 0
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4 Contrasts and multiple testing

All differences reported in Table 9.2 are significant and positive, in line with the researcher’s
hypothesis.

4.2 Multiple testing

Beyond looking at the global null, we will be interested in a set of contrast statistics and
typically this number can be large-ish. There is however a catch in starting to test multiple
hypothesis at once.

If you do a single hypothesis test and the testing procedure is well calibrated (meaning
that the model model assumptions hold), p-values are generated uniformly on the interval
[0, 1] and there is a probability of α of making a type I error (i.e., concluding in favour of the
alternative and rejecting the null incorrectly) if the null is true. The problem of the above
approach is that the more tests you perform, the higher the chance of finding (incorrectly)
something: with 20 independent tests, we expect that, on average, one of them will yield a
p-value less than 5% even if this is a fluke. The problem with multiple testing is not so much
that it occurs, but more than researchers tend to report selectively findings and only give
the results of tests for which p ≤ α, even if these are typically the product of chance. This
makes most findings will not replicate: if we rerun the experiment, we will typically not find
the same result.

There is an infinite potential number of contrasts with more than two factos. Not all tests
are of interest: standard software will report all possible pairwise comparisons, but this
may not be of interest as showcased in Example 4.4. If there are K groups to compare
and any comparison is of interest, than we could performs

(K
2
)

pairwise comparisons
with H0 : µi = µj for i ̸= j. For K = 3, there are three such comparisons, 10 pairwise
comparisons if K = 5 and 45 pairwise comparisons if K = 10. The number of pairwise
comparisons grows quickly.

The number of tests performed in the course of an analysis can be very large. Y. Benjamini
investigated the number of tests performed in each study of the Psychology replication
project (Nosek et al. 2015): this number ranged from 4 to 700, with an average of 72 —
most studies did not account for the fact they were performing multiple tests or selected
the model and thus some ‘discoveries’ are bound to be spurious. It is natural to ask then
how many results are spurious findings that correspond to type I errors. The paramount
(absurd) illustration is the cartoon presented in Figure 4.1: note how there is little scientific
backing for the theory (thus such test shouldn’t be of interest to begin with) and likewise
the selective reporting made of the conclusions, despite nuanced conclusions.
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We can also assess mathematically the problem. Assume for simplicity that all tests are
independent4, then the probability of any rejecting the null incorrectly is α, but larger over
the collection (with tests A and B, we could reject by mistake if A is a type I error and B
isn’t, or vice-versa, or if both are incorrect rejections.

The probability of making at least one type I error if each test is conducted at level α, say α⋆,
is5

α⋆ = 1− probability of making no type I error (4.1)

= 1− (1− α)m (4.2)

≤ mα (4.3)

With α = 5% and m = 4 tests, α⋆ ≈ 0.185 whereas for m = 72 tests, α⋆ ≈ 0.975: this means
we are almost guaranteed even when nothing is going on to find “statistically significant”
yet meaningless results.

It is sensible to try and reduce or bound the number of false positive or control the proba-
bility of getting spurious findings. We consider a family of m null hypothesis H01, . . . , H0m,
i.e. a collection of m hypothesis tests. The exact set depends on the context, but this
comprises all hypothesis that are scientifically relevant and could be reported. These
comparisons are called pre-planned comparisons: they should be chosen before the exper-
iment takes place and pre-registered to avoid data dredging and selective reporting. The
number of planned comparisons should be kept small relative to the number of parameters:
for a one-way ANOVA, a general rule of thumb is to make no more comparisons than the
number of groups, K.

Suppose that we perform m hypothesis tests in a study and define binary indicators

Ri =
{

1 if we reject the null hypothesis H0i

0 if we fail to reject H0i

(4.4)

Vi =
{

1 type I error for H0i (Ri = 1 and H0i is true)
0 otherwise.

(4.5)

With this notation, R = R1 + · · · + Rm simply encodes the total number of rejections
(0 ≤ R ≤ m), and V = V1 + · · ·+ Vm is the number of null hypothesis rejected by mistake
(0 ≤ V ≤ R).

4This is the case if tests are based on different data, or if the contrasts considered are orthogonal under
normality.

5The second line holds with independent observations, the second follows from the use of Boole’s inequality
and does not require independent tests.
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Figure 4.1: xkcd 882: Significant. The alt text is ‘So, uh, we did the green study again and
got no link. It was probably a–’ ‘RESEARCH CONFLICTED ON GREEN JELLY
BEAN/ACNE LINK; MORE STUDY RECOMMENDED!’

The familywise error rate is the probability of making at least one type I error for the whole
collection or test, in other words per family, is

FWER = Pr(V ≥ 1).

To control the familywise error rate, one must be more stringent in rejecting the null and
perform each test with a smaller level α so that the overall or simultaneous probability is
less than FWER.
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4.2.1 Bonferroni’s procedure

The easiest way to control for multiple testing is to perform each test at level α/m, thereby
ensuring that the family-wise error is controlled at level α. This is a good option if m is
small and the Bonferroni adjustment also controls the per-family error rate, which is the
expected (theoretical average) number of false positive PFER = E(V ). The latter is a more
stringent criterion than the familywise error rate because Pr(V ≥ 1) ≤ E(V ): the familywise
error rate does not make a distinction between having one or multiple type I errors.6

Why is Bonferroni’s procedure popular? It is conceptually easy to understand and simple,
and it applies to any design and regardless of the dependence between the tests. However,
the number of tests to adjust for, m, must be prespecified and the procedure leads to low
power when the size of the family is large, meaning it makes detection of non-null effects
more difficult. Moreover, if our sole objective is to control for the familywise error rate,
then there are other procedures that are always better in the sense that they still control the
FWER while leading to increased capacity of detection when the null is false.

If the raw (i.e., unadjusted) p-values are reported, we reject hypothesis H0i if m× pi ≥ α:
operationally, we multiply each p-value by m and reject if the result exceeds α.

4.2.2 Holm–Bonferroni’s procedure

The idea of Holm’s procedure is to use a sharper inequality bound and amounts to per-
forming tests at different levels, with more stringent for smaller p-values. To perform
Holm–Bonferroni,

1. order the p-values of the family of m tests from smallest to largest, p(1) ≤ · · · ≤ p(m)
2. test sequentially the hypotheses: coupling Holm’s method with Bonferroni’s proce-

dure, we compare p(1) to α(1) = α/m, p(2) to α(2) = α/(m − 1), etc. If p(j) ≥ α(j) but
p(i) ≤ α(i) for i = 1, . . . , j− 1 (all smaller p-values), we reject the associated hypothesis
H0(1), . . . , H0(j−1) but fail to reject H0(j), . . . , H0(m).

If all of the p-values are less than their respective levels, than we still reject each null hypoth-
esis. Otherwise, we reject all the tests whose p-values exceeds the smallest nonsignificant
one. This procedure doesn’t control the per-family error rate, but is uniformly more power-
ful (lingo to say that it’s universally better for control) and thus leads to increased detection
than Bonferroni’s method. To see this, consider a family of m = 3 p-values with values

6By definition, the expected number of false positive (PFER) is E(V ) =
∑m

i=1 i Pr(V = i) ≥
∑m

i=1 Pr(V = i) =
Pr(V ≥ 1), so larger than the probability of making at least type 1 error. Thus, any procedure that controls
the per-family error rate (e.g., Bonferroni) also automatically bounds the familywise error rate.
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0.01, 0.04 and 0.02. Bonferroni’s adjustment would lead us to reject the second and third
hypotheses at level α = 0.05, but not Holm-Bonferroni.

4.2.3 Multiple testing methods for analysis of variance

There are specialized procedures for the analysis of variance problem that leverages some
of the assumptions (equal variance, large sample approximation for the distribution of
means). There are three scenarios

1. Dunnett’s method for comparison to a reference or control group, controlling only for
K − 1 pairwise differences

2. Tukey’s range procedure, also termed honestly significant difference (HSD), for all
pairwise differences. We can obtain control on the type I error by looking at what
happens between the minimum and maximum group averages under the null.

3. Scheffe’s method for contrasts. This is useful when the number of contrasts of interest
is not specified apriori.

If the global F -test does not find differences at level α, then Scheffe’s method will also find
no significant contrast α but nothing can be said about other methods. Generally, the more
tests we control the type error for, the more conservative the procedures are.

In R, we can use the multcomp or emmeans packages for the tests to adjust, or compute
results manually. The test statistics do not change, only the benchmark null distribution
is different. Figure 4.2 shows what the p-value would be depending on how we control
for contrasts. For reasonable values, we get larger p-values for the methods that provide
control.

Example 4.4 (Multiple testing for paper or plastic). Sokolova, Krishna, and Döring (2023)
considered pairwise difference relative to the control where only plastic wrapping is used.
We could use either Bonferroni, Holm–Bonferoni or Dunnett’s method. Since the p-values
are tiny (less than 10−4), this has no impact on the conclusions whatsoever. To better
appreciate the impact in small samples, we subsample 20 observation per group to inflate
p-values. We can also see differences by inspecting the width of the confidence intervals for
the pairwise differences to the reference group: more conservative references lead to wider
intervals.

data(SKD23_S2A, package = "hecedsm") # load data
set.seed(80667) # Set seed for reproducibility
SKD23_S2A_sub <- SKD23_S2A |>
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Figure 4.2: P-value as a function of the squared t-statistic for a contrast for no adjustment
(full line), Tukey’s HSD (dashed line) and Scheffe’s adjustment (dotted).

# Create a categorical variable (factor) and ensure reference is 0
# By default, it would be (first alphanumerical value of labels)
dplyr::mutate(propfact = relevel(factor(proportion), ref = "0")) |>
# Sample only fourty observations by group -
# for illustration purposes only, otherwise p-values are too small
dplyr::slice_sample(n = 20, by = propfact)

anovamod <- lm(pef ~ propfact, data = SKD23_S2A_sub)
library(emmeans)
margmean <- emmeans(

anovamod, # fitted model
# 'specs': vector with names of factors to adjust for
specs = "propfact")

contrastlist <- list( # specify contrast vectors
refvshalf = c(1, -1, 0, 0),
refvsone = c(1, 0, -1, 0),
refvstwo = c(1, 0, 0, -1))
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4 Contrasts and multiple testing

contrasts <- margmean |> contrast(method = contrastlist)
# Bonferroni and Holm-Bonferroni adjustments
summary(contrasts, adjust = "bonferroni")

contrast estimate SE df t.ratio p.value
refvshalf -0.450 0.331 76 -1.359 0.5346
refvsone -1.150 0.331 76 -3.473 0.0026
refvstwo -0.662 0.331 76 -2.001 0.1470

P value adjustment: bonferroni method for 3 tests

summary(contrasts, adjust = "holm")

contrast estimate SE df t.ratio p.value
refvshalf -0.450 0.331 76 -1.359 0.1782
refvsone -1.150 0.331 76 -3.473 0.0026
refvstwo -0.662 0.331 76 -2.001 0.0980

P value adjustment: holm method for 3 tests

# Note that the p-values for the latter are equal or smaller

# Adjustments for ANOVA to get simultaneous statements
# Number of groups minus 1 for Scheffe (correct here)
# This 'rank' often needs to be manually specified in multi-way ANOVA
summary(contrasts, adjust = "scheffe", scheffe.rank = 3)

contrast estimate SE df t.ratio p.value
refvshalf -0.450 0.331 76 -1.359 0.6070
refvsone -1.150 0.331 76 -3.473 0.0104
refvstwo -0.662 0.331 76 -2.001 0.2696

P value adjustment: scheffe method with rank 3
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4.2 Multiple testing

# This would be the better option here
summary(contrasts, adjust = "dunnett")

contrast estimate SE df t.ratio p.value
refvshalf -0.450 0.331 76 -1.359 0.3934
refvsone -1.150 0.331 76 -3.473 0.0025
refvstwo -0.662 0.331 76 -2.001 0.1260

P value adjustment: dunnettx method for 3 tests

# The less you adjust for, the smaller the p-values
# For Tukey, use 'contrast(method = "pairwise")' instead

# Since we have a small number of pairwise comparisons
# We could use the less stringent of Holm-Bonferroni and Dunnett's
# The latter provides shorter intervals here.
contrasts |> confint(adjust = "dunnett")

contrast estimate SE df lower.CL upper.CL
refvshalf -0.450 0.331 76 -1.25 0.348
refvsone -1.150 0.331 76 -1.95 -0.352
refvstwo -0.662 0.331 76 -1.46 0.135

Confidence level used: 0.95
Conf-level adjustment: dunnettx method for 3 estimates

contrasts |> confint(adjust = "holm")

contrast estimate SE df lower.CL upper.CL
refvshalf -0.450 0.331 76 -1.26 0.361
refvsone -1.150 0.331 76 -1.96 -0.339
refvstwo -0.662 0.331 76 -1.47 0.148

Confidence level used: 0.95
Conf-level adjustment: bonferroni method for 3 estimates
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4 Contrasts and multiple testing

We can see that more stringent adjustments lead to higher p-values and wider intervals.

If we wanted to perform tests for multiple variables, or for subgroups, we can obtain overall
control by using a procedure in each subset with a lower α, and combining the overall
errors afterwards. If the data arise from different independent samples, the tests are indeed
independent.
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5 Complete factorial designs

We next consider experiments and designs in which there are multiple factors being manip-
ulated by the experimenter simultaneously. Before jumping into the statistical analysis, let
us discuss briefly some examples that will be covered in the sequel.

Example 5.1 (Psychological ownership of borrowed money). Supplemental Study 5 from
Sharma, Tully, and Cryder (2021) checks the psychological perception of borrowing money
depending on the label. The authors conducted a 2 by 2 between-subject comparison
(two-way ANOVA) varying the type of debt (whether the money was advertised as credit or
loan) and the type of purchase the latter would be used for (discretionary spending or need).
The response is the average of the likelihood and interest in the product, both measured
using a 9 point Likert scale from 1 to 9.

Example 5.2 (Spatial orientation shrinks and expands psychological distance). Maglio and
Polman (2014) measured the subjective distance on travel based on the direction of travel.
They conducted an experiment in the Toronto subway green line, asking commuters from
Bay station to answer the question “How far away does the [name] station feel to you?”
using a 7 point Likert scale ranging from very close (1) to very far (7). The stations name
were one of Spadina, St. George, Bloor–Yonge and Sherbourne (from West to East).

As there are four stations and two directions of travel (a 4 by 2 design), the scientific question
of interest for subjective measures of distance would consist of perceiving differently the
distance depending on the direction of travel. We could also wonder whether destina-
tions that are two stations away from Bay (Spadina and Sherbourne) would be considered
equidistant, and similarly for the other two.

5.1 Efficiency of multiway analysis of variance.

Consider the setting of Sharma, Tully, and Cryder (2021) and suppose we want to check the
impact of debt and collect a certain number of observations in each group. If we suspected
the label had an influence, we could run a one-way analysis of variance for each spending
type separately (thus, two one-way ANOVA each with two groups). We could do likewise if
we wanted instead to focus on whether the spending was discretionary in nature or not, for
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each label: together, this would give a total of eight sets of observations. Combining the two
factors allows us to halve the number of groups/samples we collect in this simple setting:
this highlights the efficiency of running an experiment modifying all of these instances
at once, over a series of one-way analysis of variance. This concept extends to higher
dimension when we manipulate two or more factors. Factorial designs allow us to study
the impact of multiple variables simultaneously with fewer overall observations.

The drawback is that as we increase the number of factors, the total number of subgroups
increases: with a complete design1 and with factors A, B, C, etc. with na, nb, nc, . . . levels,
we have a total of na×nb×nc×· · · combinations and the number of observations needed to
efficiently measure the group means increases quickly. This is the curse of dimensionality:
the larger the number of experimental treatments manipulated together, the larger the
sample size needed. A more efficient approach, which we will cover in later section, relies
on measuring multiple observations from the same experimental units, for example by
giving multiple tasks (randomly ordered) to participants.

Intrinsically, the multiway factorial design model description does not change relative to a
one-way design: the analysis of variance describes the sample mean for the response in
each subgroup,

Consider a two-way analysis of variance model. This is a linear model with two factors,
A and B, with respectively na and nb levels. The response Yijk of the kth measurement in
group (ai, bj) is

Yijk
response

= µij
subgroup mean

+ εijk
error term

(5.1)

where

• Yijk is the kth replicate for ith level of factor A and jth level of factor B
• µij is the average response of measurements in group (ai, bj)
• εijk are independent error terms with mean zero and standard deviation σ.

This, it turns out, is a special case of linear regression model. We could build contrasts for
comparing group averages, but it will more convenient to reparametrize the model so that
hypotheses of interest are directly expressed in terms of the parameters.

For example, in the Maglio and Polman (2014) study, we could gather observations for each
factor combination in a table, where direction is the row and station the column.

1By complete design, it is meant that we gather observations for each subcategory.
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5.1 Efficiency of multiway analysis of variance.

Table 5.1: Conceptual depiction of cell average for the two by two design of Maglio and
Polman (2014)

A station
B
direction b1 (east) b2 (west) row mean

a1 (Spadina) µ11 µ12 µ1.

a2 (St. George) µ21 µ22 µ2.

a3 (Bloor-Yonge) µ31 µ32 µ3.

a4 (Sherbourne) µ41 µ42 µ4.

column mean µ.1 µ.2 µ

The ith row mean represents the average response across all levels of B, µi. = (µi1 + · · ·+
µinb

)/nb and similarly for the average of the jth column, µ.j = (µ1j + · · ·+ µnaj)/na. Finally,
the overall average is

µ =
∑na

i=1
∑nb

j=1 µij

nanb
.

Each subgroup average µij will be estimated as the sample mean of observations in their
group and we would use the above formulae to obtain estimates of the row, column and
overall means µ̂i., µ̂.j and µ̂. If the sample is balanced, meaning the number of observations
is the same, these will be the same as summing over all observations in a row, column
or table and then averaging. In general setup, however, we will give equal weight to each
subgroup average.

Table 5.2: Repartition of the sample for Study 1 of Maglio and Polman (2014).

Spadina St. George Bloor-Yonge Sherbourne

east 26 26 23 26
west 25 25 26 25

Looking at Table 5.2, we can see that the number of observations is not exactly the same. In
general, attrition and non-response can lead to unequal cell sample size, but you should
strive to gather roughly equal number of observations. The main consequence is that differ-
ent decompositions of the variance will lead to different tests, whereas no such ambiguity
exists for balanced data.
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5.2 Interactions

Table 5.1 shows the individual mean of each subgroup. From these, we may be interested
in looking at the experiment as a single one-way analysis of variance model with eight
subgroups, or as a series of one-way analysis of variance with either direction or station
as sole factor.

We will use particular terminology to refer to these:

• simple effects: difference between levels of one in a fixed combination of others.
Simple effects are comparing cell averages within a given row or column.

• main effects: differences relative to average for each condition of a factor. Main effects
are row/column averages.

• interaction effects: when simple effects differ depending on levels of another factor.
Interactions effects are differences relative to the row or column average.

In other words, an interaction occurs when some experimental factors, when coupled
together, have different impacts than the superposition of each. An interaction between
two factors occurs when the average effect of one independent variable depends on the
level of the other.

If there is a significant interaction, the main effects are not of interest since they are mis-
leading. Rather, we will compute the simple effects by making the comparison one at level
at the time.

In our example of Maglio and Polman (2014), a simple effect would be comparing the
distance between Spadina and Sherbourne for east. The main effect for the direction would
be the average perceived distance for east and for west. Finally, the interaction would
measure how much these differ by station depending on direction.

To better understand, we consider the average response and suppose we have access to
the true population average for each sub-treatment. We can then represent the population
using a line graph with the two factors, one being mapped to color and another to the
x-axis. Figure 5.1 shows what happens under all possible scenarios with a 2 by 2 design.
When there is no overall effect, the mean is constant. If there isn’t a main effect of A, the
average of the two mean response for a1 and a2 are the same, etc. Interactions are depicted
by non-parallel lines.

It’s clear from Figure 5.1 that looking only at the average of A alone (the main effect) isn’t
instructive when we are in the presence of an interaction: rather, we should be comparing
the values of A for b1 separately than those for b2, and vice-versa, using simple effects,
otherwise our conclusions may be misleading.
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5.3 Model parametrization

interaction only main effect of A and interaction main effect of B and interaction both main effects and interaction

no effect main effect of A only main effect of B only both main effects

a1 a2 a1 a2 a1 a2 a1 a2

5

10

15

5

10

15

factor A

factor B b1 b2

mean response

Figure 5.1: Interaction plots (line graphs) for example patterns for means for each of the
possible kinds of general outcomes in a 2 by 2 design. Illustration adapted from
Figure 10.2 of Crump, Navarro, and Suzuki (2019) by Matthew Crump (CC BY-SA
4.0 license).

Example 5.3 (Interaction plots for Maglio and Polman (2014)). The hypothesis of interest
is the interaction; for the time being, we can simply plot the average per group. Since the
summary statistics can hide important information such as the uncertainty, we add 95%
confidence intervals for the subgroup averages and superimpose jittered observations to
show the spread of the data. Based on Figure 5.2, there appears to be at least an interaction
between station and direction of travel, in addition to a main effect for station. Formal
hypothesis testing can help check this intuition.

5.3 Model parametrization

The following section is technical and may be omitted.

The model parametrized in terms of subgroup or cell average is okay in Equation 5.1, but it
doesn’t help us if we want to check for the presence of main effects and interaction, even
if it would be possible to specify the contrasts required to test these hypotheses. We can
however express the model in terms of main effects and interactions.

We consider the alternative formulation

Yijk = µ + αi + βj + (αβ)ij + εijk,

where
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Figure 5.2: Interaction plot for Study 1 of Maglio and Polman (2014), showing group averages
and 95% confidence intervals for the means. Observations are overlaid on the
graph.

• µ is the average of all subgroup averages, termed overall mean.
• αi = µi. − µ is the mean of level Ai minus the overall mean.
• βj = µ.j − µ is the mean of level Bj minus overall mean.
• (αβ)ij = µij − µi. − µ.j + µ is the interaction term for Ai and Bj which encodes the

effect of both variable not already captured by the main effects.

A rapid calculation shows that there are more coefficients than the number of cells and
subgroups (nanb cells overall) in our table. The model is overparametrized: to get away
with this, we impose constraints to remove redundancies. The idea is that if we know na − 1
of the mean for factor A and the global average is a combination of these, we can deduce
the value for the last row mean. The model formulation in terms of difference from the
global average or main effect ensures that we can test for main effects for factor A by setting
H0 : α1 = · · · = αna−1 = 0. The 1 + na + nb sum to zero constraints,

na∑
i=1

αi = 0,
nb∑

j=1
βj = 0,

nb∑
j=1

(αβ)ij = 0,
na∑
i=1

(αβ)ij = 0,

restore identifiability.
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5.3 Model parametrization

The redundancy in information, due to the fact main effects are expressible as row and
column averages, and the overall mean as the average of all observations, will arise again
when we consider degrees of freedom for tests.

To be continued. . .

Example 5.4 (Testing for Psychological ownership of borrowed money). Sharma, Tully, and
Cryder (2021) first proceeded with the test for the interaction. Since there are one global
average and two main effect (additional difference in average for both factors debttype and
purchase), the interaction involves one degree of freedom since we go from a model with
three parameters describing the mean to one that has a different average for each of the
four subgroups.

The reason why this is first test to carry out is that if the effect of one factor depends on the
level of the other, as shown in Figure 5.1, then we need to compare the label of debt type
separately for each type of purchase and vice-versa using simple effects. If the interaction
on the contrary isn’t significant, then we could look at main effects by pooling observations
and averaging across either of the two factors, resulting in marginal comparisons.

Fitting the model including the interaction between factors ensures that we keep the addi-
tivity assumption and that our conclusions aren’t misleading: the price to pay is additional
mean parameters to be estimated, which isn’t an issue if you collect enough data, but can
be critical when data collection is extremely costly and only a few runs are allowed.

In R, we include both factors in a formula as response ~ factorA * factorB, the * sym-
bol indicating that both are allowed to interact, as a shorthand for factorA + factorB
+ factorA:factorB; in the main effect model, we would use instead + to reflect that the
effects of both factors add up.

# Analysing Supplementary Study 5
# of Sharma, Tully, and Cryder (2021)
data(STC21_SS5, package = "hecedsm")
mod <- aov(likelihood ~ purchase*debttype,

data = STC21_SS5)
model.tables(mod, type = "means")

Tables of means
Grand mean

4.879747
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purchase
discretionary need

4.182 5.579
rep 751.000 750.000

debttype
credit loan
5.127 4.631

rep 753.000 748.000

purchase:debttype
debttype

purchase credit loan
discretionary 4.5 3.8
rep 392.0 359.0
need 5.7 5.4
rep 361.0 389.0

# Analysis of variance reveals
# non-significant interaction
# of purchase and type
car::Anova(mod, type = 2)

Anova Table (Type II tests)

Response: likelihood
Sum Sq Df F value Pr(>F)

purchase 752.3 1 98.2066 < 2.2e-16 ***
debttype 92.2 1 12.0363 0.0005365 ***
purchase:debttype 13.7 1 1.7852 0.1817132
Residuals 11467.4 1497
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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# Main effects
emmeans::emmeans(mod,

specs = "debttype",
contr = "pairwise")

NOTE: Results may be misleading due to involvement in interactions

$emmeans
debttype emmean SE df lower.CL upper.CL
credit 5.12 0.101 1497 4.93 5.32
loan 4.63 0.101 1497 4.43 4.83

Results are averaged over the levels of: purchase
Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
credit - loan 0.496 0.143 1497 3.469 0.0005

Results are averaged over the levels of: purchase

# Pairwise comparisons within levels of purchase
# Simple effect
emmeans::emmeans(mod,

specs = c("purchase", "debttype"),
by = "purchase",
contr = "pairwise")

$emmeans
purchase = discretionary:
debttype emmean SE df lower.CL upper.CL
credit 4.51 0.140 1497 4.24 4.78
loan 3.82 0.146 1497 3.54 4.11

purchase = need:
debttype emmean SE df lower.CL upper.CL
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credit 5.74 0.146 1497 5.45 6.02
loan 5.43 0.140 1497 5.16 5.71

Confidence level used: 0.95

$contrasts
purchase = discretionary:
contrast estimate SE df t.ratio p.value
credit - loan 0.687 0.202 1497 3.398 0.0007

purchase = need:
contrast estimate SE df t.ratio p.value
credit - loan 0.305 0.202 1497 1.508 0.1318

In the analysis of variance table, we focus exclusively on the last line with the sum of
squares for purchase:debttype. The F statistic is 1.79; using the F (1, 1497) distribution
as benchmark, we obtain a p-value of 0.18 so there is no evidence the effect of purchase
depends on debt type.

We can thus pool data and look at the effect of debt type (loan or credit) overall by com-
bining the results for all purchase types, one of the planned comparison reported in the
Supplementary material. To do this in R with the emmeans package, we use the emmeans
function and we quote the factor of interest (i.e., the one we want to keep) in specs. By
default, this will compute the estimate marginal means: the contr = "pairwise" indicates
that we want the difference between the two, which gives us the contrasts.

To get the simple effects, we give both variables in specs as factors for which to compute
subgroup means, then set additionally the by command to specify which variable we want
separate results for. We get the difference in average between credit and loan labels
for each purchase type along with the t statistics for the marginal contrast and the p-
value. The simple effects suggest that the label has an impact on perception only for
discretionary expenses rather than needed ones, which runs counter-intuitively with the
lack of interaction.

Maglio and Polman (2014) considered the relative perception of distance from Bay station
in Toronto. We modify the data so that we consider station distance in direction of travel
(rather than station names). The categorical variable stdist has labels (−2,−1, +1, +2) for
stations Spadina, St. Georges, Bloor-Yonge, Sherbourne in direction East, and opposite signs
in the other direction: see Figure 5.3 for the map. We are interested in knowing whether two
stations behind (stdist= −2) is perceived the same as two stations ahead (stdist= +2).
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Figure 5.3: Simplified depiction of the Toronto metro stations used in the experiment, based
on work by Craftwerker on Wikipedia, distributed under CC-BY-SA 4.0.

# Set up parametrization to sum-to-zero for categorical factors
options(contrasts = c("contr.sum", "contr.poly"))
library(emmeans)
mod <- lm(distance ~ stdist * direction, data = MP14_S1)
car::Anova(mod, type = 2)

Table 5.3: Analysis of variance (type II effects) for the Maglio and Polman (2014) reformated
data.

term sum of squares df stat p-value

stdist 121.87 3 37.86 <0.001
direction 0.38 1 0.35 0.55
stdist:direction 5.70 3 1.77 0.15
Residuals 208.15 194 NA

We look at the analysis of variance in Table 5.3 to see what the perception of distance is.
The F -tests suggest that there is no interaction, and no effect of direction of travel although
there is an uninteresting main effect of station distance (of course, two station apart is
considered further from Bay than one station apart).

Since there is no interaction, we can collapse the data to a one-way ANOVA with a single
factor (station distance) and consider contrasts. Say we are interested in testing the percep-
tion of distance, by looking at average distance of pairs at equal distance µ−1 = µ+1 and
µ−2 = µ+2.

If we have categories are in the order (−2,−1, +1, +2), the contrast weights are (−1, 0, 0, 1)
and (0,−1, 1, 0) or a multiple thereof; the two contrasts are orthogonal. Table 5.4 shows the
result of the hypothesis tests: both are significant, even applying a Bonferroni correction.
This supports the hypothesis of Maglio and Polman (2014).

Table 5.4: Contrasts for comparing the perceived distance for stations at the same distance
on the network, but in opposition directions to that of travel.

contrast estimate std. error stat p-value

two dist -1.12 0.21 -5.47 <0.001
one dist -0.86 0.21 -4.13 <0.001
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Figure 5.4: Interaction plot for the reformated data from Maglio and Polman (2014) with
95% confidence intervals.

Example 5.5 (Precision of anchors and subjective adjustments). We consider data from
a replication by Chandler (2016) of Study 4a of Janiszewski and Uy (2008). Both studies
measured the amount of adjustment when presented with vague or precise range of value
for objects, with potential encouragement for adjusting more the value. Chandler (2016)
described the effect in the replication report:

Janiszewski and Uy (2008) conceptualized people’s attempt to adjust follow-
ing presentation of an anchor as movement along a subjective representation
scale by a certain number of units. Precise numbers (e.g. $9.99) imply a finer-
resolution scale than round numbers (e.g. $10). Consequently, adjustment along
a subjectively finer resolution scale will result in less objective adjustment than
adjustment by the same number of units along a subjectively coarse resolution
scale.

The experiment is a 2 by 2 factorial design (two-way ANOVA) with anchor (either round or
precise) and magnitude (0 for small, 1 for big adjustment) as experimental factors. A total of
120 students were recruited and randomly assigned to one of the four experimental sub-
condition, for a total of 30 observations per subgroup (anchor, magnitude). The response
variable is majust, the mean adjustment for the price estimate of the item.
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5.3 Model parametrization

# Example of two-way ANOVA with balanced design
data(C16, package = "hecedsm")
# Check for balance
xtabs(formula = ~ anchor + magnitude,

data = C16)

magnitude
anchor 0 1

round 30 30
precise 30 30

# Fit two-way ANOVA model
mod <- aov(madjust ~ anchor * magnitude,

data = C16)
# Analysis of variance table
summary(mod)

Df Sum Sq Mean Sq F value Pr(>F)
anchor 1 0.777 0.777 6.277 0.0136 *
magnitude 1 8.796 8.796 71.058 1.09e-13 ***
anchor:magnitude 1 0.002 0.002 0.013 0.9088
Residuals 116 14.359 0.124
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The dataset is available from the R package hecedsm as C16. We can see that there are 30
observations in each group in the replication, as advertised. In R, the function aov fits an
analysis of variance model for balanced data. Analysis of variance are simple instances
of linear regression models, and the main difference between fitting the model using aov
and lm is the default parametrization used (aov uses sum-to-zero constraints by default,
lm does not). In more general settings (including continuous covariates), we will use lm
as a workshorse to fit the model, with an option to set up the contrasts so the output
matches our expectations (and needs). The model is fitted as before by specifying the
response ~ explanatories: the * notation is a shortcut to specify anchor + magnitude +
anchor:magnitude, with the last term separated by a semi-colon : denoting an interaction
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between two variables. Here, the experimental factors anchor and magnitude are crossed,
as it is possible to be in both experimental groups simultaneously.

The interaction.plot function in base R allows one to create an interaction (or profile)
plot for a two-way design. More generally, we can simply compute the group means for
each combination of the experimental conditions, map the mean response to the y-axis of
a graph and add the experimental factors to other dimensions (x-axis, panel, color, etc.)

C16 |>
ggplot(mapping = aes(x = anchor,

y = madjust,
color = magnitude)) +

geom_jitter(width = 0.1,
alpha = 0.1) +

stat_summary(aes(group = magnitude),
fun = mean,
geom = "line") +

# Change position of labels
labs(y = "",

subtitle = "Mean adjustment") +
theme_classic() + # change theme
theme(legend.position = "bottom")
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In our example, the interaction plot shows a large main effect for magnitude, a smaller one
for anchor and no evidence of interaction — despite the uncertainty associated with the
estimation, the lines are very close to being parallel. Overlaying the jitter observations
shows there is quite a bit of spread, but with limited overlap. Despite the graphical evidence
hinting that the interaction isn’t significant, we will fit the two-way analysis of variance
model with the interaction unless we invalidate our statistical inference. The emmip function
allows one to return a plot automagically.

# Interaction plot
emmeans::emmip(mod,

magnitude ~ anchor,
CIs = TRUE) +

theme_minimal()
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Because our dataset is balanced, the marginal means (the summary statistics obtained by
grouping the data for a single factor) and the marginal effects (obtained by calculating the
average cell means by either row or column) will coincide. There are multiple functions that
allow one to obtain estimates means for cells, rows or columns, including functionalities,
notably emmeans from the eponymous package and model.tables

# Get grand mean, cell means, etc.
model.tables(mod, type = "means")

Tables of means
Grand mean

0.001155778

anchor
anchor

round precise
0.08162 -0.07931

magnitude
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magnitude
0 1

-0.26959 0.27190

anchor:magnitude
magnitude

anchor 0 1
round -0.1854 0.3487
precise -0.3537 0.1951

# Cell means
emmeans(object = mod,

specs = c("anchor", "magnitude"),
type = "response")

anchor magnitude emmean SE df lower.CL upper.CL
round 0 -0.185 0.0642 116 -0.3127 -0.0582
precise 0 -0.354 0.0642 116 -0.4810 -0.2265
round 1 0.349 0.0642 116 0.2215 0.4759
precise 1 0.195 0.0642 116 0.0679 0.3223

Confidence level used: 0.95

# Marginal means
emmeans(object = mod,

specs = "anchor",
type = "response")

NOTE: Results may be misleading due to involvement in interactions

anchor emmean SE df lower.CL upper.CL
round 0.0816 0.0454 116 -0.00834 0.1716
precise -0.0793 0.0454 116 -0.16928 0.0107

Results are averaged over the levels of: magnitude
Confidence level used: 0.95
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5 Complete factorial designs

# These match summary statistics
C16 |>

group_by(magnitude) |>
summarize(margmean = mean(madjust))

# A tibble: 2 x 2
magnitude margmean
<fct> <dbl>

1 0 -0.270
2 1 0.272

C16 |>
group_by(anchor) |>
summarize(margmean = mean(madjust))

# A tibble: 2 x 2
anchor margmean
<fct> <dbl>

1 round 0.0816
2 precise -0.0793

Since the data are balanced, we can look at the (default) analysis of variance table produced
using anova function2

anova(mod)

Analysis of Variance Table

Response: madjust
Df Sum Sq Mean Sq F value Pr(>F)

anchor 1 0.7770 0.7770 6.2768 0.01362 *
magnitude 1 8.7962 8.7962 71.0584 1.089e-13 ***

2In general, for unbalanced data, one would use car::Anova with type = 2 or type = 3 effects. The former
(i.e., Type 2) is preferable because it respects the marginality principle.
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5.3 Model parametrization

anchor:magnitude 1 0.0016 0.0016 0.0132 0.90879
Residuals 116 14.3595 0.1238
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output confirms our intuition that there is not much different from zero, with a strong
effect for magnitude of adjustment and a significant, albeit smaller one, for anchor type.

While the conclusions are probably unambiguous due to the large evidence, it would be
useful to check the model assumptions. The sample size is just enough to forego normality
checks, but the quantile-quantile plot can be useful to detect outliers and extremes. Outside
of one potential value much lower than it’s group mean, there is no cause for concern.

car::qqPlot(mod, id = FALSE)
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With 30 observations per group and no appearance of outlier, we need rather to worry about
additivity and possibly heterogeneity arising from the treatment. Independence is plausible
based on the context.

The Tukey-Anscombe plot of residuals against fitted values (the group means) indicate no
deviation, but the variance appears to be larger for the two groups with a large adjustment.
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5 Complete factorial designs

Because the response takes negative values, we can simply proceed with fitting a two-
way analysis in which each of the subgroups has mean µij and standard deviation σij : in
other words, only the data for each subgroup (anchor, magnitude) are used to estimate the
summary statistics of that group.

# Evidence of unequal variance
ggplot(data = data.frame(residuals = resid(mod),

fitted = fitted(mod)),
mapping = aes(x = fitted,

y = residuals)) +
geom_jitter(width = 0.03, height = 0) +

theme_classic()
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# Equality of variance - Brown-Forsythe
car::leveneTest(mod)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

102



5.3 Model parametrization

group 3 2.8133 0.0424 *
116

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Given the Brown-Forsythe test output, we can try fitting a different variance in each group,
as there are enough observations for this. The function gls in the nlme package fits such
models; the weight argument being setup with a constant variance (~1) per each combina-
tion of the crossed factors anchor * magnitude.

library(nlme)
# Fit a variance per group
mod2 <- nlme::gls(

model = madjust ~ anchor * magnitude,
data = C16,
weights = nlme::varIdent(

form = ~ 1 | anchor * magnitude))

# Different ANOVA - we use type II here
car::Anova(mod2, type = 2)

Analysis of Deviance Table (Type II tests)

Response: madjust
Df Chisq Pr(>Chisq)

anchor 1 6.7708 0.009266 **
magnitude 1 79.9238 < 2.2e-16 ***
anchor:magnitude 1 0.0132 0.908595
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see the unequal std. deviation per group when passing the model with unequal
variance and unequal means and computing the estimated marginal means. The package
emmeans automatically adjusts for these changes.

emmeans(object = mod2,
specs = c("anchor", "magnitude"))
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5 Complete factorial designs

anchor magnitude emmean SE df lower.CL upper.CL
round 0 -0.185 0.0676 29.0 -0.3236 -0.0472
precise 0 -0.354 0.0422 29.0 -0.4401 -0.2674
round 1 0.349 0.0796 29.0 0.1859 0.5115
precise 1 0.195 0.0618 28.9 0.0687 0.3215

Degrees-of-freedom method: satterthwaite
Confidence level used: 0.95

# Compute pairwise difference for anchor
marg_effect <- emmeans(object = mod2,

specs = "anchor") |>
pairs()

NOTE: Results may be misleading due to involvement in interactions

marg_effect

contrast estimate SE df t.ratio p.value
round - precise 0.161 0.0642 100 2.505 0.0138

Results are averaged over the levels of: magnitude
Degrees-of-freedom method: satterthwaite

# To get a data frame with data
# broom::tidy(marg_effect)

We can then pass the output to car::Anova to print the analysis of variance table. The
p-value for the main effect of anchor is 0.014 in the equal variance model. With unequal
variance, different tests give different values: the p-value is 0.009 if we use type II effects (the
correct choice here), 0.035 with type III effects3 and the emmeans package returns Welch’s test

3The type 3 effects compare the model with interactions and main effects to one that includes the interaction,
but removes the main effects. Not of interest in the present context.
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5.3 Model parametrization

for the pairwise difference with Satterwaite’s degree of freedom approximation if we average
over magnitude to account for the difference in variance, this time with a p-value of 0.014.
These differences in output are somewhat notable: with borderline statistical significance,
they may lead to different conclusions if one blindly dichotomize the results. Clearly
stating which test and how the results are obtained is crucial for transparent reporting, as is
providing the code and data. Let your readers make their own mind by reporting p-values.

Regardless of the model, it should be clearly stated that there is some evidence of hetero-
geneity. We should also report sample size per group, mention the repartition (n = 30 per
group). In the present case, we can give information about the main effects and stop here,
but giving an indication about the size of the adjustment (by reporting estimated marginal
means) is useful. Note that emmeans gives a (here spurious) warning about the main effects
(row or column average) since there is a potential interaction — as we all but ruled out the
latter, we proceed nevertheless.

emm_marg <- emmeans::emmeans(
object = mod2,
specs = "anchor"

)

NOTE: Results may be misleading due to involvement in interactions

There are many different options to get the same results with emmeans. The specs indicates
the list of factors which we want to keep, whereas by gives the one we want to have separate
analysis for. In formula, we could get the simple effects for anchor by level of magnitude
using ~ anchor | magnitude, or set specs = anchor and by = magnitude. We can pass
the result to pairs to obtain pairwise differences.

# Simple effects for anchor
emm_simple <- emmeans::emmeans(

object = mod,
specs = "anchor",
by = "magnitude"

)
# Compute pairwise differences within each magnitude
pairs(emm_simple)
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5 Complete factorial designs

magnitude = 0:
contrast estimate SE df t.ratio p.value
round - precise 0.168 0.0908 116 1.853 0.0665

magnitude = 1:
contrast estimate SE df t.ratio p.value
round - precise 0.154 0.0908 116 1.690 0.0936

By default, emmeans will compute adjustments for pairwise difference using Tukey’s honest
significant difference method if there are more than one pairwise comparison. The software
cannot easily guess the degrees of freedom, the number of tests, etc. There are also tests
which are not of interest: for example, one probably wouldn’t want to compute the differ-
ence between the adjustment for (small magnitude and round) versus (large magnitude
and precise). If we were interested in looking at all pairwise differences, we could keep all
of the cells means.

emmeans(object = mod2,
specs = c("magnitude", "anchor"),
contr = "pairwise")

$emmeans
magnitude anchor emmean SE df lower.CL upper.CL
0 round -0.185 0.0676 29.0 -0.3236 -0.0472
1 round 0.349 0.0796 29.0 0.1859 0.5115
0 precise -0.354 0.0422 29.0 -0.4401 -0.2674
1 precise 0.195 0.0618 28.9 0.0687 0.3215

Degrees-of-freedom method: satterthwaite
Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
magnitude0 round - magnitude1 round -0.534 0.1044 56.4 -5.115 <.0001
magnitude0 round - magnitude0 precise 0.168 0.0797 48.7 2.112 0.1636
magnitude0 round - magnitude1 precise -0.381 0.0916 57.5 -4.156 0.0006
magnitude1 round - magnitude0 precise 0.702 0.0901 44.1 7.795 <.0001
magnitude1 round - magnitude1 precise 0.154 0.1008 54.7 1.524 0.4306
magnitude0 precise - magnitude1 precise -0.549 0.0748 51.0 -7.333 <.0001
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5.3 Model parametrization

Degrees-of-freedom method: satterthwaite
P value adjustment: tukey method for comparing a family of 4 estimates

Notice now the mention about Tukey’s effect. When there is heterogeneity of variance or
unbalanced effects, the actual method employed is called Games-Howell correction.

, Summary

• Factorial designs are more efficient than running repeatedly one-way analysis of
variance with the same sample size per group.

• Interactions occur when the effect of a variable depends on the levels of the
others.

• Interaction plots (group average per group) can help capture this difference, but
beware of overinterpretation in small samples.

• If there is an interaction, we consider differences and contrasts for each level of
the other factor (simple effects).

• If there is no interaction, we can pool observations and look at main effects.
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6 Repeated measures

So far, all experiments we have considered can be classified as between-subject designs,
meaning that each experimental unit was assigned to a single experimental (sub)-condition.
In many instances, it may be possible to randomly assign multiple conditions to each
experimental unit. For example, an individual coming to a lab to perform tasks in a virtual
reality environment may be assigned to all treatments. There is an obvious benefit to doing
so, as the participants can act as their own control group, leading to greater comparability
among treatment conditions.

For example, consider a study performed at Tech3Lab that looks at the reaction time for
people texting or talking on a cellphone while walking. We may wish to determine whether
disengagement is slower for people texting, yet we may also postulate that some elderly
people have slower reflexes.

By including multiple conditions, we can filter out the effect due to subject: this leads to
increased precision of effect sizes and increased power (as we will see, hypothesis tests are
based on within-subject variability). Together, this translates into the need to gather fewer
observations or participants to detect a given effect in the population and thus experiments
are cheaper to run.

There are of course drawbacks to gathering repeated measures from individuals. Because
subjects are confronted with multiple tasks, there may be carryover effects (when one
task influences the response of the subsequent ones, for example becoming better as
manipulations go on), period effects (fatigue, a decrease in acuity), and permanent changes
in the subject condition after a treatment or attrition (loss of subjects over time).

To minimize potential biases, there are multiple strategies one can use. Tasks are normally
presented in random order among subjects to avoid confounding, or using a balanced
crossover design and include the period and carryover effect in the statistical model via
control variables so as to better isolate the treatment effect. The experimenter should also
allow enough time between treatment conditions to reduce or eliminate period or carryover
effects and plan tasks accordingly.

If each subject is assigned to an experimental condition only once, one good way to do
this is via counterbalancing. We proceed as follows: first, enumerate all possible orders
of the condition and then assign participants as equally as possible between conditions.
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6 Repeated measures

For example, with a single within-factor design with three conditions A, B, C, we have six
possible orderings (either ABC, ACB, BAC, BCA, CAB or CBA). Much like other forms
of randomization, this helps us remove confounding effects and let’s us estimate what is
the average effect of task ordering on the response.

There are multiple approaches to handling repeated measures. The first option is to take
averages over experimental condition per subject and treat them as additional blocking
factors, but it may be necessary to adjust the resulting statistics. The second approach
consists in fitting a multivariate model for the response and explicitly account for the corre-
lation, otherwise the null distribution commonly used are off and so are the conclusions, as
illustrated with the absurd comic displayed in Figure 13.1.

Figure 6.1: xkcd comic 2533 (Slope Hypothesis Testing) by Randall Munroe. Alt text: What?
I can’t hear– I said, are you sure–; CAN YOU PLEASE SPEAK–. Cartoon reprinted
under the CC BY-NC 2.5 license.

6.1 Repeated measures

We introduce the concept of repeated measure and within-subject ANOVA with an exam-
ple.

Example 6.1 (Happy fakes). We consider an experiment conducted in a graduate course
at HEC, Information Technologies and Neuroscience, in which PhD students gathered elec-
troencephalography (EEG) data. The project focused on human perception of deepfake
image created by a generative adversarial network: Amirabdolahian and Ali-Adeeb (2021)
expected the attitude towards real and computer generated image of people smiling to
change.

The response variable is the amplitude of a brain signal measured at 170 ms after the
participant has been exposed to different faces. Repeated measures were collected on 9
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6.1 Repeated measures

participants given in the database AA21, who were expected to look at 120 faces. Not all
participants completed the full trial, as can be checked by looking at the cross-tabs of the
counts

data(AA21, package = "hecedsm")
xtabs(~stimulus + id, data = AA21)

id
stimulus 1 2 3 4 5 6 7 8 9 10 11 12

real 30 32 34 32 38 29 36 36 40 30 39 33
GAN1 32 31 40 33 38 29 39 31 39 28 35 34
GAN2 31 33 37 34 38 29 34 36 40 33 35 32

The experimental manipulation is encoded in the stimuli, with levels control (real) for
real facial images, whereas the others were generated using a generative adversarial network
(GAN) with be slightly smiling (GAN1) or extremely smiling (GAN2); the latter looks more fake.
While the presentation order was randomized, the order of presentation of the faces within
each type is recorded using the epoch variable: this allows us to measure the fatigue effect.

Since our research question is whether images generated from generative adversarial net-
works trigger different reactions, we will be looking at pairwise differences with the control.

(a) real (b) slightly modified (c) extremely modified

Figure 6.2: Examples of faces presented in Amirabdolahian and Ali-Adeeb (2021).
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6 Repeated measures

We could first grouping the data and compute the average for each experimental condition
stimulus per participant and set id as blocking factor. The analysis of variance table
obtained from aov would be correct, but would fail to account for correlation.

The one-way analysis of variance with ns subjects, each of which was exposed to the na

experimental conditions, can be written

Yij
response

= µ
global mean

+ αj
mean difference

+ si
subject difference

+ εij
error

# Compute mean for each subject +
# experimental condition subgroup
AA21_m <- AA21 |>

dplyr::group_by(id, stimulus) |>
dplyr::summarize(latency = mean(latency))

# Use aov for balanced sample
fixedmod <- aov(

latency ~ stimulus + Error(id/stimulus),
data = AA21_m)

# Print ANOVA table
summary(fixedmod)

Error: id
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 187.8 17.07

Error: id:stimulus
Df Sum Sq Mean Sq F value Pr(>F)

stimulus 2 1.94 0.9704 0.496 0.615
Residuals 22 43.03 1.9557

Since the design is balanced after averaging, we can use aov in R: we need to specify the
subject identifier within Error term. This approach has a drawback, as variance compo-
nents can be negative if the variability due to subject is negligible. While aov is fast, it only
works for simple balanced designs.
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6.1.1 Contrasts

With balanced data, the estimated marginal means coincide with the row averages. If we
have a single replication or the average for each subject/condition, we could create a new
column with the contrast and then fit a model with an intercept-only (global mean) to check
whether the latter is zero. With 12 participants, we should thus expect our test statistic to
have 11 degrees of freedom, since one unit is spent on estimating the mean parameter and
we have 12 participants.

Unfortunately, the emmeans package analysis for object fitted using aov will be incorrect: this
can be seen by passing a contrast vector and inspecting the degrees of freedom. The afex
package includes functionalities that are tailored for within-subject and between-subjects
and has an interface with emmeans.

afexmod <- afex::aov_ez(
id = "id", # subject id
dv = "latency", # response variable
within = "stimulus", # within-subject factor
data = AA21,
fun_aggregate = mean)

The afex package has different functions for computing the within-subjects design and
the aov_ez specification, which allow people to list within and between-subjects factor
separately with subject identifiers may be easier to understand. It also has an argument,
fun_aggregate, to automatically average replications.

# Set up contrast vector
cont_vec <- list(

"real vs GAN" = c(1, -0.5, -0.5))
library(emmeans)
# Correct output
afexmod |>

emmeans::emmeans(
spec = "stimulus",
contr = cont_vec)

$emmeans
stimulus emmean SE df lower.CL upper.CL
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real -10.8 0.942 11 -12.8 -8.70
GAN1 -10.8 0.651 11 -12.3 -9.40
GAN2 -10.3 0.662 11 -11.8 -8.85

Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
real vs GAN -0.202 0.552 11 -0.366 0.7213

# Incorrect output -
# note the wrong degrees of freedom
fixedmod |>

emmeans::emmeans(
spec = "stimulus",
contr = cont_vec)

Note: re-fitting model with sum-to-zero contrasts

$emmeans
stimulus emmean SE df lower.CL upper.CL
real -10.8 0.763 16.2 -12.4 -9.15
GAN1 -10.8 0.763 16.2 -12.4 -9.21
GAN2 -10.3 0.763 16.2 -11.9 -8.69

Warning: EMMs are biased unless design is perfectly balanced
Confidence level used: 0.95

$contrasts
contrast estimate SE df t.ratio p.value
real vs GAN -0.202 0.494 22 -0.409 0.6867

6.1.2 Sphericity assumption

The validity of the F statistic null distribution relies on the model having the correct struc-
ture.
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In repeated-measure analysis of variance, we assume again that each measurement has
the same variance. We equally require the correlation between measurements of the
same subject to be the same, an assumption that corresponds to the so-called compound
symmetry model.1

What if the within-subject measurements have unequal variance or the correlation between
those responses differs?

Since we care only about differences in treatment, can get away with a weaker assumption
than compound symmetry (equicorrelation) by relying instead on sphericity, which holds if
the variance of the difference between treatment is constant. Sphericity is not a relevant
concept when there is only two measurements (as there is a single correlation); we could
check this by comparing the fit of a model with an unstructured covariance (difference
variances for each and correlations for each pair of variable)

The most popular approach to handling correlation in tests is a two-stage approach: first,
check for sphericity (using, e.g., Mauchly’s test of sphericity). If the null hypothesis of
sphericity is rejected, one can use a correction for the F statistic by modifying the parame-
ters of the Fisher F null distribution used as benchmark.

An idea due to Box is to correct the degrees of freedom of the F(ν1, ν2) distribution by
multiplying them by a common factor ϵ < 1 and use F(ϵν1, ϵν2) as null distribution instead
to benchmark our statistics and determine how extreme our observed one is. Since the F
statistic is a ratio of variances, the ϵ terms would cancel. Using the scaled F distribution
leads to larger p-values, thus accounting for the correlation.

There are three widely used corrections: Greenhouse–Geisser, Huynh–Feldt and Box cor-
rection, which divides by ν1 both degrees of freedom and gives a very conservative option.
The Huynh–Feldt method is reported to be more powerful so should be preferred, but the
estimated value of ϵ can be larger than 1.

Using the afex functions, we get the result for Mauchly’s test of sphericity and the p values
from using either correction method

summary(afexmod)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

1Note that, with two measurements, there is a single correlation parameter to estimate and this assumption is
irrelevant.
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6 Repeated measures

Sum Sq num Df Error SS den Df F value Pr(>F)
(Intercept) 4073.1 1 187.814 11 238.5554 8.373e-09 ***
stimulus 1.9 2 43.026 22 0.4962 0.6155
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mauchly Tests for Sphericity

Test statistic p-value
stimulus 0.67814 0.14341

Greenhouse-Geisser and Huynh-Feldt Corrections
for Departure from Sphericity

GG eps Pr(>F[GG])
stimulus 0.75651 0.5667

HF eps Pr(>F[HF])
stimulus 0.8514944 0.5872648

Example 6.2 (Enjoyment from waiting). We consider Experiment 3 from Hatano et al.
(2022). The data consist in a two by two mixed analysis of variance. The authors studied
engagement and enjoyment from waiting tasks, and “potential effects of time interval on
the underestimation of task motivation by manipulating the time for the waiting task”. The
waiting time was randomly assigned to either short (3 minutes) or long (20 minutes) with
equal probability, but participants were either told that there was a 70% chance of being
assigned to the short session, or 30% chance. We first load the data from the package and
inspect the content.

tibble [126 x 4] (S3: tbl_df/tbl/data.frame)
$ id : Factor w/ 63 levels "1","2","3","4",..: 1 1 2 2 3 3 4 4 5 5 ...
$ waiting : Factor w/ 2 levels "long","short": 2 2 1 1 1 1 2 2 1 1 ...
$ ratingtype: Factor w/ 2 levels "experience","prediction": 2 1 2 1 2 1 2 1 2 1 ...
$ imscore : num [1:126] 2.33 3.33 1.25 1.92 1 ...

waiting
long short

32 31
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From this, we can see that there each student is assigned to a single waiting time, but that
they have both rating types. Since there are 63 students, the study is unbalanced but by
a single person; this may be due to exclusion criteria. We use the afex package (analysis
of factorial design) with the aov_ez function to fit the model in R. We need to specify the
identifier of the subjects (id), the response variable (dv) and both between- (between) and
within-subject (within) factors. Each of those names must be quoted.

Anova Table (Type 3 tests)

Response: imscore
num Df den Df MSE F ges Pr(>F)

waiting 1 61 2.48926 11.2551 0.126246 0.00137 **
ratingtype 1 61 0.68953 38.4330 0.120236 5.388e-08 ***
waiting:ratingtype 1 61 0.68953 0.0819 0.000291 0.77575
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output includes the F -tests for the two main effects and the interaction and global
effect sizes η̂2 (ges). There is no output for tests of sphericity, since there are only two
measurements per person and thus a single mean different within-subject (so the test to
check equality doesn’t make sense with a single number). We could however compare
variance between groups using Levene’s test. Note that the degrees of freedom for the
denominator of the test are based on the number of participants, here 63.
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7 Multiway factorial designs

This chapter focuses on models with a mix of within-subject and between-subject factors.
As the number of factor increases, so does the number of categories: this explains why 2p

designs, where each factor has two options, are typically employed.

Any multiway ANOVA with two or more factor can be collapsed into a single one-way
ANOVA: this is notably useful when there is a control group which is not related to the factor
levels, as no manipulation takes place. The use of contrasts becomes critical since we can
write any test for main effects, interactions using the latter through weighting.

Example 7.1 (Perceptions of cultural appropriation by ideology). We consider a three-way
ANOVA from Lin et al. (2024). Their Study 4 focused on cultural appropriation for soul
food recipe cookbook from Chef Dax, who was either black (or not), manipulating the
description of the way he obtained the recipes (by peeking without permission in kitchens,
by asking permission or no mention for control). Authors postulated that the perception of
appropriation would vary by political ideology (liberal or conservative). The study results in
a 3 by 2 by 2 three-way between-subject ANOVA.

For the K-way ANOVA, we always start with estimating the full model with all K-way
interaction (provided there are enough data to estimate the latter, which implies there are
repetitions). If the latter is significant, we can fix one or more factor levels and compare the
others.

Table 7.1: Analysis of variance table (type II decomposition) for the data from Study 4 of Lin
et al. (2024).

term sum of squares df stat p-value

politideo 48.49 1 21.35 <0.001
chefdax 473.72 1 208.61 <0.001
brandaction 34.24 2 7.54 <0.001
politideo:chefdax 65.00 1 28.63 <0.001
politideo:brandaction 1.56 2 0.34 0.71
chefdax:brandaction 0.62 2 0.14 0.87
politideo:chefdax:brandaction 0.66 2 0.15 0.86
Residuals 1587.33 699 NA
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Table 7.1: Analysis of variance table (type II decomposition) for the data from Study 4 of Lin
et al. (2024).

term sum of squares df stat p-value

If we consider Table 7.1, we find that there is no three-way interaction and, omitting the
latter and focusing on lower-level, a single two-way interaction between political ideology
and the race of Chef Dax. We cannot interpret the p-value for the main effect of brandaction,
but we could look at the marginal means.

Based on the data, we will collapse data to a one-way ANOVA comparing the three levels
of brandaction and a 2 by 2 two-way ANOVA for the other two factors. The results are
obtained by averaging over the missing factor.

We are interested in comparing the perception between the race of Chef Dax (black or not,
as Southern Soul food cooking is more likely to be associated with cultural appropriation
if Chef Dax is not black. We proceed with emmeans by computing the marginal means
separately for each of the four subcategories, but compare the race of Chef Dax separately
for liberals and conservatives due to the presence of the interaction.

data(LKUK24_S4, package = "hecedsm")
library(emmeans)
mod <- lm(appropriation ~ politideo * chefdax * brandaction,

data = LKUK24_S4)
# Marginal means for political ideology/Chef Dax
emm_racebypolit <- emmeans(mod, specs = "chefdax", by = "politideo")
emm_racebypolit |> pairs() #shortcut for contrast("pairwise")

politideo = conservative:
contrast estimate SE df t.ratio p.value
not black - black 0.71 0.206 699 3.438 0.0006

politideo = liberal:
contrast estimate SE df t.ratio p.value
not black - black 2.03 0.135 699 14.998 <.0001

Results are averaged over the levels of: brandaction
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We see that the liberals are much more likely to view Chef Dax cookbook as an instance
of cultural appropriation if he is not black; there is limited evidence of any difference
between conservatives and liberal when Chef Dax is black. Both differences are statistically
significative, but the differences (and thus evidence of an effect) is much stronger for
left-leaning respondents.

We can look next at the brand action: we expect participants will view peeking less favorably
than if Chef Dax asked for permission to publish the recipes. It’s tricky to know the effect of
the control, as we are not bringing the point to the attention of participants in this instance.

# Marginal mean for brandaction
emm_brand <- emmeans(mod, specs = c("brandaction"))
emm_brand

brandaction emmean SE df lower.CL upper.CL
peeking 2.56 0.108 699 2.35 2.77
permission 2.29 0.105 699 2.09 2.50
control 2.07 0.108 699 1.86 2.28

Results are averaged over the levels of: politideo, chefdax
Confidence level used: 0.95

# Joint test for the main effect of brandaction
emm_brand |> pairs() |> joint_tests()

model term df1 df2 F.ratio p.value
contrast 2 699 5.091 0.0064

A joint F -test, obtained by collapsing everything to a one-way ANOVA, shows that there are
indeed differences. However, note that the averages of the three actions are much smaller
than for race.

Example 7.2 (Visual acuity). We consider a model with both within-subject and between-
subject factors. Data for a study on visual acuity of participants. The data represent the
number of words correctly detected at different font size; interest is in effect of illusory
contraction on detection. The mixed analysis of variance includes the experimental factors
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7 Multiway factorial designs

adaptation (2 levels, within), fontsize (4 levels, within), position (5 levels, within) and
visual acuity (2 levels, between). There are a total of 1760 measurements for 44 participants
in LBJ17_S1A, balanced. The within-subject factors give a total of 40 measurements (2×4×5)
per participant; all of these factors are crossed and we can estimate interactions for them.
The subjects are nested within visual acuity groups, The participants were dichotomized in
two groups based on their visual acuity, obtained from preliminary checks, using a median
split.

To fit the model, we rely on the aov_ez function from afex. By default, the latter includes
all interactions.

LBJ_mod <- afex::aov_ez(
id = "id", # subject id
dv = "nerror", # response
between = "acuity",
within = c("adaptation",

"fontsize",
"position"),

data = hecedsm::LBJ17_S1A)
anova_tbl <- anova(LBJ_mod, # model

correction = "none", # no correction for sphericity
es = "pes")

#partial eta-square for effect sizes (es)

Table 7.2: Analysis of variance for the four-way model with partial effect sizes (partial eta-
square)

df1 df2 F pes p-value

acuity 1 42 30.8 0.42 <0.001
adaptation 1 42 7.8 0.16 0.008
acuity:adaptation 1 42 12.7 0.23 <0.001
fontsize 3 126 1705.7 0.98 <0.001
acuity:fontsize 3 126 10.0 0.19 <0.001

position 4 168 9.4 0.18 <0.001
acuity:position 4 168 4.2 0.09 0.003
adaptation:fontsize 3 126 3.3 0.07 0.023
acuity:adaptation:fontsize 3 126 7.0 0.14 <0.001
adaptation:position 4 168 0.6 0.01 0.662
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acuity:adaptation:position 4 168 0.9 0.02 0.464
fontsize:position 12 504 9.1 0.18 <0.001
acuity:fontsize:position 12 504 2.7 0.06 0.002
adaptation:fontsize:position 12 504 0.5 0.01 0.907
acuity:adaptation:fontsize:position 12 504 1.2 0.03 0.295

This is the most complicated model we tested so far: there are four experimental factor
being manipulated at once, and all interactions of order two, three and four are included!

The fourth order interaction isn’t statistically significant: this means that we can legiti-
mately marginalize over and look at each of the four three-way ANOVA designs in turn.
We can also see that the third order interaction adaptation:fontsize:position and
acuity:adaptation:position are not really meaningful.

The following paragraph is technical and can be skipped. One difficult bit with designs
including both within-subject and between-subject factors is the degrees of freedom and
the correct sum of square terms to use to calculate the F statistics for each hypothesis of
interest. The correct setup is to use the next sum of square (and the associated degrees of
freedom) from this. For any main effect or interaction, we count the number of instances of
this particular (e.g., 10 for the interaction between position and adaptation). We subtract
the number of mean parameter used to estimate means and differences in mean (1 global
mean, 4 means for position, 1 for adaptation), which gives 4 = 10− 6 degrees of freedom.
Next, this term is compared to the mean square which contains only subject (here via acuity
levels, since subjects are nested within acuity) and the corresponding variables; the correct
mean square is for acuity:adaptation:position. In the balanced design setting, this can
be formalized using Hasse diagram (Oehlert 2000).

We can produce an interaction plot to see what comes out: since we can’t draw in four
dimensions, we map visual acuity and adaptation level to panels with different colours for
the position. The figure looks different from the paper, seemingly because their y-axis is
flipped.

, Summary

• A multiway analysis of variance can be treated as a one-way analysis of variance
by collapsing categories; however, only specific contrasts will be of interest.

• The number of observations increases quickly with the dimension as we increase
the number of factors considered.
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Figure 7.1: Interaction plot for visual acuity levels.
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8 Multivariate analysis of variance

Multivariate analysis of variance (MANOVA) leads to procedures that are analogous to
univariate analysis of variance, but we now need to estimate correlation and variance
parameters for each measurement separately and there are multiple potential statistics
that can be defined for testing effects. While we can benefit from the correlation and find
differences that wouldn’t be detected from univariate models, the additional parameters to
estimate lead to a loss of power. Finally, the most popular method nowadays for handling
repeated measures is to fit a mixed model, with random effects accounting to subject-
specific characteristics. By doing so, we assume that the levels of a factor (here the subject
identifiers) form a random sample from a large population. These models can be difficult
to fit and one needs to take great care in specifying the model.

The second paradigm for modelling is to specify that the response from each subject is in
fact a multivariate object: we can combine all measurements from a given individual in a
vector Y . In the example with the happy fakes, this would be the tuple of measurements for
(real, GAN1, GAN2).

The multivariate analysis of variance model is designed by assuming observations follow a
(multivariate) normal distribution with mean vector µj in group j and common covariance
matrix Σ and comparing means between groups. As in univariate analysis of variance, the
multivariate normal assumption holds approximately by virtue of the central limit theorem
in large samples, but the convergence is slower and larger numbers are needed to ensure
this is valid.

The difference with the univariate approach is now that we will compare a global mean
vector µ between comparisons. In the one-way analysis of variance model with an ex-
perimental factor having K levels and a balanced sample ng observations per group and
n = ngK total observations, we assume that each group has average µk (k = 1, . . . , K),
which we can estimate using only the observations from that group. Under the null hypoth-
esis, all groups have the same mean, so the estimator is the overall mean µ combining all n
observations.

The statistic is obtained by decomposing the total variance around the global mean into
components due to the different factors and the leftover variability. Because these equiva-
lent to the sum of square decomposition results in multiple matrices, there are multiple
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8 Multivariate analysis of variance

ways of constructing test statistics. Wilk’s Λ is the most popular choice. Another com-
mon choice, which leads to a statistic giving lower power but which is also more robust to
departure from model assumptions is Pillai’s trace.

The MANOVA model assumes that the covariance matrices are the same within each exper-
imental condition. We can use Box’s M statistic to test the normality hypothesis.

8.1 Data format

With repeated measures, it is sometimes convenient to store measurements associated to
each experimental condition in different columns of a data frame or spreadsheet, with lines
containing participants identifiers. Such data are said to be in wide format, since there
are multiple measurements in each row. While this format is suitable for storate, many
statistical routines will instead expect data to be in long format, for which there is a single
measurement per line. Figure 8.1 illustrates the difference between the two formats.

Figure 8.1: Long versus wide-format for data tables (illustration by Garrick Aden-Buie).

Ideally, a data base in long format with repeated measures would also include a column
giving the order in which the treatments were assigned to participants. This is necessary
in order to test whether there are fatigue or crossover effects, for example by plotting the
residuals after accounting for treatment subject by subject, ordered over time. We could
also perform formal tests by including time trends in the model and checking whether the
slope is significant.

Overall, the biggest difference with within-subject designs is that observations are correlated
whereas we assumed measurements were independent until now. This needs to be explicitly
accounted for, as correlation has an important impact on testing as discussed Section 3.4.4:
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8.2 Mathematical complement

failing to account for correlation leads to p-values that are much too low. To see why, think
about a stupid setting under which we duplicate every observation in the database: the
estimated marginal means will be the same, but the variance will be halved despite the
fact there is no additional information. Intuitively, correlation reduces the amount of
information provided by each individual: if we have repeated measures from participants,
we expect the effective sample size to be anywhere between the total number of subjects
and the total number of observations.

8.2 Mathematical complement

This section is technical and can be omitted. Analogous to the univariate case, we can
decompose the variance estimator in terms of within, between and total variance. Let Y ik

denote the response vector for the ith observation of group k; then, we can decompose the
variance as

K∑
k=1

ng∑
i=1

(Y ik − µ̂)(Y ik − µ̂)⊤

total variance

=
K∑

k=1

ng∑
i=1

(Y ik − µ̂k)(Y ik − µ̂k)⊤

within variance

+
K∑

k=1
ng(µk − µ̂)(µ̂k − µ̂)⊤

between variance

defining covariance matrix estimators. If we write Σ̂T , Σ̂W , and Σ̂B for respectively the total,
within and between variance estimators, we can build a statistic from these ingredients to
see how much variability is induced by centering using a common vector. When K > 2,
there are multiple statistics that be constructed, including

• Wilk’s Λ: |Σ̂W |/|Σ̂W + Σ̂B|
• Roy’s maximum root: the largest eigenvalue of Σ̂−1

W Σ̂B

• Lawley–Hotelling trace: tr(Σ̂−1
W Σ̂B)

• Pillai’s trace: tr
{

Σ̂B(Σ̂W + Σ̂B)−1
}

.

All four criteria lead to equivalent statistics and the same p-values if K = 2.

With a two-way balanced MANOVA, we can perform a similar decomposition for each factor
or interaction, with

Σ̂T = Σ̂A + Σ̂B + Σ̂AB + Σ̂W .

Wilk’s Λ is based on taking the ratio of the determinant of the within-variance and that
of the sum of effect-variance plus within-variance, e.g., |Σ̂AB + Σ̂W | for the interaction
term.
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8 Multivariate analysis of variance

8.3 Model fitting

We can treat the within-subject responses as a vector of observations and estimate the
model using using multivariate linear regression. Contrary to the univariate counterpart,
the model explicitly models the correlation between observations from the same subject.

In order to fit a model with a multivariate response, we first need to pivot the data into
wider format so as to have a matrix with rows for the number of subjects and M columns
for the number of response variables.

Once the data are in a suitable format, we fit the multivariate model with the lm function
using the sum-to-zero constraints, here imposed globally by changing the contrasts option.
Syntax-wise, the only difference with the univariate case is that the response on the left
of the tilde sign (~) is now a matrix composed by binding together the vectors with the
different responses.

Example 8.1 (A multivariate take on “Happy fakes”). We use the data from Amirabdolahian
and Ali-Adeeb (2021), but this time treating the averaged repeated measures for the different
stimulus as a multivariate response. We first pivot the data to wide format, then fit the
multivariate linear model.

data(AA21, package = "hecedsm")
# Compute mean per subject
AA21_m <- AA21 |>

dplyr::group_by(id, stimulus) |>
dplyr::summarize(latency = mean(latency))

`summarise()` has grouped output by 'id'. You can override using the `.groups`
argument.

# Pivot to wide format (one individual, multiple measurements per line)
AA21_mw <- AA21_m |>

tidyr::pivot_wider(names_from = stimulus, # within-subject factor labels
values_from = latency) # response measurements

# Model with each variable with a different mean
# Specify all columns with column bind
# left of the ~, following
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8.3 Model fitting

options(contrasts = c("contr.sum", "contr.poly"))
mlm <- lm(cbind(real, GAN1, GAN2) ~ 1,

data = AA21_mw)

Since the within-subject factor stimulus disappeared when we consider the multivariate
response, we only specify a global mean vector µ via ~1. In general, we would add the
between-subject factors to the right-hand side of the equation. Our hypothesis of equal
mean translates into the hypothesis µ = µ13, which can be imposed using a call to anova.
The output returns the statistic and p-values including corrections for sphericity.

We can also use emmeans to set up post-hoc contrasts. Since we have no variable, we need to
set in specs the repeated measure variable appearing on the left hand side of the formula;
the latter is labelled rep.meas by default.

# Test the multivariate model against
# equal mean (X = ~1)
anova(mlm, X = ~1, test = "Spherical")

Analysis of Variance Table

Contrasts orthogonal to
~1

Greenhouse-Geisser epsilon: 0.7565
Huynh-Feldt epsilon: 0.8515

Df F num Df den Df Pr(>F) G-G Pr H-F Pr
(Intercept) 1 0.4962 2 22 0.61549 0.56666 0.58726
Residuals 11

# Follow-up contrast comparisons
library(emmeans)
emm_mlm <- emmeans(mlm, specs = "rep.meas")
emm_mlm |> contrast(method = list(c(1,-0.5,-0.5)))
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8 Multivariate analysis of variance

contrast estimate SE df t.ratio p.value
c(1, -0.5, -0.5) -0.202 0.552 11 -0.366 0.7213

We can check that the output is the same in this case as the within-subject analysis of
variance model fitted previously with the afex package.

Example 8.2 (Teaching to read). We consider a between-subject repeated measure mul-
tivariate analysis of variance model with the Baumann, Seifert-Kessell, and Jones (1992).
The data are balanced by experimental condition and they include the results of three tests
performed after the intervention: an error detection task, an expanded comprehension
monitoring questionnaire and a cloze test. Note that the scale of the tests are different (16,
18 and 56).

We could obtain the estimated covariance matrix of the fitted model by extracting the
residuals Yik − µ̂k and computing the empirical covariance. The results shows a strong
dependence between tests 1 and 3 (correlation of 0.39), but much weaker dependence with
test 2.

Let us compute the multivariate analysis of variance model

data(BSJ92, package = "hecedsm")
# Force sum-to-zero parametrization
options(contrasts = c("contr.sum", "contr.poly"))
# Fit MANOVA model
mmod <- lm(

cbind(posttest1, posttest2, posttest3) ~ group,
data = BSJ92)

# Calculate multivariate test
mtest <- car::Anova(mmod, test = "Wilks")
# mtest
# Get all statistics and univariate tests
summary(car::Anova(mmod), univariate = TRUE)

Type II MANOVA Tests:

Sum of squares and products for error:
posttest1 posttest2 posttest3

posttest1 640.50000 30.77273 498.3182
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8.3 Model fitting

posttest2 30.77273 356.40909 -104.3636
posttest3 498.31818 -104.36364 2511.6818

------------------------------------------

Term: group

Sum of squares and products for the hypothesis:
posttest1 posttest2 posttest3

posttest1 108.121212 6.666667 190.60606
posttest2 6.666667 95.121212 56.65152
posttest3 190.606061 56.651515 357.30303

Multivariate Tests: group
Df test stat approx F num Df den Df Pr(>F)

Pillai 2 0.4082468 5.300509 6 124 6.7654e-05 ***
Wilks 2 0.6320200 5.243287 6 122 7.7744e-05 ***
Hotelling-Lawley 2 0.5185169 5.185169 6 120 8.9490e-05 ***
Roy 2 0.3184494 6.581288 3 62 0.00062058 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type II Sums of Squares
df posttest1 posttest2 posttest3

group 2 108.12 95.121 357.3
residuals 63 640.50 356.409 2511.7

F-tests
posttest1 posttest2 posttest3

group 5.32 8.41 4.48

p-values
posttest1 posttest2 posttest3

group 0.00734676 0.00058043 0.01515115

By default, we get Pillai’s trace statistic. Here, there is clear evidence of differences between
groups of observations regardless of the statistic being used.

We can compute effect size as before by passing the table, for example using
eta_squared(mtest) to get the effect size of the multivariate test, or simple the
model to get the individual variable effect sizes.
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8 Multivariate analysis of variance

Having found a difference, one could in principle investigate for which component of
the response they are by performing univariate analysis of variance and accounting for
multiple testing using, e.g., Bonferroni’s correction. A more fruitful avenue if you are trying
to discriminate is to use descriptive discriminant analysis as a follow-up, which computes
the best fitting hyperplanes that separate groups.

MASS::lda(group ~ posttest1 + posttest2 + posttest3,
data = BSJ92)

This amounts to compute the weights w such, that, computing w⊤Y creating a composite
score by adding up weighted components that leads to maximal separation between groups.
Figure 8.2 shows the new coordinates.
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Figure 8.2: Scatterplot of observations projected onto the linear discriminants for the post-
experiment tests, by group.

Linear discriminant analysis is a topic on it’s own that is beyond the scope of the course.

8.4 Model assumptions

In addition to the usual model assumptions (independence of measurements from different
subjects, equal variance, additivity, etc.), the MANOVA model adds two hypothesis that
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8.4 Model assumptions

altogether determine how reliable our p-values and conclusions are.

The first assumption is that of multivariate normality of the response. The central limit
theorem can be applied to a multivariate response, but the sample size needed overall to
reliably estimate the correlation and variance is larger than in the univariate setting. This
hypothesis can be tested using the Shapiro-Wilk normality test (null hypothesis is that
of normality) by passing the residuals of the multivariate model. Such a test can lead to
rejection of the null hypothesis when specific variables are far from normal, or when the
dependence structure isn’t the one exhibited by a multivariate normal model. With decent
sample sizes (say n = 50 per group), this assumption isn’t as important as others.

# Shapiro-Wilk normality test
# Must transpose the residuals
# to get a 3 by n matrix
mvnormtest::mshapiro.test(U = t(resid(mmod)))

Shapiro-Wilk normality test

data: Z
W = 0.96464, p-value = 0.05678

The second assumption is that the covariance matrix is the same for all individuals, regard-
less of their experimental group assignment. We could try checking whether a covariance
model in each group: under multivariate normal assumption, this leads to a test statistic
called Box’s M test. Unfortunately, this test is quite sensitive to departures from the mul-
tivariate normal assumption and, if the p-value is small, it may have to do more with the
normality than the heterogeneity.

with(BSJ92,
biotools::boxM(

data = cbind(posttest1, posttest2, posttest3),
grouping = group))

Box's M-test for Homogeneity of Covariance Matrices

data: cbind(posttest1, posttest2, posttest3)
Chi-Sq (approx.) = 15.325, df = 12, p-value = 0.2241

133



8 Multivariate analysis of variance

3 groups 4 groups 5 groups
effect size \ p 2 4 6 8 2 4 6 8 2 4 6 8
very large 13 16 18 21 14 18 21 23 16 21 24 27
large 26 33 38 42 29 37 44 48 34 44 52 58
medium 44 56 66 72 50 64 74 84 60 76 90 100
small 98 125 145 160 115 145 165 185 135 170 200 230

In our example, there is limited evidence against any of those model assumptions. We
should of course also check the assumptions of the analysis of variance model for each
of postest1, posttest2 and posttest3 in turn; such a check is left as an exercice to the
reader.

8.5 Power and effect size

Since all of the multivariate statistics can be transformed for a comparison with a univariate
F distribution, we can estimate partial effect size as before. The package effectsize offers
a measure of partial η̂2 for the multivariate tests.1

Power calculations are beyond the reach of ordinary software as one needs to specify the
variance of each observation, their correlation and their mean. Simulation is an obvious
way for this kind of design to obtain answers, but the free G∗Power software (Faul et al.
2007) also offers some tools. See also Läuter (1978) for pairwise comparisons: to achieve a
power of 80%, we need the following number of replicates per group j = 1, . . . , J , which
shows that the number increases rapidly with the dimension of the response vector p. As
usual, smaller effect sizes are more difficult to detect.

Example 8.3 (Disclosure formats for companies). The data presented in this example
vignette is inspired by a study from Anandarajan, Viger, and Curatola (2002), who looked at
the impact of communication means through different disclosure format on the perceived
risk of organization on the brink of bankruptcy in accountancy. There is a single between-
subject factor for the disclore format, and three measures of the performance, ratings for
the interest rate premium assessed, for the ability to service debt and that to improve
profitability. We first load the data from the package and inspect the content.

data(AVC02, package = "hecedsm")
str(AVC02)

1I must confess I haven’t checked whether the output is sensical.
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8.5 Power and effect size

tibble [132 x 4] (S3: tbl_df/tbl/data.frame)
$ format : Factor w/ 3 levels "integrated note",..: 1 1 1 1 1 1 1 1 1 1 ...
$ prime : num [1:132] 0.5 1.5 0.5 0.25 1.5 1.25 2 0.5 1.5 0.5 ...
$ debt : int [1:132] 3 4 1 4 3 3 3 5 2 2 ...
$ profitability: int [1:132] 3 2 2 5 2 2 2 3 2 3 ...

xtabs(~ format, data = AVC02)

format
integrated note stand-alone note modified auditor report

40 45 47

The data are unbalanced by condition. In general, we need them to be roughly balanced
to maximize power. The manova function will not be usable unless data are balanced, and
we need to enforce sum-to-zero constraints to get sensible outputs. After this is done, we
can fit the multivariate linear model with lm by binding columns on the left of the ~ sign to
gather the response vectors.

options(contrasts = c("contr.sum", "contr.poly"))
model <- lm(cbind(prime, debt, profitability) ~ format,

data = AVC02)

We can check the residual correlation matrix to see if there was a strong dependence be-
tween our measurements. The benefit of MANOVA is to be able to leverage this correlation,
if any.

cor(resid(model))

prime debt profitability
prime 1.00 -0.40 -0.54
debt -0.40 1.00 0.65
profitability -0.54 0.65 1.00
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8 Multivariate analysis of variance

We can look at the global mean for each variable and the estimated mean differences for all
groups, including the reference which is omitted. It’s easy to see that the mean differences
sum to zero.

dummy.coef(model)

Full coefficients are

(Intercept): prime 1.280511
debt 2.881521

profitability 2.597695
format: integrated note stand-alone note

prime -0.099261229 -0.013844563
debt 0.068479117 -0.059298660

profitability 0.127304965 0.002304965

(Intercept):

format: modified auditor report
0.113105792

-0.009180457
-0.129609929

Next, we compute the multivariate analysis of variance table and the follow-up with the
univariate functions. By default, we can add a multiplicity correction for the tests, using
Holm-Bonferonni with option 'holm'. For the MANOVA test, there are multiple statistics
to pick from, including Pillai, Wilks, Hotelling-Lawley and Roy. The default is Pillai,
which is more robust to departures from the model hypothesis, but Wilks is also popular
choice among practitioners.

car::Manova(model, test = "Pillai")

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

format 2 0.02581 0.55782 6 256 0.7637
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8.5 Power and effect size

We can compute effect sizes overall for the MANOVA statistic using the correspondance
with the F distribution, and also the individual effect size variable per variable. Here, the
values returned are partial η̂2 measures.

effectsize::eta_squared(car::Manova(model))

# Effect Size for ANOVA (Type II)

Parameter | Eta2 (partial) | 95% CI
-----------------------------------------
format | 0.01 | [0.00, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

# Since it's a one-way between-subject MANOVA, no partial measure
effectsize::eta_squared(model, partial = FALSE)

# Effect Size for ANOVA (Type I)

Response | Parameter | Eta2 | 95% CI
---------------------------------------------------
prime | format | 0.01 | [0.00, 1.00]
debt | format | 2.23e-03 | [0.00, 1.00]
profitability | format | 0.02 | [0.00, 1.00]

We can continue with descriptive discriminant analysis for the post-hoc comparisons.
To fit the model using the lda function from the MASS package, we swap the role of the
experimental factor and responses in the formula. The output shows the weights for the
linear combinations.

MASS::lda(format ~ prime + debt + profitability,
data = AVC02)
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8 Multivariate analysis of variance

Call:
lda(format ~ prime + debt + profitability, data = AVC02)

Prior probabilities of groups:
integrated note stand-alone note modified auditor report

0.3030303 0.3409091 0.3560606

Group means:
prime debt profitability

integrated note 1.181250 2.950000 2.725000
stand-alone note 1.266667 2.822222 2.600000
modified auditor report 1.393617 2.872340 2.468085

Coefficients of linear discriminants:
LD1 LD2

prime 0.5171202 0.16521149
debt 0.6529450 0.97286350
profitability -1.2016530 -0.04412713

Proportion of trace:
LD1 LD2

0.9257 0.0743

Interpretation of these is beyond the scope of the course, but you can find information
about linear discriminant analysis in good textbooks (e.g., Chapter 12 of Mardia, Kent,
and Taylor 2024). The next step before writing about any of our conclusions is to check
the model assumptions. As before, we could check for each variable in turn whether the
variance are the same in each group. Here, we rather check equality of covariance matrix.
The test has typically limited power, but unfortunately is very sensitive to departure from
the multivariate normality assumption, so sometimes rejections are simply due to false
positive.

with(AVC02,
biotools::boxM(cbind(prime, debt, profitability),

grouping = format))

Box's M-test for Homogeneity of Covariance Matrices
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8.5 Power and effect size

data: cbind(prime, debt, profitability)
Chi-Sq (approx.) = 21.274, df = 12, p-value = 0.0465

We get a smallish p-value, and therefore weak evidence against equality of covariance
matrices. The data were generated from normal distribution, so the small p-value is likely
an artifact of the rounding of the Likert scale. We can test the normality assumption using
univariate quantile-quantile plots or tests of normality, including Shapiro-Wilks.
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We see severe rounding impacts for debt and profitability. There is little to be done about
this, but the sample size are large enough that this shouldn’t be too much a concern. We
can also test the multivariate normality assumption. The latter supposes that observations
in each group have the same mean. To get this, we detrend using multivariate linear model
by subtracting the mean of each group. Thus, our input is the matrix of residuals, which
must be transposed for the function to work.

mvnormtest::mshapiro.test(U = t(resid(model)))

Shapiro-Wilk normality test
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8 Multivariate analysis of variance

data: Z
W = 0.96982, p-value = 0.004899

There is (unsurprisingly) strong evidence against multivariate normality, but it matters
less due to sample size. This is a consequence of the discrete univariate measurements,
which explain rejection of the null (for data to be multivariate normal, each of the re-
sponse must be univariate normal and the dependence structure must also match. Since
model assumptions are doubtful, we recommend using Pilai’s trace as test statistic for the
MANOVA.
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9 Linear regression models

9.1 Linear models for factorial designs

If factors measure a continuous quantity, we may alternatively consider a statistical model
that describes a curve or a straight line, rather than only determining the mean at the
levels measured in an experiment. These types of experiments are rather common in
engineering.

Example 9.1 (Is additional paper wrapping viewed as more eco-friendly?). Sokolova, Kr-
ishna, and Döring (2023) consider consumer bias when assessing how eco-friendly packages
are. Items such as cereal are packaged in plastic bags, which themselves are covered in a
box. They conjecture (and find) that, paradoxically, consumers tend to view the packaging
as being more eco-friendly when the amount of cardboard or paper surrounding the box is
larger, relative to the sole plastic package. We consider in the sequel the data from Study 2A,
which measures the perceived environmental friendliness (PEF, variable pef) as a function
of the proportion of paper wrapping (either none, half of the area of the plastic, equal or
twice).

The linear model we can envision measures the effect of pef as a linear function of
proportion, with

E(pef | proportion) = β0 + β1proportion

and with homoscedastic observations. More general models would include polynomials
(up to degree K − 1 for a factor with K levels).

If we fit against the simple linear regression model, we can extract the estimated coefficients
and the p-values for the t-test for β0 and β1. The test for the intercept is of no interest since
data are measured on a scale from 1 to 7, so the mean response when proportion=0 cannot
be zero. The coefficient for proportion suggests a trend of 0.5 point per unit ratio, and this
is significantly different from zero, indicating that the pef score changes with the paper to
plastic ratio.
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9 Linear regression models

data(SKD23_S2A, package = "hecedsm") # load data
linmod <- lm(pef ~ proportion, data = SKD23_S2A)
# fit simple linear regression
coef(linmod) # extract intercept and slope

(Intercept) proportion
2.4073939 0.5264168

Let µ0, µ0.5, µ1, µ2 denote the true mean of the PEF score as a function of the proportion
of paper. There are several tests that could be of interest here, but we focus on contrasts
performed by authors and an hypothesis test of linearity as a function of the proportion
of plastic. For the latter, we could compare the linear regression model (in which the PEF
score increases linearly with the proportion of paper to plastic) against the ANOVA which
allows each of the four groups to have different means.

If we use α ∈ R4 to denote the parameter vector of the analysis of variance model using the
treatment parametrization and β ∈ R2 for the simple linear regression model, then we have

µ0 = β0 = α0

µ0.5 = β0 + 0.5β1 = α0 + α1

µ1 = β0 + β1 = α0 + α2

µ2 = β0 + 2β1 = α0 + α3.

The test comparing the simple linear regression with the analysis of variance imposes two
simultaneous restrictions, with H0 : α3 = 2α2 = 4α1, so the null distribution is Fisher(2, 798)
or roughly χ2

2.

anovamod <- lm(pef ~ factor(proportion), # one-way ANOVA
data = SKD23_S2A)

# Compare simple linear regression with ANOVA
anova(linmod, anovamod) # is the change in PEF linear?

Analysis of Variance Table

Model 1: pef ~ proportion
Model 2: pef ~ factor(proportion)

Res.Df RSS Df Sum of Sq F Pr(>F)
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9.1 Linear models for factorial designs

1 800 1372.7
2 798 1343.4 2 29.262 8.6909 0.0001845 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Specifying the weights
# these contrasts encode the mean (so don't sum to zero)
car::linearHypothesis(model = anovamod,

hypothesis = rbind(c(0, -2, 1, 0),
c(0, 0, -2, 1)))

Linear hypothesis test:
- 2 factor(proportion)0.5 + factor(proportion)1 = 0
- 2 factor(proportion)1 + factor(proportion)2 = 0

Model 1: restricted model
Model 2: pef ~ factor(proportion)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 800 1372.7
2 798 1343.4 2 29.262 8.6909 0.0001845 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see from the output that the F tests and the p-values are identical, whether we impose
the constraints manually or simply feed the two nested models to the anova method.

The authors were interested in comparing none with other choices: we are interested in
pairwise differences, but only relative to the reference µ0:

µ0 = µ0.5 ⇐⇒ 1µ0 − 1µ0.5 + 0µ1 + 0µ2 = 0
µ0 = µ1 ⇐⇒ 1µ0 + 0µ0.5 − 1µ1 + 0µ2 = 0
µ0 = µ2 ⇐⇒ 1µ0 + 0µ0.5 + 0µ1 − 1µ2 = 0

so contrast vectors (1,−1, 0, 0), (1, 0,−1, 0) and (1, 0, 0,−1) for the marginal means would
allow one to test the hypothesis.
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margmean <- anovamod |>
emmeans::emmeans(specs = "proportion") # group means

contrastlist <- list( # specify contrast vectors
refvshalf = c(1, -1, 0, 0),
refvsone = c(1, 0, -1, 0),
refvstwo = c(1, 0, 0, -1))

# compute contrasts relative to reference
margmean |> emmeans::contrast(method = contrastlist)

contrast estimate SE df t.ratio p.value
refvshalf -0.749 0.131 798 -5.713 <.0001
refvsone -0.901 0.131 798 -6.893 <.0001
refvstwo -1.182 0.129 798 -9.196 <.0001

The group averages are reported in Table 9.1, match those reported by the authors in the
paper. They suggest an increased perceived environmental friendliness as the amount of
paper used in the wrapping increases. We could fit a simple regression model to assess
the average change, treating the proportion as a continuous explanatory variable. The
estimated slope for the change in PEF score, which ranges from 1 to 7 in increments of 0.25,
is 0.53 point per ratio of paper/plastic. There is however strong evidence, given the data,
that the change isn’t quite linear, as the fit of the linear regression model is significantly
worse than the corresponding linear model.

Table 9.1: Estimated group averages of PEF per proportion with standard errors

proportion marg. mean std. err. dof lower (CI) upper (CI)

0.0 2.16 0.093 798 1.98 2.3439
0.5 2.91 0.093 798 2.73 3.0926
1.0 3.06 0.092 798 2.88 3.2441
2.0 3.34 0.089 798 3.17 3.5193

Table 9.2: Estimated contrasts for differences of PEF to no paper.

contrast estimate std. err. dof stat p-value

refvshalf -0.75 0.13 798 -5.71 0
refvsone -0.90 0.13 798 -6.89 0
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9.2 Analysis of covariance

refvstwo -1.18 0.13 798 -9.20 0

All differences reported in Table 9.2 are significant and positive, in line with the researcher’s
hypothesis.

9.2 Analysis of covariance

The previous chapter dealt with factorial experiments in which all experimental factors
are of interest. It is possible to use measurements concomitant to the data collection (for
example, value to a test before we complete the group assignment for the manipulation) to
get a measure of the relative strength of students. The more correlated these measures are
with the response, the more we can explain the data. We then proceed with the random
assignment of our experimental units to different conditions.

Including covariates should in principle increase power and our ability to detect real dif-
ferences due to experimental manipulations, provided the variables used as control are
correlated with the response. Generally, they are not needed for valid inference, which is
guaranteed by randomization, and shouldn’t be used to assign treatment. Such designs are
meant to reduce the error.

We can include continuous covariates to the analysis of variance, whose slope governs the
relationship with the response. The strict inclusion isn’t necessary to draw valid causal
conclusion, but adding the term helps again reduce the residual variability. Such a design
was historically called analysis of covariance, although as analysis of variance models,
they are nothing but linear regression models. The ANCOVA model assumes that slopes
are parallel: if rather there is an interaction term, then the experimental manipulation
induces changes that depend on the value of the continuous explanatory. This case is
termed moderation in the management literature.

In an analysis of covariance, we include a linear component for a (continuous) covariate,
with the purpose again to reduce residual error and increase power. A prime example is
prior/post experiment measurements, whereby we monitor the change in outcome due to
the manipulation. This post by Solomon Kurz [link] nicely illustrates the added benefits of
using covariates when there is strong correlation between your response and the latter

In such setting, it may seem logical to take the difference in post and prior score as response:
this is showcased in Example 9.3 and Baumann, Seifert-Kessell, and Jones (1992), an analysis
of which is presented on the course website.
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9 Linear regression models

When we add a covariate, we need the latter to have a strong linear correlation for the
inclusion to make sense. We can assess graphically whether the relationship is linear, and
whether the slopes for each experimental condition are the same.1
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Figure 9.1: Simulated data from two groups with an analysis of covariance model.

The left panel of Figure 9.1 shows the ideal situation for an analysis of covariate: the
relationship between response and covariate is linear with strong correlation, with the
same slope and overlapping support. Since the slopes are the same, we can compare the
difference in average (the vertical difference between slopes at any level of the covariate)
because the latter is constant, so this depiction is useful. By contrast, the right-hand panel
of Figure 9.1 shows an interaction between the covariate and the experimental groups,
different slopes: there, the effect of the experimental condition increases with the level of
the covariate. One may also note that the lack of overlap in the support, the set of values
taken by the covariate, for the two experimental conditions, makes comparison hazardous
at best in the right-hand panel.

Figure 9.2 shows that, due to the strong correlation, the variability of the measurements is
smaller on the right-hand panel (corresponding to the analysis of covariance model) than
for the centred response on the left-hand panel; note that the y-axes have different scales.

1If not, this implies that the covariate interacts with the experimental condition.
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Figure 9.2: Response after subtracting mean (left) and after detrending (right).

We present two examples of analysis of covariance, showing how the inclusion of covariates
helps disentangle differences between experimental conditions.

Example 9.2 (Inconsistency of product description and image in online retailing). Lee
and Choi (2019) measured the impact of discrepancies between descriptions and visual
depiction of items in online retail. They performed an experiment in which participants
were presented with descriptions of a product (a set of six toothbrushes) that was either
consistent or inconsistent with the description. The authors postulated that a discrepancy
could lead to lower appreciation score, measured using three Likert scales. They also
suspected that the familiarity with the product brand should impact ratings, and controlled
for the latter using another question.

One way to account for familiarity when comparing the mean is to use a linear regres-
sion with familiarity as another explanatory variable. The expected value of the product
evaluation is

E(prodeval) = β0 + β1familiarity + β2consistency, (9.1)

where familiarity is the score from 1 to 7 and consistency is a binary indicator equal to
one if the output is inconsistent and zero otherwise. The coefficient β2 thus measures the
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9 Linear regression models

difference between product evaluation rating for consistent vs inconsistent displays, for the
same familiarity score.

We can look at coefficient (standard error) estimates β̂2 = −0.64(0.302). No difference
between groups would mean β2 = 0 and we can build a test statistic by looking at the
standardized regression coefficient t = β̂2/se(β̂2). The result output is b = −0.64, 95%
CI [−1.24,−0.04], t(93) = −2.12, p = .037. We reject the null hypothesis of equal product
evaluation for both display at level 5%: there is evidence that there is a small difference,
with people giving on average a score that is 0.64 points smaller (on a scale of 1 to 9) when
presented with conflicting descriptions and images.

We can compare the analysis of variance table obtained by fitting the model with and with-
out familiarity. Table 9.4 shows that the effect of consistency is small and not significant
and a two-sample t-test shows no evidence of difference between the average familiarity
score in both experimental conditions (p-value of .532). However, we can explain roughly
one fifth of the residual variability by the familiarity with the brand (see the sum of squares
in Table 9.4): removing the latter leads to a higher signal-to-noise ratio for the impact of
consistency, at the expense of a loss of one degree of freedom. Thus, it appears that the
manipulation was successful.

Table 9.3: Analysis of variance tables

Table 9.3: model without familiarity

term sum. sq. df stat p-value

consistency 7.04 1 2.55 .113
Residuals 259.18 94

Table 9.4: Analysis of variance tables

Table 9.4: model with familiarity

term sum. sq. df stat p-value

familiarity 55.94 1 25.60 < .001
consistency 9.80 1 4.49 .037
Residuals 203.24 93

Figure 9.3 shows that people more familiar with the product or brand tend to have a more
positive product evaluation, as postulated by the authors. The graph also shows two straight
lines corresponding to the fit of a linear model with different intercept and slope for each
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Figure 9.3: Scatterplot of product evaluation as a function of the familiarity score, split by
experimental manipulation.

display group: there is little material difference, one needs to assess formally whether a
single linear relationship as the one postulated in Equation 9.1 can adequately characterize
the relation in both groups.

To this effect, we fit a linear model with different slopes in each group, and compare the
fit of the latter with the analysis of covariance model that includes a single slope for both
groups: we can then test if the slopes are the same, or alternatively if the difference between
the slopes is zero. The t-statistic indicates no difference in slope (p-value of .379), thus
the assumption is reasonable. Levene’s test for homogeneity of variance indicates no
discernible difference between groups. Thus, it appears there is a difference in perception
of product quality due to the manipulation.

Example 9.3 (Effect of scientific consensus on false beliefs). We consider Study 3 of Steke-
lenburg et al. (2021), who studied changes in perception of people holding false beliefs
or denying (to some extent) the scientific consensus by presenting them with news arti-
cle showcasing information about various phenomena. The experimental manipulation
consisted in presenting boosting, a form of training to help readers identify and estab-
lish whether scientifists were truly expert in the domain of interest, how strong was the
consensus, etc.2

2The article is interesting because lack of planning/changes led them to adapt the design from experiment
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The third and final experiment of the paper focused on genetically modified organisms: it is
a replication of Study 2, but with a control group (since there were no detectable difference
between experimental conditions Boost and BoostPlus) and a larger sample size (because
Study 2 was underpowered).

The data include 854 observations with prior, the negative of the prior belief score of the
participant, the post experiment score for the veracity of the claim. Both were measured
using a visual scale ranging from -100 (I am 100% certain this is false) to 100 (I am 100%
certain this is true), with 0 (I don’t know) in the middle. Only people with negative prior
beliefs were recruited to the study. The three experimental conditions were BoostPlus,
consensus and a control group. Note that the scores in the data have been negated,
meaning that negative posterior scores indicate agreement with the consensus on GMO.

Preliminary checks suggest that, although the slopes for prior beliefs could plausibly be the
same in each group and the data are properly randomized, there is evidence of unequal
variance for the changes in score. As such, we fit a model with mean

E(post) =


β0 + β1prior + α1 condition = BoostPlus
β0 + β1prior + α2 condition = consensus
β0 + β1prior + α3 condition = control

with α1 + α2 + α3 = 0, using the sum-to-zero parametrization, and with different variance
for each experimental condition,

Va(post) =


σ2

1, condition = BoostPlus,

σ2
2, condition = consensus,

σ2
3, condition = control.

Because of the unequal variances, we cannot use multiple testing procedures reserved for
analysis of variance and resort instead to Holm–Bonferroni to control the familywise error
rate. We here look only at pairwise differences between conditions.3

1 to 3 until they found something. Without preregistration, it is unlikely such findings would have been
publishable.

3In Study 2, the interest was comparing manipulation vs control and the Boost vs BoostPlus conditions, two
orthogonal contrasts.
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Table 9.5: Analysis of variance tables

Table 9.5: ANOVA model (without prior belief)

term df stat p-value

condition 2 42.5 < .001

Table 9.6: Analysis of variance tables

Table 9.6: ANCOVA model (with prior belief)

term df stat p-value

prior 1 289.2 < .001
condition 2 57.0 < .001

Repeating the exercise of comparing the amount of evidence for comparison with and
without inclusion of a covariate shows that the value of the test statistic is larger (Table 9.6),
indicative of stronger evidence with the analysis of covariance model: the conclusion would
be unaffected with such large sample sizes. We of course care very little for the global F
test of equality of mean, as the previous study had shown large differences. What is more
interesting here is quantifying the change between conditions.

Table 9.7: Pairwise contrasts with p-values adjusted using Holm–Bonferroni

Table 9.7: ANOVA model (without prior belief score).

contrast estimate std.error df statistic p.value

consensus vs control -11.98 4.0 557.54 -3.007 .003
consensus vs BoostPlus 16.31 4.7 546.36 3.490 < .001
BoostPlus vs control -28.29 4.4 505.44 -6.489 < .001

Table 9.8: Pairwise contrasts with p-values adjusted using Holm–Bonferroni

Table 9.8: ANCOVA model (with prior belief score).

contrast estimate std.error df statistic p.value

consensus vs control -11.84 3.3 543.06 -3.544 < .001
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contrast estimate std.error df statistic p.value

consensus vs BoostPlus 17.47 4.3 523.60 4.108 < .001
BoostPlus vs control -29.30 3.9 458.62 -7.454 < .001

Table 9.8 shows the pairwise contrasts, which measure two different things: the analysis
of variance model compares the average in group, whereas the analysis of covariance (the
linear model with prior) uses detrended values and focuses on the change in perception.
Because the data are unbalanced and we estimate group mean and variance separately,
the degrees of freedom change from one pairwise comparison to the next. Again, using
the covariate prior, which is somewhat strongly correlated with post as seen in Figure 9.4,
helps decrease background noise.

Table 9.9: Summary statistics of belief as a function of time of measurement and experi-
mental condition.

time condition mean se

prior BoostPlus 57.65 1.69
prior consensus 56.32 1.67
prior control 56.49 1.68
post BoostPlus 2.62 3.53
post consensus 18.93 3.06
post control 30.91 2.56

\ Pitfall

Stekelenburg et al. (2021) split their data to do pairwise comparisons two at the time
(thus taking roughly two-third of the data to perform a two sample t-test with each
pair). Although it does not impact their conclusion, this approach is conceptually
incorrect: if the variance was equal, we would want to use all observations to estimate
it (so their approach would be suboptimal, since we would estimate the variance three
times with smaller samples).
On the contrary, using a model that assumes equal variance when it is not the case
leads to distortion: the variance we estimate will be some sort of average of the
variability σi and σj in experimental condition i and j, again potentially leading to
distortions. With large samples, this may be unconsequential, but illustrates caveats
of subsample analyses.
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Figure 9.4: Difference between prior and post experiment beliefs on genetically engineered
food.

\ Pitfall

Figure 9.5 shows the relationship between prior and posterior score. The data show
clear difference between individuals: many start from completely disbelieving of
genetically engineered food and change their mind (sometimes drastically), there are
many people who do not change idea at all and have similar scores, and many who
give a posterior score of zero. This heterogeneity in the data illustrates the danger of
only looking at the summary statistics and comparing averages. It does not tell the
whole picture! One could investigate whether the strength of religious or political
beliefs, or how much participants trust scientists, could explain some of the observed
differences.

9.3 Moderation and interactions

In a randomized experiment, we can check the average outcome of a manipulation by
comparing groups: assuming random sampling, these conclusions can be broadly gener-
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Figure 9.5: Scatterplot of negated prior and posterior belief score.

alized to the population of interest from which the sample is drawn. However, it may be
that the effect of the treatment depends on other variables: cultural differences, gender or
education may change.

The causal effect on Y of the experimental manipulation, say X may be a misleading
summary if another variable modifies the relation of X → Y : for example, the perception
of gender discrimination or racism may depend on the person background and experience
and this may impact the effect of the manipulation. Such variables, say W , thus have an
interactive effect with the experimental factor X, termed moderator in psychology. In the
statistical model, inclusion of interaction terms between X and W (typically via product of
the so-called moderator variable with the factor encoding the experimental sub-condition)
will allow us to estimate those differences.

In an analysis of covariance, covariates are included that have an impact on the outcome
to filter out variability, but with the assumption that they do not influence the effect of
treatment (no interaction). With moderators, we rather include and tests for the interactions.
If we have an experimental factor X which is binary or categorical, the resulting model
is a simple analysis of variance model (or analysis of covariance) and we can test the
significance of the interaction term to assess the moderating effect of W .

If W is a mean-centered continuous variable and X a categorical variable with k = 1, . . . , K

154



9.3 Moderation and interactions

levels using the sum-to-zero parametrization, the linear model with mean

E{Y | do(X) = k, W}
average response at W in group k

= µ + αk
intercept for group k

+ (β + γk)
slope for group k

W

includes different slopes for W in each experimental group, as well as different intercepts
for each group.

Example 9.4 (Gender discrimation). We consider data from a study on gender discrimi-
nation (Garcia et al. 2010). Participants were put with a file where a women was turned
down promotion in favour of male colleague despite her being clearly more experimented
and qualified. The authors manipulated the decision of the participant to this decision,
either choosing not to challenge the decision (no protest), a request to reconsider based
on individual qualities of the applicants (individual) and a request to reconsider based on
abilities of women (collective). All items were measured using scales constructed using
items measured using Likert scales ranging from strongly disagree (1) to strongly agree (7).

The postulated mediator variable is sexism, the average of 6 Likert scales for the Modern
Sexism Scale assessing pervasiveness of gender discrimination. We consider participants’
evaluation of the appropriateness of the response of the fictional character.

We fit the linear model with the interaction and display the observed slopes

data(GSBE10, package = "hecedsm")
lin_moder <- lm(respeval ~ protest*sexism,

data = GSBE10)
summary(lin_moder) # coefficients
car::Anova(lin_moder, type = 3) # tests

Table 9.10: Analysis of variance table for the linear moderation model of .

term sum of squares df stat p-value

protest 6.34 2 2.45 .091
sexism 6.59 1 5.09 .026
protest:sexism 12.49 2 4.82 .010
Residuals 159.22 123
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Because of the interaction, comparing the levels of the experimental factor only makes
sense if we fix the value of sexism (since the slopes are not parallel) and won’t necessarily
be reliable outside of the range of observed values of sexism. We could look at quantiles
and differences at the mean sexism,4 or one standard deviation away.

We may be interested in the range of values of the predictor W for which the difference
between treatments is not statistically significant if we only have a binary treatment. The
Johnson–Neyman method (P. O. Johnson and Neyman 1936) considers this range, but this
leads to multiple testing problems since we probe the model repeatedly. Esarey and Sumner
(2018) offer a method that provides control for the false discovery rate.

To illustrate the method, we dichotomize the manipulation pooling individual and collective
protests, since these are the most similar.

library(interactions)
db <- GSBE10 |>

dplyr::mutate(
protest = as.integer(protest != "no protest"))

lin_moder2 <- lm(respeval ~ protest*sexism, data = db)
jn <- johnson_neyman(

model = lin_moder2, # linear model

4This is the default with emmeans
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pred = protest, # binary experimental factor
modx = sexism, # moderator
control.fdr = TRUE,
mod.range = range(db$sexism))

jn$plot
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Figure 9.6: Johnson–Neyman plot for difference between protest and no protest as a func-
tion of sexism.

The cutoff value is 4.20 with control for the false discovery rate and 4.15 without. The
interval is not extended beyond the range of value for sexism, as these are not possible given
the Likert scale (which starts at 1). In this example, the moderator is not experimentally ma-
nipulated, but it could be. More complicated mediation models could include interactions
between treatment effects or moderators and covariates, with external variables, leading
to moderated mediation. Interactions can be considered for pretty much any statistical
model, but the usual assumptions need to hold for inference to be approximately valid.

Example 9.5 (Ghosting). Leckfor et al. (2023) consider the impact of ghosting someone
(i.e., not responding to communications and cutting bridges with a person) on personal
satisfaction, uncertainty and the need for closure (explanations). In their Study 3, they
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postulated that the type of rejection someone experienced. The study comprises 545
participants who were asked to reflect about a situation in their own life, in scenarios where

Participants in the included (control) condition were asked to write about a
time when someone “expressed that they wanted to continue and/or maintain a
friendship, romantic relationship, or casual dating situation.” Participants in
the ghosted condition wrote about a time when someone ended a relationship
by “suddenly cutting off all communication without explanation.” Participants
in the directly rejected condition wrote about a time when someone “directly
communicate[d] that they wanted to end the relationship.” Nearly half (49%)
of participants wrote about a friendship, followed by a romantic relationship
(29%), and then a casual dating situation (22%).

The moderator variable is cond, one of control, being ghosted or rejected. This should
moderate the effect of the need for closure on need for satisfaction. The authors postulated
that individuals would have lower needs of satisfaction after being ghosted.

# Moderation analysis
# This time, the factor of interest is continuous
# and the moderator is categorical (K=3 levels)
data(LWSH23_S3, package = "hecedsm")
mod <- lm(data = LWSH23_S3, needsatis ~ needclosure * cond)
anova(mod) # interaction is significant
# Compute estimated marginal means, but with global weights equal to relative weight of each variable
emmeans::emmeans(mod, specs = "needclosure",

by = "cond",
at = list(needclosure = 2:7),
weights = "prop")

# All values are reported for the average of needclosure by default without the at

Table 9.11: Linear moderation model coefficients of Study 3 of Leckfor et al. (2023). Least
square coefficients, standard errors, Wald tests and p-values for β = 0 and 95%
confidence intervals.

term coef. estimate std. error
lower

CL
upper

CL

(Intercept) β0 5.0 0.37 4.29 5.74
need for closure β1 0.2 0.07 0.04 0.33
directly rejected [cond] β2 -1.2 0.53 -2.20 -0.12
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Table 9.11: Linear moderation model coefficients of Study 3 of Leckfor et al. (2023). Least
square coefficients, standard errors, Wald tests and p-values for β = 0 and 95%
confidence intervals.

term coef. estimate std. error
lower

CL
upper

CL

ghosted [cond] β3 -1.5 0.50 -2.48 -0.52
need for closure * directly rejected
[cond]

β4 -0.4 0.11 -0.61 -0.19

need for closure * ghosted [cond] β5 -0.4 0.10 -0.62 -0.21

Table 9.12: Analysis of variance table for the linear moderation model of Study 3 of Leckfor
et al. (2023).

term df sum of squares stat p-value

needclosure 1 3.9 4.26 .039
cond 2 1346.9 738.61 < .001
needclosure:cond 2 18.6 10.19 < .001
Residuals 539 491.5

Since the interaction is significant, we focus on the different slopes. We can of course simply
report the equations of the linear regression for each group. Alternative, emmeans can also
return the predictions for different values of needclosure per condition along with standard
errors. The estimates will have lower values of needclosure when close to the subgroup
averages.

The postulated theoretical mean equation is

E(needsatisf) = β0 + β1needclosure + β21cond=directly rejected + β31cond=directly rejected

+ β4needclosure× 1cond=directly rejected + β5needclosure× 1cond=directly rejected.

The estimated model mean Ê(needsatisf | needclosure = x) when needclosure is worth
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9 Linear regression models

x ∈ [1, 7] for each cond is thus

Ŷ =


β̂0 + β̂1x, control;
(β̂0 + β̂3) + (β̂1 + β4)x, directly rejected;
(β̂0 + β̂2) + (β̂1 + β5)x, ghosted.

=


5.015 + 0.181x, control;
3.86− 0.222x, directly rejected;
3.52− 0.234x, ghosted.
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Figure 9.7: Scatterplot and linear regression slopes for the need for satisfaction as a function
of the moderating situation and the need for closure.

We can see clearly in Figure 9.7 that the impact of the need for closure depends on the
situation, with downward trends for the ghosted and rejected groups.

We can fit this toy model also with the PROCESS macro, which only understand numeric
values for factors. . . The output (omitted) includes model coefficients with confidence
intervals, the F test statistic for the ANOVA, and output for the average need for closure.
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process(data = LWSH23_S3 |>
dplyr::mutate(condind = as.integer(cond)), # cast factor to numeric integer levels

y = "needsatis", # response variable
x = "needclosure", # explanatory variable (not manipulated)
w = "condind", # postulated moderator
mcw = 1, # dummy coding for moderator w (so compare to base level, here 'included')
model = 1) # number of model in Hayes (simple moderation)

, Summary

• We can treat factor levels measuring quantities as continuous covariates, and
reduce the number of parameters.

• Inclusion of continuous covariates may help filtering out unwanted variability.
• These are typically concomitant variables (measured alongside the response

variable).
• This designs reduce the residual error, leading to an increase in power (more

ability to detect differences in average between experimental conditions).
• We are only interested in differences due to experimental condition (marginal

effects).
• In general, there should be no interaction between covariates/blocking factors

and experimental conditions.
• This hypothesis can be assessed by comparing the models with and without

interaction, if there are enough units (e.g., equality of slope for ANCOVA).
• Moderators are variables that interact with the experimental factor. We assess

their presence by testing for an interaction in a linear regression model.
• In the presence of a moderator, we need to consider slopes or groups separately

for subgroups.
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10 Effect sizes and power

In social studies, it is common to write a paper containing multiple studies on a similar
topic. These may use different designs, with varying sample size. If the studies uses different
questionnaires, or change the Likert scale, the results and the mean difference between
groups are not directly comparable between experiments.

We may also wish replicate a study by using the same material and re-run an experiment.
For the replication to be somewhat successful (or at least reliable), one needs to determine
beforehand how many participants should be recruited in the study.

We could think for an example of comparing statistics or p-values, which are by construction
standardized unit less measures, making them comparable across study. Test statistics
show how outlying observed differences between experimental conditions relative to a null
hypothesis, typically that of no effect (equal mean in each subgroup). However, statistics are
usually a function of both the sample size (the number of observations in each experimental
condition) and the effect size (how large the standardized differences between groups are),
making them unsuitable for describing differences.
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Figure 10.1: True sampling distribution for a two-sample t-test under the alternative (right-
most curve) and null distribution (leftmost curve) with small (left panel) and
large (right panel) sample sizes.
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10 Effect sizes and power

Figure 10.1 shows an example with the sampling distributions of the difference in mean
under the null (curve centered at zero) and the true alternative (mean difference of two).
The area in white under the curve represents the power, which is larger with larger sample
size and coincides with smaller average p-values for the testing procedure.

One could argue that, on the surface, every null hypothesis is wrong and that, with a
sufficiently large number of observation, all observed differences eventually become “sta-
tistically significant”. This has to do with the fact that we become more and more certain
of the estimated means of each experimental sub-condition. Statistical significance of
a testing procedure does not translate into practical relevance, which itself depends on
the scientific question at hand. For example, consider the development of a new drug
for commercialization by Health Canada: what is the minimum difference between two
treatments that would be large enough to justify commercialization of the new drug? If
the effect is small but it leads to many lives saved, would it still be relevant? Such decision
involve a trade-off between efficacy of new treatment relative to the status quo, the cost of
the drug, the magnitude of the improvement, etc.

Effect size are summaries to inform about the standardized magnitude of these differ-
ences; they are used to combine results of multiple experiments using meta-analysis, or to
calculate sample size requirements to replicate an effect in power studies.

10.1 Effect sizes

There are two main classes of effect size: standardized mean differences and ratio (per-
centages) of explained variance. The latter are used in analysis of variance when there are
multiple groups to compare.

Unfortunately, the literature on effect size is quite large. Researchers often fail to distinguish
between estimand (unknown target) and the estimator that is being used, with frequent
notational confusion arising due to conflicting standards and definitions. Terms are also
overloaded: the same notation may be used to denote an effect size, but it will be calculated
differently depending on whether the design is between-subject or within-subject (with
repeated correlated measures per participant), or whether there are blocking factors.

10.1.1 Standardized mean differences

To gather intuition, we begin with the task of comparing the means of two groups using a
two-sample t-test, with the null hypothesis of equality in means or H0 : µ1 = µ2. The test
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statistic is

T = µ̂2 − µ̂1
σ̂

( 1
n1

+ 1
n2

)−1/2

where σ̂ is the pooled sample size estimator. The first term, d̂s = (µ̂2 − µ̂1)/σ̂, is termed
Cohen’s d (Cohen 1988) and it measures the standardized difference between groups, a
form of signal-to-noise ratio. As the sample size gets larger and larger, the sample mean
and pooled sample variance become closer and closer to the true population values µ1, µ2
and σ; at the same time, the statistic T becomes bigger as n becomes larger because of the
second term.1

The difference d = (µ1 − µ2)/σ has an obvious interpretation: a distance of d = a indicates
that the means of the two groups are a standard deviation apart. Cohen’s d is sometimes
loosely categorized in terms of weak (d = 0.2), medium (d = 0.5) and large (d = 0.8) effect
size; these, much like arbitrary p-value cutoffs, are rules of thumbs. Alongside d, there
are many commonly reported metrics that are simple transformations of d describing the
observed difference. This interactive applet by Kristoffer Magnusson (Magnusson 2021)
shows the visual impact of changing the value of d along. There are different estimators of d
depending on whether or not the pooled variance estimator is used. Cohen’s d, is upward
biased, meaning it gives values that are on average larger than the truth. Hedge’s g (Hedges
1981) offers a bias-correction and should always be preferred as an estimator, but the bias
is relatively small and vanishes quickly as the sample size increases.

For these different estimators, it is possible to obtain (asymmetric) confidence intervals or
tolerance intervals.2

Example 10.1 (Effect sizes for “The Surprise of Reaching Out”). We consider a two-sample
t-test for the study of Liu et al. (2023) discussed in Example 2.5. The difference in average
response index is 0.371, indicating that the responder have a higher score. The p-value is
0.041, showing a small effect.

If we consider the standardized difference d, the group means are −0.289 standard
deviations apart based on Hedge’s g, with an associated 95% confidence interval of
[−0.567,−0.011]: thus, the difference found is small (using Cohen (1988)’s convention) and
there is a large uncertainty surrounding it.

There is a 42% probability that an observation drawn at random from the responder con-
dition will exceed an observation drawn at random of the initiator group (probability of

1If we consider a balanced sample, n1 = n2 = n/2 we can rewrite the statistic as T =
√

nd̂s/2 and the
statement that T increases with n on average becomes more obvious.

2By using the pivot method, e.g., Steiger (2004), and relating the effect size to the noncentrality parameter of
the null distribution, whether St, F or χ2.
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10 Effect sizes and power

superiority) and 38.6% of the responder observations will exceed the median of the initiator
(Cohen’s U3).

data(LRMM23_S1, package = "hecedsm")
ttest <- t.test(

appreciation ~ role,
data = LRMM23_S1,
var.equal = TRUE)

effect <- effectsize::hedges_g(
appreciation ~ role,
data = LRMM23_S1,
pooled_sd = TRUE)

10.1.2 Ratio and proportion of variance

Another class of effect sizes are obtained by considering either the ratio of the variance due
to an effect (say differences in means relative to the overall mean) relative to the background
level of noise as measured by the variance.

One common measure employed in software is Cohen’s f (Cohen 1988), the square of which
for a one-way ANOVA with factor A (equal variance σ2) with more than two groups,

f2 = 1
σ2

k∑
j=1

nj

n
(µj − µ)2 = σ2

A

σ2 ,

a weighted sum of squared difference relative to the overall mean µ. σ2
A is a measure of the

variability that is due to the difference in mean, so standardizing it by the measurement
variance gives us a ratio of variance with values higher than one indicating that more
variability is explainable, leading to higher effect sizes. If the means of every subgroup is
the same, then f = 0. For k = 2 groups, Cohen’s f and Cohen’s d are related via f = d/2.

Cohen’s f can be directly related to the behaviour of the F statistic under an alternative,
as explained in Section 10.2.1. However, since the interpretation isn’t straightforward, we
typically consider proportions of variance (rather than ratios of variance).

To build such an effect size, we break down the variability that is explained by our experi-
mental manipulation (σ2

A), here denoted by effect, from the leftover unexplained part, or
residual (σ2

resid). In a one-way analysis of variance,

σ2
total = σ2

resid + σ2
A
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and the percentage of variability explained by the factor A is, so

η2 = explained variability
total variability

= σ2
A

σ2
resid + σ2

A

= σ2
A

σ2
total

.

Simple arithmetic manipulations reveal that f2 = η2/(1− η2), so we can relate any propor-
tion of variance in terms of ratio and vice-versa.

Such an effect size depends on unknown population quantities (the true means of each
subgroup, the overall mean and the variance). There are multiple alternative estimators
to estimate η2, and researchers are often carefree when reporting as to which is used. To
disambiguate, I will put η̂2 to denote an estimator. To make an analogy, there are many
different recipes (estimators) that can lead to a particular cake, but some may lead to a
mixing that is on average too wet if they are not well calibrated.

The default estimator for η2 is the coefficient of determination of the linear regression,
denoted R̂2 or η̂2. The latter can be reconstructed from the analysis of variance table using
the formula

R̂2 = Fν1
Fν1 + ν2

where for the one-way ANOVA ν1 = K − 1 and ν2 = n −K are the degrees of freedom of
a design with n observations and K experimental conditions. From this, we can build an
estimator of Cohen’s f , where for the omnibus test of the one-way ANOVA, we get

f̂ =
√

Fν1/ν2

Unfortunately, R̂2 is an upward biased estimator (too large on average), leading to optimistic
measures. Another estimator of η2 that is recommended in Keppel and Wickens (2004) for
power calculations is ω̂2, which is

ω̂2 = ν1(F − 1)
ν1(F − 1) + n

.

Since the F statistic is approximately 1 on average, this measure removes the mode. Both
ω̂2 and ϵ̂2 have been reported to be less biased and thus preferable as estimators of the true
proportion of variance (Lakens 2013). We can as before get an estimator of Cohen’s f for
the variance ratio as f̃ =

√
ν1(F − 1)/n.

Example 10.2 (Computing effect size for a between-subject one-way ANOVA). Consider
the one-way analysis of variance model for the “Degrees of Reading Power” cloze test, from
Baumann, Seifert-Kessell, and Jones (1992). The response records the number of correctly
answered items, ranging from 0 to 56.

167



10 Effect sizes and power

data(BSJ92, package = "hecedsm")
# Fit ANOVA model
mod_post <- lm(posttest3 ~ group, data = BSJ92)
# Extract in data frame format the ANOVA table
anova_table <- broom::tidy(anova(mod_post))
Fstat <- anova_table$statistic[1]
dfs <- anova_table$df
# Output estimated value of eta-squared
(eta_sq <- Fstat * dfs[1] / (Fstat * dfs[1] + dfs[2]))

[1] 0.1245399

# Compare with coefficient of determination from regression
summary(mod_post)$r.squared

[1] 0.1245399

# Compare with output from R package 'effectsize'
effectsize::eta_squared(mod_post, partial = FALSE)$Eta2

[1] 0.1245399

# Compare with omega-squared value - the latter is smaller
(omega_sq <- pmax(0, dfs[1]*(Fstat-1)/ (dfs[1]*(Fstat-1) + nobs(mod_post))))

[1] 0.0954215
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effectsize::omega_squared(mod_post)$Omega2

[1] 0.0954215

We can also compute effect size for contrasts. Since these take individual the form of t-tests,
we can use emmeans to obtain corresponding effect sizes, which are Cohen’s d.

emmeans::emmeans(mod_post, specs = "group") |>
emmeans::contrast(list(C1 = c(-1, 0.5, 0.5),

C2 = c(0, 1, -1))) |>
# Specify estimated std. deviation of data and degrees of freedom

emmeans::eff_size(sigma = sigma(mod_post), edf = dfs[2])

contrast effect.size SE df lower.CL upper.CL
C1 - C2 0.317 0.4 63 -0.482 1.12

sigma used for effect sizes: 6.314
Confidence level used: 0.95

10.1.3 Partial effects and variance decomposition

In a multiway design with several factors, we may want to estimate the effect of separate
factors or interactions. In such cases, we can break down the variability explained by
manipulations per effect. The effect size for such models are build by comparing the
variance explained by the effect.

For example, say we have a completely randomized balanced design with two factors A, B
and their interaction AB. We can decompose the total variance as

σ2
total = σ2

A + σ2
B + σ2

AB + σ2
resid.

When the design is balanced, these variance terms can be estimated using the mean squared
error from the analysis of variance table output. If the design is unbalanced, the sum of
square decomposition is not unique and we will get different estimates when using Type II
and Type III sum of squares.
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We can get formula similar to the one-sample case with now what are termed partial effect
sizes, e.g.,

ω̂2
⟨effect⟩ = dfeffect(Feffect − 1)

dfeffect(Feffect − 1) + n
,

where n is the overall sample size and Feffect and the corresponding degrees of freedom
could be the statistic associated to the main effects A and B, or the interaction term AB.
In R, the effectsize package reports these estimates with one-sided confidence intervals
derived using the pivot method (Steiger 2004).3

Software will typically return estimates of effect size alongside with the designs, but there
are small things to keep in mind. One is that the decomposition of the variance is not
unique with unbalanced data. The second is that, when using repeated measures and
mixed models, the same notation is used to denote different quantities.

Lastly, it is customary to report effect sizes that include the variability of blocking factors
and random effects, leading to so-called generalized effect sizes. Include the variance of all
blocking factors and interactions (only with the effect!) in the denominator.4

For example, if A is the experimental factor whose main effect is of interest, B is a blocking
factor and C is another experimental factor, use

η2
⟨A⟩ = σ2

A

σ2
A + σ2

B + σ2
AB + σ2

resid

.

as generalized partial effect. The reason for including blocking factors and random effects is
that they would not necessarily be available in a replication. The correct effect size measure
to calculate and to report depends on the design, and there are numerous estimators that
can be utilized. Since they are related to one another, it is oftentimes possible to compute
them directly from the output or convert. The formula highlight the importance of reporting
(with enough precision) exactly the values of the test statistic.

Example 10.3. In R, the effectsize package functions, which are displayed prominently in
this chapter, have a generalized argument to which the vector of names of blocking factor
can be passed. We use the one-way analysis of variance from Example 12.1 for illustrating
the calculation. Once again, the output matches the output of the package.

3The confidence intervals are based on the F distribution, by changing the non-centrality parameter and
inverting the distribution function (pivot method). This yields asymmetric intervals.

4Typically, there won’t be any interaction with blocking factors, but it there was for some reason, it should be
included in the total.
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mod_block <- lm(apprec ~ role + dyad, data = LRMM23_S3l)
anova_tab <- broom::tidy(anova(mod_block))
# Compute the generalized effect size - variance are estimated
# based on sum of squared termes in the ANOVA table
with(anova_tab, sumsq[1]/sum(sumsq))

[1] 0.08802785

# We can use the 'effectsize' package, specifying the blocking factor
# through argument 'generalized'
eff <- effectsize::eta_squared(model = mod_block, generalized = "dyad")
# Extract the generalized eta-squared effect size for 'role' for comparison
eff$Eta2_generalized[1]

[1] 0.08802785

\ Pitfall

Measures of effect size are estimated based on data, but unlike summary statistics such
as the mean and variance, tend to be very noisy in small samples and the uncertainty
remains significant for larger samples. To show this, I simulated datasets for a two
sample t-test: there is no effect for the control group, but the true effect for the
treatment group is d = 0.2. With balanced data (n/2 observations in each group) power
is maximised. Figure 10.2 shows the estimated sample size for B = 100 replications
of the experiment at samples of size n = 10, 12, . . . , 250. The horizontal lines at 0
represent no effect: the proportion of values which show effects that are of opposite
sign to the truth is still significant at n = 250 observations, and the variability seems to
decrease very slowly. For smaller samples, the effect sizes are erratic and, although
they are centered at the true value, most of them are severely inflated.

10.2 Power

There are typically two uses to hypothesis test: either we want to show it is not unreasonable
to assume the null hypothesis (for example, assuming equal variance), or else we want to
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Figure 10.2: Dispersion of estimated effect size for Cohen’s d, for data with a true mean
dispersion of d = 0.2, varying the sample size. The full and dashed lines give
95% and 50% confidence intervals for the sampling distribution, respectively.

show beyond reasonable doubt that a difference or effect is significative: for example, one
could wish to demonstrate that a new website design (alternative hypothesis) leads to a
significant increase in sales relative to the status quo (null hypothesis).

Our ability make discoveries depends on the power of the test: the larger the power, the
greater our ability to reject the null hypothesis H0 when the latter is false.

The power of a test is the probability of correctly rejecting the null hypothesis H0 when H0
is false, i.e.,

Pra(rejectH0)

Whereas the null alternative corresponds to a single value (equality in mean), there are
infinitely many alternatives. . . Depending on the alternative models, it is more or less easy
to detect that the null hypothesis is false and reject in favour of an alternative. Power is
thus a measure of our ability to detect real effects. Different test statistics can give broadly
similar conclusions despite being based on different benchmark. Generally, however, there
will be a tradeoff between the number of assumptions we make about our data or model
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(the fewer, the better) and the ability to draw conclusions when there is truly something
going on when the null hypothesis is false.
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Figure 10.3: Comparison between null distribution (full curve) and a specific alternative for
a t-test (dashed line). The power corresponds to the area under the curve of the
density of the alternative distribution which is in the rejection area (in white).

We want to choose an experimental design and a test statistic that leads to high power,
so that this power is as close as possible to one. Under various assumptions about the
distribution of the original data, we can derive optimal tests that are most powerful, but
some of the power comes from imposing more structure and these assumptions need not
be satisfied in practice.

Minimally, the power of the test should be α because we reject the null hypothesis α fraction
of the time even when H0 is true. Power depends on many criteria, notably

• the effect size: the bigger the difference between the postulated value for θ0 under H0
and the observed behaviour, the easier it is to detect departures from θ0. (Figure 10.5);
it’s easier to spot an elephant in a room than a mouse.

• variability: the less noisy your data, the easier it is to assess that the observed differ-
ences are genuine, as Figure 10.4 shows;

• the sample size: the more observation, the higher our ability to detect significative
differences because the amount of evidence increases as we gather more observa-
tions.5 In experimental designs, the power also depends on how many observations

5Specifically, the standard error decreases with sample size n at a rate (typically) of n−1/2. The null distribution
also becomes more concentrated as the sample size increase.
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Figure 10.4: Increase in power due to an increase in the mean difference between the null
and alternative hypothesis. Power is the area in the rejection region (in white)
under the alternative distribution (dashed): the latter is more shifted to the
right relative to the null distribution (full line).

are allocated to each group.6

• the choice of test statistic: there is a plethora of possible statistics to choose from
as a summary of the evidence against the null hypothesis. Choosing and designing
statistics is usually best left out to statisticians, as there may be tradeoffs. For example,
rank-based statistics discard information about the observed values of the response,
focusing instead on their relative ranking. The resulting tests are typically less power-
ful, but they are also less sensible to model assumptions, model misspecification and
outliers.

Changing the value of α also has an impact on the power, since larger values of α move
the cutoff towards the bulk of the distribution. However, it entails a higher percentage
of rejection also when the alternative is false. Since the value of α is fixed beforehand to
control the type I error (avoid judicial mistakes), it’s not a parameter we consider.

There is an intricate relation between effect size, power and sample size. Journals and
grant agencies oftentimes require an estimate of the latter before funding a study, so one
needs to ensure that the sample size is large enough to pick-up effects of scientific interest
(good signal-to-noise), but also not overly large as to minimize time and money and make

6While the default is to assign an equal number to each subgroup, power may be maximized by specifying
different sample size in each group if the variability of the measurement differ in these groups.
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Figure 10.5: Increase of power due to an increase in the sample size or a decrease of standard
deviation of the population: the null distribution (full line) is more concen-
trated. Power is given by the area (white) under the curve of the alternative
distribution (dashed). In general, the null distribution changes with the sample
size.

an efficient allocation of resources. This is Goldilock’s principle, but having more never
hurts.

If we run a pilot study to estimate the background level of noise and the estimated effect, or
if we wish to perform a replication study, we will come up with a similar question in both
cases: how many participants are needed to reliably detect such a difference? Setting a
minimum value for the power (at least 80%, but typically 90% or 95% when feasible) ensures
that the study is more reliable and ensures a high chance of success of finding an effect
of at least the size specified. A power of 80% ensures that, on average, 4 in 5 experiments
in which we study a phenomenon with the specified non-null effect size should lead to
rejecting the null hypothesis.

In order to better understand the interplay between power, effect size and sample size, we
consider a theoretical example. The purpose of displaying the formula is to (hopefully)
more transparently confirm some of our intuitions about what leads to higher power. There
are many things that can influence the power:

• the experimental design: a blocking design or repeated measures tend to filter out
some of the unwanted variability in the population, thus increasing power relative to
a completely randomized design

175



10 Effect sizes and power

• the background variability σ: the noise level is oftentimes intrinsic to the measure-
ment. It depends on the phenomenon under study, but instrumentation and the
choice of scale, etc. can have an impact. Running experiments in a controlled en-
vironment helps reduce this, but researchers typically have limited control on the
variability inherent to each observation.

• the sample size: as more data are gathered, information accumulates. The precision
of measurements (e.g., differences in mean) is normally determined by the group with
the smallest sample size, so (approximate) balancing increases power if the variance
in each group is the same.

• the size of the effect: the bigger the effect, the easier it is to accurately detect (it’s easier
to spot an elephant than a mouse hiding in a classroom).

• the level of the test, α: if we increase the rejection region, we technically increase
power when we run an experiment under an alternative regime. However, the level is
oftentimes prespecified to avoid type I errors. We may consider multiplicity correction
within the power function, such as Bonferonni’s method, which is equivalent to
reducing α.

10.2.1 Power for one-way ANOVA

To fix ideas, we consider the one-way analysis of variance model. In the usual setup, we
consider K experimental conditions with nk observations in group k, whose population
average we denote by µk. We can parametrize the model in terms of the overall sample
average,

µ = 1
n

K∑
j=1

nj∑
i=1

µj = 1
n

K∑
j=1

njµj ,

where n = n1 + · · ·+ nK is the total sample size. The F -statistic of the one-way ANOVA is

F = between sum of squares/(K − 1)
within sum of squares/(n−K)

The null distribution is F (K−1, n−K). Our interest is in understanding how the F -statistic
behaves under an alternative.

During the construction, we stressed out that the denominator is an estimator of σ2 under
both the null and alternative. What happens to the numerator? We can write the population
average for the between sum of square as

E(between sum of squares) = σ2{(K − 1) + ∆}.
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where

∆ =
∑K

j=1 nj(µj − µ)2

σ2 = nf2.

and where f2 is the square of Cohen’s f . Under the null hypothesis, all group means are
equal and µj = µ for j = 1, . . . , K and ∆ = 0, but if some groups have different average
the displacement will be non-zero. The greater ∆, the further the mode (peak of the
distribution) is from unity and the greater the power.

Closer examination reveals that ∆ increases with nj (sample size) and with the true squared
mean difference (µj − µ)2 increases effect size represented by the difference in mean, but
decreases as the observation variance increases.

Under the alternative, the distribution of the F statistic is a noncentral Fisher distribution,
denoted F(ν1, ν2, ∆) with degrees of freedom ν1 and ν2 and noncentrality parameter ∆.7 To
calculate the power of a test, we need to single out a specific alternative hypothesis.

0.0

0.2

0.4

0.6

0.8

0 2 4 6
F statistic

de
ns

ity

region fail to reject reject

Figure 10.6: Density curves for the null distribution (full line) and true distribution (dashed
line) under noncentrality parameter ∆ = 3. The area in white under the curve
denotes the power under this alternative.

The plot in Figure 10.6 shows the null (full line) distribution and the true distribution
(dashed line) for a particular alternative. The noncentral F is shifted to the right and right
skewed, so the mode (peak) is further away from 1.

Given a value of ∆ = nf2 and information about the effect of interest (degrees of freedom
of the effect and the residuals), we can compute the tail probability as follows

7Note that the F (ν1, ν2) distribution is indistinguishable from χ2(ν1) for ν2 large. A similar result holds for
tests with χ2 null distributions.
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1. Compute the cutoff point: the value under H0 that leads to rejection at level α
2. Compute probability below the alternative curve, from the cutoff onwards.

cutoff <- qf(p = 1-alpha, df1 = df1, df2 = df2)
pf(q = cutoff, df1 = df1, df2 = df2,

ncp = Delta, lower.tail = FALSE)

10.2.2 Power calculations

In practice, a software will return these quantities and inform us about the power. Note that
these results are trustworthy provided the model assumptions are met, otherwise they may
be misleading.

The most difficult question when trying to estimate sample size for a study is determining
which value to use for the effect size. One could opt for a value reported elsewhere for
a similar scale to estimate the variability and provide educated guesses for the mean
differences. Another option is to run a pilot study and use the resulting estimates to inform
about sensible values, perhaps using confidence intervals to see the range of plausible
effect sizes. Keep in mind the findings from Figure 10.2.

Reliance on estimated effect sizes reported in the literature is debatable: many such effects
are inflated as a result of the file-drawer problem and, as such, can lead to unreasonably
high expectations about power.

The WebPower package in R offers a comprehensive solution for conducting power studies,
as does the free software G*Power. We present a range of examples from a replication study:
the following quotes are taken from the Reproducibility Project: Psychology.

Example 10.4 (Power calculation for between subject ANOVA). The following extract of Jesse
Chandler’s replication concerns Study 4b by Janiszewski and Uy (2008), which considers a
2× 2 between-subject ANOVA.

In Study 4a there are two effects of theoretical interest, a substantial main effect
of anchor precision that replicates the first three studies and a small interaction
(between precision and motivation within which people can adjust) that is not
central to the paper. The main effect of anchor precision (effect size η2

p = 0.55)
would require a sample size of 10 for 80% power, 12 for 90% power, and 14 for
95% power. The interaction (effect size η2

p = 0.11) would require a sample size
of 65 for 80% power, 87 for 90% power, and 107 for 95% power. There was also a
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theoretically uninteresting main effect of motivation (people adjust more when
told to adjust more).

In order to replicate, we must first convert estimates of η2
p to Cohen’s f , which is the input

accepted by both WebPower and G*Power. We compute the sample size for power 95% for
both the main effect and the interaction: in practice, we would pick the smaller of the two
(or equivalently the larger resulting sample size estimate) should we wish to replicate both
findings.

f <- effectsize::eta2_to_f(0.55) # convert eta-squared to Cohen's f
ng <- 4 # number of groups for the ANOVA
ceiling(WebPower::wp.kanova(ndf = 1, ng = ng, f = f, power = 0.95)$n)

[1] 14

f <- effectsize::eta2_to_f(0.11)
ceiling(WebPower::wp.kanova(ndf = 1, ng = ng, f = f, power = 0.95)$n)

[1] 108

We can see that the numbers match the calculations from the replication (up to rounding).

Example 10.5 (Power calculation for mixed design). Repeated measures ANOVA have
different characteristics from between-subject design in that measurements are correlated,
and we can also provide correction for sphericity. These additional parameters need to
specified by users. In WebPower, the wp.rmanova function. We need to specify the number of
measurements per person, the number of groups, the value ϵ for the sphericity correction,
e.g., the output of Greenhouse–Geisser or Huynh–Feldt and the type of effect for between-
subject factor, within-subject factor or an interaction between the two.

The result that is object of this replication is the interaction between item
strength (massed vs. spaced presentation) and condition (directed forgetting
vs. control). The dependent variable is the proportion of correctly remem-
bered items from the stimulus set (List 1). “(..) The interaction was significant,
F (1, 94) = 4.97, p < .05, MSE = 0.029, η2 = 0.05, (. . . )”. (p. 412). Power analysis
(G*Power (Version 3.1): ANOVA: Repeated measures, within-between interaction
with a zero correlation between the repeated measures) indicated that sample
sizes for 80%, 90% and 95% power were respectively 78, 102 and 126.
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10 Effect sizes and power

We are thus considering a 2×2 within-between design. The estimated effect size is η̂2
p = 0.05,

with Cohen’s f , where the value is multiplied by a constant C; see the WebPower page which
depends on the number of groups, the number of repeated measurements K and their
correlation ρ. For the interaction, the correction factor is C =

√
K/(1− ρ): taking K = 2

and ρ = 0, we get a Cohen’s f of 0.23. We calculate the sample size for a power of 90%
changing ρ: if we change the correlation in the calculation from zero to 0.5, we can see that
there is a significant decrease in the sample size.

f <- effectsize::eta2_to_f(0.05) # convert eta-squared to Cohen's f
rho <- 0 # correlation between measurements
K <- 2L # number of repeated measurements
round(WebPower::wp.rmanova(type = 2, # interaction

nm = K, # number of measurement per subject
ng = 2, # number of groups for between,
f = f*sqrt(K/(1-rho)), # scaled effect size
power = 0.9)$n) # requested power

[1] 102

Figure 10.7: Screenshot of G*Power for the calculation of the sample size to replicate the
interaction in a repeated measures (within-between) analysis of variance.
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Figure 10.8: Sample size requirement for a within-between interaction in a two by two
(within-between) ANOVA with an effect size of η̂2

p = 0.05 as a function of
correlation and power. The staircase pattern is an artefact of rounding up to
the nearest integer.

We can see that the more correlated the response, the smaller sample size requirement
according to Figure 10.8. Higher power requirement leads to larger data collection efforts.

Example 10.6 (Power calculation for a two sample t-test). We consider a two-sample
comparison, as these arise frequently from contrasts. The replication wishes to replicate
a study whose estimated effect size was a Cohen’s d of d̂ = 0.451. Using a two-tailed test
with a balanced sample and α = 0.05 type I error rate, we obtain 258 participants. Note that
some software, as below, report the sample size by group so the total sample size is twice
the number reported.

2*ceiling(WebPower::wp.t(
type = "two.sample",
alternative = "two.sided",
d = 0.451, # Cohen's f
power = 0.95)$n) # power requirement
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[1] 258

The function also allows us to figure out the effect size one could obtain for given power
and fixed sample size, by replacing d with the latter via arguments n1 and n2.

10.2.3 Power in complex designs

In cases where an analytic derivations isn’t possible, we can resort to simulations to approx-
imate the power. For a given alternative, we

• simulate repeatedly samples from the model from the hypothetical alternative world
• we compute the test statistic for each of these new samples
• we transform these to the associated p-values based on the postulated null hypothesis.

At the end, we calculate the proportion of tests that lead to a rejection of the null hypothesis
at level α, namely the percentage of p-values smaller than α. We can vary the sample size
and see how many observations we need per group to achieve the desired level of power.

10.3 Additional R examples

Effect size typically serve three purpose:

1. inform readers of the magnitude of the effect,
2. provide a standardized quantity that can be combined with others in a meta-analysis,

or
3. serve as proxy in a power study to estimate the minimum number of observations

needed.

If you report the exact value of the test statistic, the null distribution and (in short) all
elements of an analysis of variance table in a complex design, it is possible by using suitable
formulae to recover effect sizes, as they are functions of the test statistic summaries, degrees
of freedom and correlation between observations (in the case of repeated measures).

The effectsize package includes a variety of estimators for standardized difference or
ratio of variance. For example, for the latter, we can retrieve Cohen’s f via cohens_f, ϵ̂2

via epsilon_squared or ω̂2 via omega_squared. By default, in a design with more than one
factor, the partial effects are returned (argument partial = TRUE) — if there is a single
factor, these coincide with the total effects and the distinction is immaterial.
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The effectsize package reports confidence intervals8 calculated using the pivot method
described in Steiger (2004). Check the documentation at ?effectsize::effectsize_CIs
for more technical details.9

In general, confidence intervals for effect sizes are very wide, including a large range of
potential values and sometimes zero. This reflects the large uncertainty surrounding their
estimation and should not be taken to mean that the estimated effect is null.

Example 10.7 (Effect size and power for a one-way ANOVA). We begin with the result of
another one-way ANOVA using data from Baumann, Seifert-Kessell, and Jones (1992). If we
consider the global F -test of equality in means, we can report as corresponding effect size
the percentage of variance that is explained by the experimental condition, group.

library(effectsize)
data(BSJ92, package = "hecedsm")
mod <- aov(posttest2 - pretest2 ~ group,

data = BSJ92)
print_md(omega_squared(anova(mod), partial = FALSE))

Table 10.1: Effect Size for ANOVA (Type I)

Parameter Omega2 95% CI

group 0.16 [0.03, 1.00]

One-sided CIs: upper bound fixed at [1.00].

The estimator employed is ω̂2 and could be obtained directly using the formula provided
in the slides. For a proportion of variance, the number is medium according to Cohen
(1988) definition. Using R̂2 ≡ η̂2 as estimator instead would give an estimated proportion
of variance of 0.188, a slightly higher number.

Having found a significant difference in mean between groups, one could be interested
in computing estimated marginal means and contrasts based on the latter. The emmeans
function has a method for computing effect size (Cohen’s d) for pairwise differences if

8Really, these are fiducial intervals based on confidence distributions.
9Note that, when the test statistic representing the proportion of variance explained is strictly positive, like a F

or χ2 statistic, the corresponding effect size is an estimated percentage of variance returned by, e.g., ω̂2. To
ensure consistency, the confidence intervals are one-sided, giving a lower bound (for the minimum effect
size compatible with the data), while the upper bound is set to the maximum value, e.g., 1 for a proportion.
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provided with the denominator standard deviation σ and the degrees of freedom associated
with the latter (i.e., how many observations were left from the total sample size after
subtracting the number of subgroup means).

The confidence intervals reported by emmeans for t-tests are symmetric and different in
nature from the one obtained previously.

Technical aside: while it is possible to create a t-statistic for a constrast by dividing the
contrast estimator by it’s standard error, the construction of Cohen’s d here for the contrast
consisting of, e.g., the pairwise difference between DRTA and TA would take the form

dDRTA−TA = µDRTA − µTA

σ
,

where the denominator stands for the standard deviation of the observations.10

Example 10.8 (Sample size for replication studies). Armed with effect sizes and a desired
level of power, it is possible to determine the minimum number of observations that would
yield such effect. D. J. Johnson, Cheung, and Donnellan (2014) performs a replication study
of Schnall, Benton, and Harvey (2008) who conjectured that physical cleanliness reduces
the severity of moral judgments. The following excerpt from the paper explain how sample
size for the replication were calculated.

In Experiment 2, the critical test of the cleanliness manipulation on ratings of
morality was significant, F (1, 41) = 7.81, p = 0.01, d = 0.87, N = 44. Assuming
α = 0.05, the achieved power in this experiment was 0.80. Our proposed research
will attempt to replicate this experiment with a level of power = 0.99. This
will require a minimum of 100 participants (assuming equal sized groups with
d = 0.87) so we will collect data from 115 participants to ensure a properly
powered sample in case of errors.

The first step is to try and compute the effect size, here Cohen’s d, from the reported F
statistic to make sure it matches the quoted value.

This indeed coincides with the value reported for Cohen’s d estimator. We can then plug-in
this value in the power function with the desired power level 0.99 to find out a minimal
number of 50 participants in each group, for a total of 100 if we do a pairwise comparison
using a two-sample t-test.

10It isn’t always obvious when marginalizing out a one-way ANOVA from a complex design or when we have
random effects or blocking factor what the estimated standard deviation should be, so it is left to the user to
specify the correct quantity.
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Two-sample t-test

n d alpha power
49.53039 0.87 0.05 0.99

NOTE: n is number in *each* group
URL: http://psychstat.org/ttest

The effectsize package includes many functions to convert F and t statistics to effect
sizes.11

Example 10.9 (Power calculation for a two-way ANOVA with unbalanced data). While
software can easily compute effect sizes, the user should not blindly rely on the output, but
rather think about various elements using the following guiding principles:

• we are interested in partial effects when there are multiple factors
• the denominator should consist of the variance of the effect of interest (say factor

A), the variance of blocking factors and random effects and that of all interactions
associated with them.

Consider next the unbalanced two-way ANOVA example in Study 1 of Maglio and Polman
(2014). We pass here directly the output of the model. We use the lm function with the
mean-to-zero parametrization, since we have unbalanced data.

By default, the variance terms for each factor and interaction are estimated using the anova
call. When the data aren’t balanced and you have multiple factors in the mean equation,
these are the sequential sum of square estimates (type I). This means that the resulting effect
size would depend on the order in which you specify the terms, an unappealing feature.
The model can alternatively take as argument the analysis of variance table produced
by the Anova function in package car, e.g., car::Anova(..., type = 3). Note that it is
of paramount importance to pass the correct arguments and to use the mean-to-zero
parametrization in order to get sensible results. The package warns users about this.

Type 3 ANOVAs only give sensible and informative results when covariates
are mean-centered and factors are coded with orthogonal contrasts (such
as those produced by `contr.sum`, `contr.poly`, or `contr.helmert`, but
*not* by the default `contr.treatment`).

11As the example of Baumann, Seifert-Kessell, and Jones (1992) showed, however, not all statistics can be
meaningfully converted to effect size.

185



10 Effect sizes and power

The estimated effect size for the main effect of direction is negative with ω̂2
⟨direction⟩: either

reporting a negative value or zero. This reflects that the estimated effect is very insignificant.

Equipped with the estimated effect size, we can now transform our partial ω̂2
⟨AB⟩ measure

into an estimated Cohen’s f via

f̃ =
(

ω̂2

1− ω̂2

)1/2

,

which is then fed into WebPower package functionality to compute the post-hoc power.
Since we are dealing with a two-way ANOVA with 8 subgroups, we set ng=8 and then ndf
corresponding to the degrees of freedom of the estimated interaction (here (na − 1)× (nb −
1) = 3, the number of coefficients needed to capture the interaction).

Given all but one of the following collection

1. the power,
2. the number of groups and degrees of freedom from the design,
3. the effect size and
4. the sample size,

it is possible to deduce the last one assuming a balanced sample. Below, we use the
information to compute the so-called post-hoc power. Such terminology is misleading
because there is no guarantee that we are under the alternative, and effect sizes are really
noisy proxy so the range of potential values for the missing ingredient is oftentimes quite
large. Because studies in the literature have inflated effect size, the power measures are
more often than not misleading.

Multiple way ANOVA analysis

n ndf ddf f ng alpha power
202 3 194 0.4764222 8 0.05 0.9999821

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova

Here, the interaction is unusually strong (a fifth of the variance is explained by it!) and we
have an extremely large post-hoc power estimate. This is rather unsurprising given the way
the experiment was set up.

We can use the same function to determine how many observations the study would need to
minimally achieve a certain power, below of 99% — the number reported must be rounded
up to the nearest integer. Depending on the design or function, this number may be the
overall sample size or the sample size per group.
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Type 3 ANOVAs only give sensible and informative results when covariates
are mean-centered and factors are coded with orthogonal contrasts (such
as those produced by `contr.sum`, `contr.poly`, or `contr.helmert`, but
*not* by the default `contr.treatment`).

Multiple way ANOVA analysis

n ndf ddf f ng alpha power
107.8 3 99.80004 0.4764222 8 0.05 0.99

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova

Multiple way ANOVA analysis

n ndf ddf f ng alpha power
97.61394 3 89.61394 0.5017988 8 0.05 0.99

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova

The total sample size using ω̂2 is 108, whereas using the biased estimator f̂ directly (itself
obtained from η̂2) gives 98: this difference of 10 individuals can have practical implications.

Example 10.10 (Sample size calculation for a replication with a mixed design). You can
download G*Power to perform these calculations. The following quote is taken from the
Reproducibility Project: Psychology

The result that is object of this replication is the interaction between item
strength (massed vs. spaced presentation) and condition (directed forgetting
vs. control). The dependent variable is the proportion of correctly remem-
bered items from the stimulus set (List 1). “(..) The interaction was significant,
F (1, 94) = 4.97, p < .05, MSE = 0.029, η2 = 0.05, (. . . )”. (p. 412). Power analysis
(G*Power (Version 3.1): ANOVA: Repeated measures, within-between interaction
with a zero correlation between the repeated measures) indicated that sample
sizes for 80%, 90% and 95% power were respectively 78, 102 and 126.

Not all software accept the same input, so we need to tweak the effect size to get the same
answers. The user must specify whether we are looking at a within-subjet, between-subject
contrast, or an interaction between the two, as is the case here. The latter in WebPower
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(for an interaction effect) should be σeffect/σresid × C, where C =
√

K/(1− ρ), and where
K is the number of groups and ρ the correlation of within-subject measurements. We
use the wp.rmanova function, specify the type (2 for interaction), the number of groups
K = 2, the number of repeated measurements 2. The description uses a correlation ρ = 0,
which is a worst-case scenario: in practice, more correlation leads to reduced sample size
requirements.

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
76.53314 0.3244428 2 2 1 0.05 0.8

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
101.7801 0.3244428 2 2 1 0.05 0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
125.4038 0.3244428 2 2 1 0.05 0.95

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

Consider next a similar calculation for a repeated measure design:

We aim at testing the two main effects of prediction 1 and prediction 3. Given
the 2 × 3 within factors design for both main effects, we calculated η2

p based
on F -Values and degrees of freedom. This procedure resulted in η2

p = 0.427
and η2

p = 0.389 for the effect of prediction 1 (F (1, 36) = 22.88) and prediction
3 (F (1, 36) = 26.88), respectively. Accordingly, G*Power (Version 3.1) indicates
that a power of 80%, 90%, and 95% is achieved with sample sizes of 3, 4, and
4 participants, respectively, for both effects (assuming a correlation of r = 0.5
between repeated measures in all power calculations).
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f <- effectsize::eta2_to_f(0.389) * sqrt(6/(1-0.5))

We get an error message because the sample size is smaller than the number of measure-
ments, but we can still compute the power for a given sample size.

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
3 2.764043 1 6 1 0.05 0.8231387
4 2.764043 1 6 1 0.05 0.9631782

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
3 2.990386 1 6 1 0.05 0.8835981
4 2.990386 1 6 1 0.05 0.9836138

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

The WebPower package also has a graphical interface online for effect size calculations.

, Summary

• Effect sizes are used to provide a standardized measure of the strength of a result,
independent of the design and the sample size.

• There are two classes: standardized differences and proportions of variance.
• Multiple estimators exists: report the latter along with the software used to

compute confidence intervals.
• The adequate measure of variability to use for the effect size depends on the

design: we normally include the variability of blocking factors and residual
variance.

• Given a design, we can deduce either the sample size, the power or the effect size
from the other two metrics. This allows us to compute sample size for a study or
replication.
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11 Replication crisis

In recent years, many team efforts have performed so-called replications of existing method-
ological papers to assess the robustness of their findings. Perhaps unsurprisingly, many
replications failed to yield anything like what authors used to claim, or found much weaker
findings. This chapter examines some of the causes of this lack of replicability.

, Learning objectives

• Defining replicability and reproducibility.
• Understanding the scale of the replication crisis.
• Recognizing common statistical fallacies.
• Listing strategies for enhancing reproducibility.

We adopt the terminology of Claerbout and Karrenbach (1992): a study is said to be re-
producible if an external person with the same data and enough indications about the
procedure (for example, the code and software versions, etc.) can obtain consistent results
that match those of a paper. A related scientific matter is replicability, which is the process
by which new data are collected to test the same hypothesis, potentially using different
methodology. Reproducibility is important because it enhances the credibility of one’s work.
Extensions that deal with different analyses leading to the same conclusion are described
in The Turing Way and presented in Figure 11.1.

Why is reproducibility and replicability important? In a thought provoking paper, Ioannidis
(2005) claimed that most research findings are wrong. The abstract of his paper stated

There is increasing concern that most current published research findings are
false. [. . . ] In this framework, a research finding is less likely to be true when the
studies conducted in a field are smaller; when effect sizes are smaller; when there
is a greater number and lesser preselection of tested relationships; where there
is greater flexibility in designs, definitions, outcomes, and analytical modes;
when there is greater financial and other interest and prejudice; and when more
teams are involved in a scientific field in chase of statistical significance.

Since its publication, collaborative efforts have tried to assess the scale of the problem by
reanalysing data and trying to replicate the findings of published research. For example,
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Figure 11.1: Definition of different dimensions of reproducible research (from The Turing
Way project, illustration by Scriberia).

the “Reproducibility [sic] Project: Psychology” (Nosek et al. 2015)

conducted replications of 100 experimental and correlational studies published
in three psychology journals using high powered designs and original materials
when available. Replication effects were half the magnitude of original effects,
representing a substantial decline. Ninety seven percent of original studies had
significant results. Thirty six percent of replications had significant results; 47%
of original effect sizes were in the 95% confidence interval of the replication
effect size; 39% of effects were subjectively rated to have replicated the original
result; and, if no bias in original results is assumed, combining original and
replication results left 68% with significant effects. [. . . ]

A large share of findings in the review were not replicable or the effects were much smaller
than claimed, as shown by Figure 2 from the study. Such findings show that the peer-
review procedure is not foolproof: the “publish-or-perish” mindset in academia is leading
many researchers to try and achieve statistical significance at all costs to meet the 5% level
criterion, whether involuntarily or not. This problem has many names: p-hacking, harking
or to paraphrase a story of Jorge Luis Borges, the garden of forking paths. There are many
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degrees of freedom in the analysis for researchers to refine their hypothesis after viewing
the data, conducting many unplanned comparisons and reporting selected results.

Figure 11.2: Figure 2 from Nosek et al. (2015), showing scatterplot of effect sizes for the
original and the replication study by power, with rugs and density plots by
significance at the 5% level.

Another problem is selective reporting. Because a large emphasis is placed on statistical
significance, many studies that find small effects are never published, resulting in a gap.
Figure 11.3 from Zwet and Cator (2021) shows z-scores obtained by transforming confidence
intervals reported in Barnett and Wren (2019). The authors used data mining techniques to
extract confidence intervals from abstracts of nearly one million publication in Medline
published between 1976 and 2019. If most experiments yielded no effect and were due to
natural variability, the z-scores should be normally distributed, but Figure 11.3 shows a
big gap in the bell curve between approximately−2 and 2, indicative of selective reporting.
The fact that results that do not lead to p < 0.05 are not published is called the file-drawer
problem.

The ongoing debate surrounding the reproducibility crisis has sparked dramatic changes in
the academic landscape: to enhance the quality of studies published, many journal now
require authors to provide their code and data, to pre-register their studies, etc. Teams lead
effort (e.g., the Experimental Economics Replication Project) try to replicate studies, with
mitigated success so far. This inside recollection by a graduate student shows the extent of
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11 Replication crisis

Figure 11.3: Figure from Zwet and Cator (2021) based on results of Barnett and Wren (2019);
histogram of z-scores from one million studies from Medline.

the problem.

This course will place a strong emphasis on identifying and avoiding statistical fallacies
and showcasing methods than enhance reproducibility. How can reproducible research
enhance your work? For one thing, this workflow facilitates the publication of negative
research, forces researchers to think ahead of time (and receive feedback). Reproducible
research and data availability also leads to additional citations and increased credibility as
a scientist.

Among good practices are

• pre-registration of experiments and use of a logbook.
• clear reporting of key aspects of the experiment (choice of metric, number of items in

a Likert scale, etc.)
• version control systems (e.g., Git) that track changes to files and records.
• archival of raw data in a proper format with accompanying documentation.

Keeping a logbook and documenting your progress helps your collaborators, reviewers
and your future-self understand decisions which may seem unclear and arbitrary in the
future, even if they were the result of a careful thought process at the time you made them.
Given the pervasiveness of the garden of forking paths, pre-registration helps you prevents
harking because it limits selective reporting and unplanned tests, but it is not a panacea.
Critics often object to pre-registration claiming that it binds people. This is a misleading
claim in my view: pre-registration doesn’t mean that you must stick with the plan exactly,
but merely requires you to explain what did not go as planned if anything.

Version control keeps records of changes to your file and can help you retrieve former
versions if you make mistakes at some point.
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11.1 Causes of the replication crisis

Figure 11.4: Tweet showing widespread problems related to unintentional changes to raw
data by software.

Archival of data helps to avoid unintentional and irreversible manipulations of the original
data, examples of which can have large scale consequences as illustrated in Figure 11.4,
who report flaws in genetic journals due to the automatic conversion of gene names to
dates in Excel. These problems are far from unique. While sensitive data cannot be shared
“as is” because of confidentiality issues, in many instances the data can and should be made
available with a licence and a DOI to allow people to reuse it, cite and credit your work.

To enforce reproducibility, many journals now have policy regarding data, material and
code availability. Some journals encourage such, while the trend in recent years has been to
enforce. For example, Nature require the following to be reported in all published papers:

11.1 Causes of the replication crisis

Below are multiple (non-exclusive) explanations for the lack of replication of study find-
ings.
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Figure 11.5: Screenshot of the Nature Reporting summary for statistics, reproduced under
the CC BY 4.0 license.

11.1.1 The garden of forking paths

The garden of forking paths, named after a novel of Borges, is a term coined by Andrew Gel-
man to refer to researchers’ degrees of freedom. With vague hypothesis and data collection
rules, it is easy for the researcher to adapt and interpret the conclusions in a way that fits
his or her chosen narratives. In the words of Gelman and Loken (2014)

Given a particular data set, it can seem entirely appropriate to look at the data
and construct reasonable rules for data exclusion, coding, and analysis that can
lead to statistical significance. In such a case, researchers need to perform only
one test, but that test is conditional on the data.

This user case is not accomodated by classical testing theory. Research hypothesis are often
formulated in a vague way, such that different analysis methods, tests may be compatible.
Abel et al. (2022) recent preprint found that preregistration alone did not solve this problem,
but that publication bias in randomized control trial was alleviated by publication of pre-
analysis plans. This is directly related to the garden of forking path.

11.1.2 Selective reporting

Also known as the file-drawer problem, selective reporting occurs because publication of
results that fail to reach statistical significance (sic) are harder to publish. In much the
same way as multiple testing, if 20 researchers perform a study but only one of them writes
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a paper and the result is a fluke, then this indicates. There are widespread indications
publication bias, as evidence by the distribution of p-values reported in papers. A recent
preprint of a study found the prevalance to be higher in online experiments such as Amazon
MTurks.

P-hacking and the replication crisis has lead many leading statisticians to advocate much
more stringent cutoff criterion such as p < 0.001 instead of the usual p < 0.05 criterion as
level for the test. The level α = 5% is essentially arbitrary and dates back to Fisher (1926),
who wrote

If one in twenty does not seem high enough odds, we may, if we prefer it, draw
the line at one in fifty or one in a hundred. Personally, the writer prefers to set a
low standard of significance at the 5 per cent point, and ignore entirely all results
which fails to reach this level.

ñ Thinking outside the box

Methods that pool together results, such as meta-analysis, are sensitive to selective
reporting. Why does it matter?

11.1.3 Non-representative samples

Many researchers opt for convenience samples by using online panels such as Qualtrics,
Amazon MTurks, etc. The quality of those observations is at best dubious: ask yourself
whether you would answer such as survey for a small amount. Manipulation checks to
ensure participants are following, information is not completed by bots, a threshold for
the minimal time required to complete the study, etc. are necessary (but not sufficient)
conditions to ensure that the data are not rubbish.

A more important criticism is that the people who answer those surveys are not repre-
sentative of the population as a whole: sampling bias thus plays an important role in the
conclusions and, even if the summary statistics are not too different from the general
population, they may exhibit different opinions, levels of skills, etc. than most.

The same can be said of panels of students recruited in universities classes, who are more
young, educated and perhaps may infer through backward induction the purpose of the
study and answer accordingly.
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Figure 11.6: Sampling bias. Artwork by Jonathan Hey (Sketchplanations) shared under the
CC BY-NC 4.0 license.

11.2 Summary

Operating in an open-science environment should be seen as an opportunity to make
better science, offer more opportunities to increase your impact and increase the likelihood
that your work gets published regardless of whether the results turn out to be negative. It
is the right thing to do and it increases the quality of research produced, with collateral
benefits because it forces researchers to validate their methodology before, to double-check
their data and their analysis and to adopt good practice.

There are many platforms for preregistering studies and sharing preanalysis plans, scripts
and data, with different level of formality. One such is the Research Box.

� Your turn

Reflect on your workflow as applied researcher when designing and undertaking
experiments. Which practical aspects could you improve upon to improve the repro-
ducibility of your study?
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12 Introduction to mixed models

This chapter considers tools for models with repeated measures from a modern perspec-
tive, using random effects for modelling. This class of model, called hierarchical models,
multilevel models or mixed models in simple scenarios, give us more flexibility to account
for complex scenarios in which there may be different sources of variability.

For example, consider a large-scale replication study about teaching methods. We may
have multiple labs partaking in a research program and each has unique characteristics.
Because of these, we can expect that measurements collected within a lab will be correlated.
At the same time, we can have repeated mesures for participants in the study. One can
view this setup as a hierarchy, with within-subject factor within subject within lab. In such
settings, the old-school approach to analysis of variance becomes difficult, if not impossible;
it doesn’t easily account for the heterogeneity in the lab sample size and does not let us
estimate the variability within labs.

We begin our journey with the same setup as for repeated measures ANOVA by considering
one-way within-subject ANOVA model. We assign each participant (subject) in the study to
all of the experimental treatments, in random order. If we have one experimental factor A
with na levels, the model is

Yij
response

= µ
global mean

+ αj
mean difference

+ Si
random effect for subject

+ εij
error

.

In a random effect model, we assume that the subject effect Si is a random variable; we
take Si ∼ Normal(0, σ2

s) and the latter is assumed to be independent of the noise εij ∼
Normal(0, σ2

e). The model parameters that we need to estimate are the global mean µ, the
mean differences α1, . . . , αna , the subject-specific variability σ2

s and the residual variability
σ2

e , with the sum-to-zero constraint α1 + · · ·+ αna = 0.

Inclusion of random effects introduces positive correlation between measurements: specif-
ically, the correlation between two observations from the same subject will be ρ = σ2

s/(σ2
s +

σ2
e) and zero otherwise. This correlation structure is termed compound symmetry, since

the correlation between measurements, ρ, is the same regardless of the order of the ob-
servations. If there are multiple random effects, the dependence structure will be more
complicated.
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12 Introduction to mixed models

In the repeated measure models, we need to first reduce measurements to a single average
per within-subject factor, then fit the model by including the subject as a blocking factor.
We are therefore considering subjects as fixed effects by including them as blocking fac-
tors, and estimate the mean effect for each subject: the value of σ2

s is estimated from the
mean squared error of the subject term, but this empirical estimate can be negative. By
contrast, the mixed model machinery will directly estimate the variance term, which will be
constrained to be strictly positive.

12.1 Fixed vs random effects

Mixed models include, by definition, both random and fixed effects. Fixed effects are model
parameters corresponding to overall average or difference in means for the experimental
conditions. These are the terms for which we want to perform hypothesis tests and compute
contrasts. So far, we have only considered models with fixed effects.

Random effects, on the other hand, assumes that the treatments are random samples
from a population of interest. If we gathered another sample, we would be looking at a
new set of treatments. Random effects model the variability arising from the sampling of
that population and focuses on variance and correlation parameters. Addition of random
effects does not impact the population mean, but induces variability and correlation within
subject. There is no consensual definition, but Gelman (2005) lists a handful:

When a sample exhausts the population, the corresponding variable is fixed;
when the sample is a small (i.e., negligible) part of the population the corre-
sponding variable is random [Green and Tukey (1960)].

Effects are fixed if they are interesting in themselves or random if there is interest
in the underlying population (e.g., Searle, Casella and McCulloch [(1992), Section
1.4])

In terms of estimation, fixed effect terms are mean parameters, while all random effects will
be obtained from variance and correlation parameters. In the repeated measure approach
with fixed effects and blocking, we would estimate the average for each subject despite
the fact that this quantity is of no interest. Estimating a mean with only a handful of
measurements is a risky business and the estimated effects are sensitive to outliers.

Random effects would proceed to directly estimate the variability arising from different
subjects. We can still get predictions for the subject-specific effect, but this prediction will
be shrunk toward the global mean for that particular treatment category. As we gather more
data about the subjects, the predictions will become closer to the fixed effect estimates
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12.2 Blocking factors

when the number of observations per subject or group increases, but these prediction can
deviate from mean estimates in the case where there are few measurements per subject.

Oehlert (2000) identifies the following step to perform a mixed model

1. Identify sources of variation
2. Identify whether factors are crossed or nested
3. Determine whether factors should be fixed or random
4. Figure out which interactions can exist and whether they can be fitted.

Sources of variations are all factors (including identifiers) which could influence the re-
sponse.

We say to factors are nested (A within B) when one can only coexist within the levels of the
other: this has implications, for we cannot have interaction between the two. In between-
subject experiments, subjects are nested in between-subject factors and the experimental
factors are crossed, meaning we can assign an experimental unit or a subject to each
factor combination. Interactions can occur for the between-subject factors, although we
need participants in each subcategory to estimate them. In a between-subjects design,
subjects are nested within experimental condition, as a subject can only be assigned a single
treatment. In a within-subjects designs, experimental factors and subjects are crossed: it is
possible to observed all combination of subjects and experimental conditions.

12.2 Blocking factors

In many instances, some of the characteristics of observational units are not of interest: for
example, EEG measurements of participants in a lab may differ due to time of the day, to
the lab technician, etc. In the old days, it was customary to include these as fixed effect
factors in the analysis, but disregard tests. We term explanatory factors (fixed effects) that
are used only to control unwanted variability blocking factors: variables that impact the
measurement variability, but that are not of direct interest. By filtering their effect out and
looking at the residual variability that is unexplained by the blocking factors, block designs
reduce the error term, at the cost of including and estimating additional parameters (group
averages). Experimental units are typically assigned to blocking factor using stratified
sampling to ensure comparisons can be made.

We will analyse block designs in the same as we did for multi-way analysis of variance model,
with one notable exception. Typically, we will assume that there is no interaction between
experimental factor and blocking factors, but we can always check for this assumption.
Thus, we will be interested mostly in main effects of the experimental factors.
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12 Introduction to mixed models

Example 12.1 (The surprise of reaching out: paired data as blocking factors). We consider
paired data from Study 3 of Liu et al. (2023), who looked at the appreciation of people
reaching out to them in a unsolicited manner. The data includes the appreciation score of
both responder and initiator, along with sociodemographic variables (age and gender).

While a paired t-test is the natural (and arguably simplest way) to compare the difference
in appreciation scores, we reformat the data to long format (one response per line), with a
categorical variable role indicating the role of the participant and dyad, a dummy number
indicating which participants belong to which pair. We then fit an analysis of variance
model to the scores with both dyad and role. The F -tests for the main effects indicate that
the dyads (66 additional parameters, since there are 67 pairs) filter out significant part of
the variability. If we consider estimated marginal means and look at the p-value and the
pairwise difference between initiator and respondent, we find exactly the same statistic
value -4.6, with 66 degrees of freedom and p-value for the pairwise difference as the paired
t-test.

data(LRMM23_S3, package = "hecedsm")
# Paired t-test
ttest <- with(LRMM23_S3, t.test(apprec_init, apprec_resp, paired = TRUE))

# Cast data to long format - one response/participant per line
LRMM23_S3l <- LRMM23_S3 |>

dplyr::mutate(dyad = factor(dplyr::row_number())) |>
tidyr::pivot_longer(

cols = !dyad,
names_to = c(".value", "role"),
names_sep = "\\_")

# Format of the data
head(LRMM23_S3l)
# Treat dyad as a factor and fit two-way ANOVA model
mod <- lm(apprec ~ role + dyad, data = LRMM23_S3l)
# Global tests of main effects (balanced data)
aov <- anova(mod) # There seems to be significant variability filtered out by 'id'
# Compute pairwise difference for main effect of 'role'
emmeans::emmeans(mod, spec = "role") |>

emmeans::contrast("pairwise")
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12.3 Random effect model

Table 12.1: First six rows of the Study 3 of Liu et al. (2023) data in long format.

dyad role apprec age gender

1 resp 4 20 male
1 init 4 20 male
2 resp 5 20 female
2 init 5 24 female
3 resp 5 21 female
3 init 4 21 female

Table 12.2: Analysis of variance table for appreciation as a function of role and dyad for
Study 3 of Liu et al. (2023).

term sum of squares df stat p-value

role 1 7.17 21.20 <0.001
dyad 66 51.97 2.33 <0.001
Residuals 66 22.33

Table 12.3: Pairwise difference contrast for role for Study 3 of Liu et al. (2023).

term contrast std. error df stat p-value

init - resp -0.46 0.1 66 -4.6 <0.001

12.3 Random effect model

Example 12.2 (Temporal distancing in peace prospects). We consider a three-way mixed
design from Study 5 of Halevy and Berson (2022). The research studied how temporal dis-
tance impacted the prospects of peace by presenting participants with a fictional scenario
in which two tribes in a fictional country, Velvetia, where either at war or peace and asking
what they think the outcome would be in the near and distance future. Participants rated
the likeliness using a Likert scale ranging from extremely unlikely (1) to extremely likely (7)
for the question

There is currently [war/peace] between the two tribes in Velvetia. Thinking
about [next year/in 20 years], how likely is it that there will be [war/peace] in
Velvetia?
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Each participant was assigned to a single combination of the current state curstate and
the predicted outcome predout and answered the question for both temporal horizon,
tempdist. A rapid examination shows that we have a complete design: there are participants
assigned to each subcategory of the between-subject factors.

data(HB22_S5, package = "hecedsm")
xtabs(~ curstate + predout, data = HB22_S5)

predout
curstate peace war

peace 148 164
war 118 124

1. The sources of variation are participants id, between-subject factors predout and
curstate and within-subjects factor tempdist.

2. Between subject factors predout and curstate are crossed, whereas tempdist is
nested within id.

3. id is random, whereas predout, curstate and tempdist are fixed effects
4. We can have interactions between the three experimental factors predout, curstate

and tempdist since the database contains instances of both of the former together,
and since each person gets two tempdist levels. However, no interaction are possible
between id and tempdist (due to lack of replication), or between between-subject
factors and identifiers.

With data in long format, meaning each line contains a single response and characteristics
are repeated per row, the software will automatically capture the random effect. We can
fit the equivalent of the repeated measure mixed ANOVA using a linear mixed model in R,
by simply specifying a random intercept for the participant id. The full model with the
three-way interaction includes eight components for the mean and two variant component
(residual variance, and subject-specific variance).

# In R, two packages offer linear mixed model fit via (RE)ML
# lme4 is more modern (and reliable?), but does not allow for unequal variance
lme4::lmer(likelihood ~ curstate*predout*tempdist + (1 | id),

data = HB22_S5)

Linear mixed model fit by REML ['lmerMod']
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12.3 Random effect model

Formula: likelihood ~ curstate * predout * tempdist + (1 | id)
Data: HB22_S5

REML criterion at convergence: 1933.813
Random effects:
Groups Name Std.Dev.
id (Intercept) 0.8524
Residual 1.1436

Number of obs: 554, groups: id, 277
Fixed Effects:

(Intercept) curstatewar
5.581 -2.886

predoutwar tempdist20yr
-2.337 -1.068

curstatewar:predoutwar curstatewar:tempdist20yr
5.142 3.508

predoutwar:tempdist20yr curstatewar:predoutwar:tempdist20yr
2.775 -6.554

# Note that in `lme4` package, the random effects are specified inside parenthesis
# nlme offers the possibility to acount for unequal variance per group
# Random effects are specified in `random` with formula notation, and a | to indicate
nlme::lme(likelihood ~ curstate*predout*tempdist,

random = ~ 1 | id, # random intercept per individual
data = HB22_S5)

Linear mixed-effects model fit by REML
Data: HB22_S5
Log-restricted-likelihood: -966.9064
Fixed: likelihood ~ curstate * predout * tempdist

(Intercept) curstatewar
5.581081 -2.886166

predoutwar tempdist20yr
-2.337179 -1.067568

curstatewar:predoutwar curstatewar:tempdist20yr
5.142263 3.508246

predoutwar:tempdist20yr curstatewar:predoutwar:tempdist20yr
2.774885 -6.554272
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Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 0.8523522 1.143597

Number of Observations: 554
Number of Groups: 277

Example 12.3 (Happy fakes, remixed). We consider again the experiment of Amirab-
dolahian and Ali-Adeeb (2021) on smiling fakes and the emotion, this time from a pure
mixed model perspective. This means we can simply keep all observations and model them
accordingly. To fit the model, identifiers of subjects must be declared as factors (categorical
variables). If we have repeated measurements of the within-subject factor, we may consider
adding a random effect for the interaction between the subject and the within-subject
factor.
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Figure 12.1: Jittered scatterplot of individual measurements per participant and stimulus
type.

Figure 12.1 shows the raw measurements, including what are notable outliers that may be
due to data acquisition problems or instrumental manipulations. Since the experiment was
performed in a non-controlled setting (pandemic) with different apparatus and everyone
acting as their own technician, it is unsurprising that the signal-to-noise ratio is quite small.
We will exclude here (rather arbitrarily) measurements below a latency of minus 40.

206



12.3 Random effect model

options(contrasts = c("contr.sum", "contr.poly"))
mixedmod <- lmerTest::lmer(

latency ~ stimulus +
(1 | id) + # random effect for subject
(1 | id:stimulus), # interaction id and stimuluss

# random effect for interaction
data = hecedsm::AA21 |> #remove outliers

dplyr::filter(latency > -40))
# Output parameter estimates
print(mixedmod)

Linear mixed model fit by REML ['lmerModLmerTest']
Formula: latency ~ stimulus + (1 | id) + (1 | id:stimulus)

Data: dplyr::filter(hecedsm::AA21, latency > -40)
REML criterion at convergence: 8007.913
Random effects:
Groups Name Std.Dev.
id:stimulus (Intercept) 0.7371
id (Intercept) 2.2679
Residual 6.2235

Number of obs: 1227, groups: id:stimulus, 36; id, 12
Fixed Effects:
(Intercept) stimulus1 stimulus2

-10.5374 -0.2529 -0.1394

The model includes a fixed effect for stimulus, and variance terms for stimulus (nested
within id) and subject identifier id. We see that there is quite a bit of heterogeneity between
participants and per stimulus participant pair, albeit less so for the interaction. All estimated
variance terms are rather large. We can also look globally at the statistical evidence for the
difference between the various stimuli.

# Global effect of different faces
# ANOVA here is type III effects
# computed from the 'lmerTest' package
anova(mixedmod)
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Table 12.4: Type III analysis of variance table with Satterthwaite’s method for the linear
mixed model with random effects for individuals and the interaction with stim-
ulus.

term sum of squares df 1 df 2 stat p-value

stimulus 65.62 2 23.34 0.85 0.44

The global F test of significance for stimulus is based on an approximation that accounts
for the correlation between observations; the denominator degrees of freedom for the
approximate F statistic are based on Satterthwaite’s method. There is again no evidence of
differences between experimental conditions. This is rather unsurprising if we look at the
raw data in Figure 12.1.

Example 12.4 (Verbalization and memorization). We consider a replication study of Elliott
et al. (2021), which studied verbalization and verbalization of kids aged 5, 6, 7 and 10. The
replication was performed in 17 different school labs, adapting a protocol of Flavell, Beach,
and Chinsky (1966), with an overall sample of 977 child partaking in the experiment.

Each participant was assigned to three tasks (timing): delayed recall with 15 seconds
wait, or immediate, and finally a naming task (point-and-name). The taskorder variable
records the order in which these were presented: the order of delayed and immediate
was counterbalanced across individuals, with the naming task always occurring last. The
response variable is the number of words correctly recalled out of five. The experimenters
also recorded the frequency at which students spontaneously verbalized during the task
(except the point-and-name task, where they were specifically instructed to do so). The
latter would normally be treated as a binary or count response variable, but we treat it as an
explanatory hereafter.

The timing is a within-subject factor, whereas task order and age are between-subject
factors: we are particularly interested in the speech frequency and the improvement over
time (pairwise differences and trend).

To fit the linear mixed model with a random effect for both children id and lab: since
children are nested in lab, we must specify the random effects via (1 | id:lab) + (1 |
lab) if id are not unique; otherwise, the first term is equivalent to (1|id).

We modify the data to keep only 5 and 6 years old students, since most older kids verbalized
during the task and we would have large disbalance (14 ten years old out of 235, and 19 out
of 269 seven years old). We also exclude the point-and-name task, since verbalization was
part of the instruction. This leaves us with 1419 observations and we can check that there
are indeed enough children in each condition to get estimates.
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12.3 Random effect model

data(MULTI21_D2, package = "hecedsm")
MULTI21_D2_sub <- MULTI21_D2 |>

dplyr::filter(
age %in% c("5yo", "6yo"),
timing != "point-and-name") |>

dplyr::mutate(
verbalization = factor(frequency != "never",

labels = c("no", "yes")),
age = factor(age)) # drop unused age levels

xtabs(~ age + verbalization, data = MULTI21_D2_sub)

verbalization
age no yes

5yo 106 334
6yo 56 450

Given that we have multiple students of every age group, we can include two-way and
three-way interactions in the 23 design. We also include random effects for the student and
the lab.

hmod <- lmerTest::lmer(
mcorrect ~ age*timing*verbalization + (1 | id:lab) + (1 | lab),
data = MULTI21_D2_sub)

# Parameter estimates
#summary(hmod)

We focus here on selected part of the output from summary() giving the estimated variance
terms.

#> Random effects:
#> Groups Name Variance Std.Dev.
#> id:lab (Intercept) 0.3587 0.599
#> lab (Intercept) 0.0625 0.250
#> Residual 0.6823 0.826
#> Number of obs: 946, groups: id:lab, 473; lab, 17
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In this setting, the correlation between observations from the same individuals i in lab j for
measurement k and from different individuals in the same labs are, respectively

cor(Yijk, Yijk′) =
σ2

id + σ2
lab

σ2
id + σ2

lab + σ2
res

,

cor(Yijk, Yi′jk′) =
σ2

lab

σ2
id + σ2

lab + σ2
res

.

We can interpret the results as follows: the total variance is the sum of the id, lab and
residual variances components give us an all but negligible effect of lab with 7 percent
of the total variance, versus 40.5 percent for the children-specific variability. Since there
are only 17 labs, and most of the individual specific variability is at the children level, the
random effect for lab doesn’t add much to the correlation.

anova(hmod, ddf = "Kenward-Roger")
# Check estimated marginal means for age
emm <- emmeans::emmeans(hmod, specs = "age")
# Pairwise differences
pairdiff <- emm |>

emmeans::contrast(method = "pairwise")

Table 12.5: Type III analysis of variance table with Kenward-Roger’s method for Elliott et al.
(2021).

term sum of squares df 1 df 2 stat p-value

age 20.50 1 459.37 30.05 <0.001
timing 3.25 1 469.00 4.76 0.03
verbalization 13.61 1 459.45 19.94 <0.001
age:timing 0.24 1 469.00 0.36 0.55
age:verbalization 0.08 1 462.08 0.12 0.72
timing:verbalization 2.64 1 469.00 3.88 0.05
age:timing:verbalization 0.27 1 469.00 0.40 0.53

Table 12.6: Estimated marginal means for age for Elliott et al. (2021).

age emmeans std. error df stat p-value

5yo 1.85 0.09 35.83 20.29 <0.001
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Table 12.6: Estimated marginal means for age for Elliott et al. (2021).

age emmeans std. error df stat p-value

6yo 2.44 0.11 60.94 23.21 <0.001

Table 12.7: Pairwise difference for age 5 and 6 for the study of Elliott et al. (2021)

term contrast std. error df stat p-value

5yo - 6yo -0.59 0.11 459.37 -5.48 <0.001

The type III ANOVA table shows that there is no evidence of interaction between task order,
age and verbalization (no three-interaction) and a very small difference for timing and
verbalization. Thus, we could compute the estimated marginal means (95% confidence
interval) for age with an estimated correct number of words of 1.85 (1.67, 2.04) words out of
5 for the 5 years olds and 2.44 (2.23, 2.66) words for six years old. Note that, despite the very
large number children in the experiment, the degrees of freedom from the Kenward–Roger
method are much fewer, respectively 35.83 and 60.94 for five and six years old.

The t-test for the pairwise difference of the marginal effect is 0.59 words with standard error
0.11. Judging from the output, the degrees of freedom calculation for the pairwise t-test
are erroneous — they seem to be some average between the number of entries for the five
years old (440) and six years old (506), but this fails to account for the fact that each kid is
featured twice. Given the large magnitude of the ratio, this still amounts to strong result
provided the standard error is correct.

We can easily see the limited interaction and strong main effects from the interaction
plot in Figure 12.2. The confidence intervals are of different width because of the sample
imbalance.

While we have added random effects (so our parameter of interest are the variance terms
σ2

id and σ2
lab, we can nevertheless use the model to get predictions of the lab or individual-

specific effects, which are conditional means. These are assumed to be normally distributed,
and we can draw a quantile-quantile plot to check this assumption. With lme4, we can get
the random effect predictions using the ranef function, as follows:

# Predictions of lab-specific
# Difference in means relative to average
library(lme4)
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Figure 12.2: Interaction plot for the recall task for younger children.

ranef(hmod)$lab
dotplot(lme4::ranef(hmod))[["lab"]] # catterpilar plot

Example 12.5. We consider data from a study at Tech3Lab (Labonté-LeMoyne et al. 2020)
on standing desks. The description from the abstract reads

Thirty-seven young and healthy adults performed eight cognitive tasks in a
2 × 2 × 2 within-subject design of the following independent variables: pos-
ture (sitting/standing), task difficulty (easy/hard), and input device (computer
mouse/tactile screen) in a counterbalanced order. The database LJLSFBM20 in
package hecedsm contains the measurements. There is a total of 296 measure-
ments, or 37× 8, meaning each participant is assigned to a single task.

tibble [296 x 14] (S3: tbl_df/tbl/data.frame)
$ id : Factor w/ 37 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 2 2 ...
$ order : int [1:296] 1 2 3 4 5 6 7 8 1 2 ...
$ position : Factor w/ 2 levels "standing","sitting": 2 2 2 2 1 1 1 1 1 1 ...
$ phys_demand : Factor w/ 2 levels "mouse","touchpad": 1 2 2 1 2 2 1 1 2 2 ...
$ task_diff : Factor w/ 2 levels "easy","difficult": 1 2 1 2 2 1 2 1 2 1 ...
$ ies : num [1:296] 2486 24034 4691 11727 10874 ...
$ central_alpha : num [1:296] 0.3 0.227 0.25 0.224 0.235 ...
$ parietal_alpha: num [1:296] 0.388 0.348 0.345 0.333 0.298 ...
$ central_beta : num [1:296] 0.1103 0.0866 0.0902 0.0863 0.0972 ...

Table 12.8: Predicted mean differences for the lab-specific normal random effects

lab prediction

Austria 0.266
Bristol 0.07
Cardiff 0.131
Costa Rica 0.022
Frankfurt −0.214
Italy 0.034
Louisiana −0.161
Missouri 0.244
Nebraska 0.091

lab prediction

New Zealand −0.133
Norway −0.137
Oregon 0.039
Switzerland −0.352
Turkey −0.397
Virginia 0.287
Wisconsin 0.025
Witten 0.187
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Figure 12.3: Catterpilar plot of predictions (conditional means and conditional variances)
for the lab-specific random effects.

$ parietal_beta : num [1:296] 0.169 0.159 0.141 0.147 0.141 ...
$ bmi : num [1:296] 22.8 22.8 22.8 22.8 22.8 ...
$ sex : Factor w/ 2 levels "man","woman": 1 1 1 1 1 1 1 1 1 1 ...
$ attention : num [1:296] 6.83 6.67 6.83 6.83 6.83 ...
$ satisfaction : num [1:296] 70 85 80 76 86 100 60 80 70 85 ...

The id variable is a dummy for the participant, with associated covariate sex and bmi. We
also have the three within-subject factors, position, phys_demand and task_diff and the
order in which the tasks were given (counterbalanced). There are in total seven response
variables: the inverse efficiency score global stimulus (ies), measures of brain activity
(central_alpha, parietal_alpha, central_beta, parietal_beta) and two scales obtained
from answers to a questionaire, attention and satisfaction.

The three manipulated factors are nested within subject and crossed, so we can estimate
the three-way and two-way interactions with the experimental factors. The only logical
random effect here is for subject, and we cannot have further sources of variability given
the lack of replication.
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The authors are not transparent as to what their model is and earn a failure grade for
reproducibility: we have no idea of the specification, as coefficients are not reported. There
is clearly eight coefficients corresponding to the average of the subgroups, plus a random
effect for subject and sex and body mass index as covariates. It appears from the output of
Table 1 that there was an interaction term added for BMI and position (as standing may be
more strenuous on overweight participants). Finally, we include the order of the tasks as a
covariate to account for potential fatigue effects.

Our linear mixed model would take the form, here with ies as response

mod <- lmer(ies ~ position*phys_demand*task_diff +
(1 | id) + sex + bmi*position + order,

data = LJLSFBM20)

Given the number of response variables and coefficients, it is clear one must account for
testing multiplicity. Figuring out the size of the family, m, is not trivial: testing interactions
and main effects leads to seven tests. We could also be interested in the interaction between
body mass index and position if it affects performance, bringing the number of tests to eight
and throw the covariate effect for order (up to 11 if we include all controls). Further contrasts
may inflate this number (for example, there are 28 pairwise comparisons if the three-way
interaction is significant). With seven responses and linear mixed models parametrized
in the same way, we have at least 56 tests and potentially up to 350! Controlling the type-I
error requires using Bonferroni–Holm type correction, since the different responses are not
part of the same models.

anova(mod)

Table 12.11: Type III analysis of variance table with Satterthwaite’s method for Labonté-
LeMoyne et al. (2020).

term sum of squares df 1 df 2 stat p-value

position 574982.8 1 250 0.04 0.850
phys_demand 1280635445.5 1 250 80.35 <0.001
task_diff 4927991208.4 1 250 309.18 <0.001
sex 79185574.3 1 34 4.97 0.033
bmi 10365621.5 1 34 0.65 0.426
order 105580124.8 1 250 6.62 0.011
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Table 12.11: Type III analysis of variance table with Satterthwaite’s method for Labonté-
LeMoyne et al. (2020).

term sum of squares df 1 df 2 stat p-value

position:phys_demand 9127600.8 1 250 0.57 0.450
position:task_diff 1825943.4 1 250 0.11 0.735
phys_demand:task_diff 327914741.2 1 250 20.57 <0.001
position:bmi 1224777.6 1 250 0.08 0.782
position:phys_demand:task_diff 2299195.8 1 250 0.14 0.704

If we focus on the sole results for ies, there is a significant two-way interaction (and main
effects) for phys_demand and task_diff, but not for position. Further investigation would
reveal better performance on the easy task and overall with a mouse.

emmeans::emmeans(mod, spec = c("phys_demand","task_diff"))

Table 12.12: Estimated marginal means for physical demand and task difficulty for the data
of Labonté-LeMoyne et al. (2020).

phys. demand task diff. emmeans std. error df stat p-value

mouse easy 2668.22 671.60 79.26 3.97 <0.001
touchpad easy 4723.12 671.55 79.24 7.03 <0.001
mouse difficult 8733.22 671.62 79.27 13.00 <0.001
touchpad difficult 14998.42 671.53 79.23 22.33 <0.001

One may wonder whether there are any effect of spillover, learning or fatigue due to the
repeated measures: tasks were much longer than is typical. The coefficient for order is
-268.14, so the decrease for the inverse efficiency score global stimulus for each additional
task, ceteris paribus, with a p-value of 0.011 suggesting participants improve over time.

Looking at the residuals of the model per participants is also quite insightful. It is clear
that measurements from participants 30 and 31 are abnormal, and these correspond to the
values we see.

We can check the other model assumptions: the quantile-quantile plot of random effects
suggests some large outliers, unsurprisingly due to the participants identified. The plot of
fitted values vs residuals suggests our model is wholly inadequate: there is a clear trend in
the residuals and strong evidence of heterogeneity.
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Figure 12.4: Scatterplots of residuals from the linear mixed model against participant iden-
tifier (left) and against order of task (right).

plot(ranef(mod))
plot(mod)

We could fit a more complex model to tackle the heterogeneity issue by including different
variance per individual, at the expense of lower power.
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Figure 12.5: Normal quantile-quantile plot of predicted random effects (left) and Tukey’s
plot of residual vs fitted values (right).
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13 Causal inference

Statisticians are famous for repeating ad nauseam that “correlation is not causation”. This
statement illustrated on the website Spurious correlations by Tyler Vigen, which shows
multiple graphs of absurd relations, many of which are simply artifact of population growth.
As second example, consider weather forecasts (of rain) and the number of people carrying
umbrellas in the streets. These phenomena are positively correlated, but if I intervene
and force everyone around to carry umbrellas, it will impact neither weather forecasts
nor the weather itself. While correlation (effectively what is being measured in a linear
regression model) contains information about presence of a relationship between two
variables, it does not allow one to determine cause from effect (i.e., the direction). This can
be determined through experiments, or via logical models.

Figure 13.1: xkcd comic 552 (Correlation) by Randall Munroe. Alt text: Correlation doesn’t
imply causation, but it does waggle its eyebrows suggestively and gesture
furtively while mouthing ‘look over there’. Cartoon reprinted under the CC
BY-NC 2.5 license.

The field of causal inference is concerned with inferring the effect of an action or manipula-
tion (intervention, policy, or treatment) applied to an observational unit and identifying and
quantifying the effect of one variable on other variables. Such action may be conceptual: we
can imagine for example looking at student’s success (as measured by their grades) by com-
paring two policies: giving them timely feedback and encouragement, versus no feedback.
In reality, only one of these two scenarios can be realized even if both can conceptually be
envisioned as potential outcomes.

219

https://tylervigen.com/spurious-correlations
https://xkcd.com/552/
https://creativecommons.org/licenses/by-nc/2.5/
https://creativecommons.org/licenses/by-nc/2.5/


13 Causal inference

The content of this chapter is divided as follows. First, we discuss the logical interrelation
between variables using directed acyclic graphs and focus on relations between triples
defining confounders, colliders and mediators. We then describe how we can retrieve
causal effects (in an abstract setting). Finally, we present the linear mediation model
popularized by Judd and Kenny (1981) and Baron and Kenny (1986). We focus on the
hidden assumptions that can undermine causal claims in linear mediation models.

13.1 Basics of causal inference

In the first chapter, we stated that randomized experiments were the gold standard of
science. This is mostly because, through careful control of conditions (keeping every-
thing else constant) and manipulating experimental factors, we can determine whether
the latter cause changes in the response. However, not everything can be studied using
experiments and we need more general rules and definitions to study causal inference
when randomization isn’t possible.

Denote by Yi(j) the potential outcome of individual i assigned to treatment Xj , i.e., the value
of the response in an hypothetical world where we assigned this observation to a particular
group. With a binary treatment X ∈ {0, 1}, we would be interested by the difference in
individual response, Y (1)− Y (0) or the individual response Y (1)/Y (0), depending on the
context, and this readily extends to more than two groups. In an experiment, we can
manipulate assignment to treatment X and randomize units to each value of the treatment
to avoid undue effects from other variables. The potential outcomes framework applies to
in between-subject designs because experimental units are assigned to a single treatment,
whereas in within-subject designs a single ordering is presented. The fundamental problem
of causal inference is that, while we would like to study the impact of every action on our
response for each individual, only one of these potential outcomes is observed: at least half
of the potential outcomes are unobserved.

Table 13.1: Potential outcomes Y (0), Y (1) with a binary treatment X for six individuals.
Question marks indicate missing data.

\(i\) \(X_i\) \(Y_i(0)\) \(Y_i(1)\) \(Y_i(1)-Y_i(0)\)

1 1 ? 4 ?
2 0 3 ? ?
3 1 ? 6 ?
4 0 1 ? ?
5 0 5 ? ?
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6 1 ? 7 ?

We are effectively comparing the distribution of the outcome variable (Y | X) for different
values of the experimental treatment set X (more generally, these are referred to as action
sets). We talk about causation when for treatment (X = j) and control (X = 0), the distribu-
tions of (Y | X = j) differs from that of (Y | X = 0), as illustrated in Figure 13.2. We must
thus resort to population-level estimates by considering averages and other summaries to
draw inferences.
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Figure 13.2: Distribution of response on a seven point Likert scale for treatment and control
groups in an hypothetical population.

Rather than look at the individual treatment effect difference, we can focus on averages
over the population. The most common measure of causation is the average treatment
effect, which is the difference between the population averages of treatment group X = j
and the control group X = 0,

ATEj = E(Y | X = j)
expected response among

treatment group j

− E(Y | X = 0)
expected response among

control group

which is a valid estimator of E{Y (j)− Y (0)} provided that X is randomly allocated.
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13 Causal inference

What assumptions are necessary to draw causal conclusion? In an experimental setting, we
need the following:

1. conditional ignorability, which states that potential outcomes are independent (de-
noted with the ⊥⊥ symbol) of assignment to treatment given a set of explanatories
Z. In notation {Y (0), . . . , Y (J)} ⊥⊥X | Z (if the latter is an empty set, we talk about
ignorability).

2. lack of interference: the outcome is unaffected by the treatment assignment of other
participants.

3. consistency: given a treatment X taking level j, the observed value for the response
Y | X = j is equal to the corresponding potential outcome Y (j).

The two last assumptions are sometimes pooled together under the umbrella term stable
unit-treatment value assumption (SUTVA), implying that ‘’no other version or treatment
assignment would lead to different potential outcome’ ’ (Imbens and Rubin 2015), which
also suggests the effect of treatment is constant.

\ Conditional ignorability for observational data

Causal inference is possible in observational settings, but some of the assumptions are
unverifiable and typically much stronger than for randomized experiments. Notably,
we need to identify a sufficient set of confounders Z, i.e., variables which cause both
X and the outcome Y but are not of interest, to incorporate in the model to recover
the effect due to X. We can then look effect averaging over the distribution of Z. This
method is valid as long as there is a positive probability of being assigned to each
group of X regardless of the value of the covariates Z, an assumption sometimes
known as positivity. The model must also be correctly specified, and there must be no
omitted confounders.

In summary, we can estimate the average treatment effect in experimental designs if we
randomize the effect X = j, if our subjects comply with their treatment assignment, and
more importantly if we use a random sample which is representative of the population.

Example 13.1. The Agir cohort offers a comprehensive experience for the first three
trimesters of the bachelor in administration program. These students take the same exams
as regular students, but their class average are higher in the mandatory statistics course.
However, since participation in the program is reserved for students who postulated to be
part of the cohort, and who must be team players who are autonomous and with a keen
liking for inverse pedagogical teaching methods, no conclusion can be drawn. Indeed, it
may be that the teaching method is well suited to them but not to general students, or their
better grades may be due to the fact that the Agir students are more motivated or stronger
in statistics to being with.
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13.1 Basics of causal inference

If we compared the outcome of regular bachelor cohort with Agir students, we may also have
violation of “no interference”: if students from different programs share course material or
study together, then this lack of compliance may induce differences in response relative to
their group assignment.

In many fields, the unconditional effect is not interesting enough to warrant publication
free of other explanatory variables. It may be that the effect of the treatment is not the
same for everyone and depends on some covariate Z : for example, a study on gender
discrimination may reveal different perceptions depending on gender Z, in which case the
average treatment effect might not be a sensible measure and we could look at conditional
effects. We may also be interested in seeing how different mechanisms and pathways are
impacted by treatment and how this affects the response. VanderWeele (2015) provides an
excellent non-technical overview of mediation and interaction.

13.1.1 Directed acyclic graph

Causal inference requires a logical conceptual model of the interrelation between the
variables. We will look at directed acyclic graphs to explain concepts of confounding,
collision and mediation and how they can influence our conclusions.

To illustrate the relationship between variables, we use diagrams consisting of directed
acyclic graph (DAG). A graph is a set of nodes and vertices: each node represents a variable
of interest and these are linked with directed edges indicating the nature of the relation (if
X causes Y , then X → Y ). The acyclic simply forbids loops: if X causes Y , then Y cannot
cause X (typically, violations are due to time dependence, which means that we must
consider a larger DAG where Y is indexed by time, for example when medical treatment
can cause changes in condition, which themselves trigger different treatments.

Directed acyclic graphs are used to represent the data generating process that causes
interdependencies between variables, while abstracting from the statistical description
of the model. This depiction of the conceptual model helps to formalize and identify the
assumptions of the model. To identify a causal effect of a variable X on some response
Y , we need to isolate the effect from that of other potential causes. Figure 13.3 shows an
example of DAG in a real study; the latter is a simplification or abstraction of a world view,
but is rather complicated.

At a theoretical level, the DAG will help identify which paths and relations to control
through conditioning arguments to strip the relation to that of interest. Judea Pearl (e.g.,
Pearl, Glymour, and Jewell 2016) identifies three potential relations between triples of (sets
of) variables:

• chains (X → Z → Y ),
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Figure 13.3: Directed acyclic graph of McQuire et al. (2020) reproduction by Andrew Heiss,
licensed under CC BY-NC 4.0.

• forks (Z ← X → Y ) and
• reverse forks (Z → X ← Y ).

These are represented in Figure 13.4. In the graph, X represents an explanatory variable,
typically the experimental factor, Y is the response and Z is another variable whose role
depends on the logical flow between variables (collider, confounder or mediator).

Figure 13.4: Type of causal relations by Andrew Heiss, licensed under CC BY-NC 4.0.

In an experimental design, confounding effects from the experimental treatment X to
the response Y are controlled by randomization or sample selection: all incoming arrows
inside X from other variables are removed. If we include additional variables in the model
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which happen to be colliders, then we won’t recover the causal effect of interest. Addition
of mediators will let us filter the effect due to Z from the direct effect of X.

It is essential to determine via logic or otherwise (experiments can help!) the direction
of the relationship, lest we run into trouble. Many statistical models commonly used,
including regression models, cannot provide an answer to a problem that is philosophical
or conceptual in nature. Indeed, correlation is symmetric and insufficient to infer the
direction of the arrows in the directed acyclic graph.

The conclusions we will draw from statistical models depend on the nature of the relation.
For example, in an observational setting, we could eliminate the effect of a confounding
variable by controlling in a regression model, matching or by stratifying for different values
of the confounders in order to extract the causal estimate of X on Y . Matching consists in
creating paired samples (with similar characteristics for explanatories), and comparing the
pairs. Stratification consists of analysing subpopulations separately.

\ Caution about the kitchen sink approach

Controlling for a collider is counterproductive, as we would get erroneous conclu-
sions: Kowal (2021) reportedly claimed married couples with more children were less
happy. As Richard McElreath hinted online, controlling for marriage (through sample
selection) is incorrect since unhappy couples tend to divorce, but families with many
children are less likely to divorce.

13.2 Mediation

We need to add to our logical causal model represented by a directed acyclic graph data
generating mechanisms that prescribes how variables how interrelated. Our ability to
establish mediation will depend on the model and a set of assumptions, some of which
won’t be verifiable.

To define in full generality the treatment and mediation effect, we consider the potential
outcome framework. Following Pearl (2014), we use the notation do(X = x) is used to
denote experimental manipulation of X , to distinguish it from correlation in observational
data. The resulting potential outcome for individual i is Yi(x, m), with explanatory or
experimental covariate/factor x and mediator m. Likewise, Mi(x) is the potential mediator
when applying treatment level x.1 Value x0 represents the baseline or control value for our
experimental manipulation.

1The notation is important to distinguish between association Y | X when observing X from experimental
manipulations or interventions, Y | do(X) and counterfactuals Y (X).
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Definition 13.1 (Average total, conditional mediation and direct effects). For simplicity,
we focus on binary treatment with Xi ∈ {0, 1}, with Xi = x0 = 0 the control and X = 1
for treatment. Until now, we have considered experiments in which we randomly allocate
participants to groups, so we recovered the overall effect of treatment abstracting from
other variables. The following definitions are standard, e.g. Robins and Greenland (1992),
Pearl (2014), Imai, Keele, and Tingley (2010).

The average directed effect measures the flow along X → Y , disabling the pathway X →
M → Y by fixing the mediator value: it is

ADE(x) = E[Yi | do{X = 1, M = Mi(x)}]− E[Yi | do{X = 0, M = Mi(x)}]
= E[Yi(1, Mi(x))− Yi(0, Mi(x))}

This measures the expected change in response when the experimental factor changes from
treatment to control, while the mediator is set to a fixed value Mi(x) uniformly over the
population. Fixing the mediator, which may or not be feasible experimentally.

The average causal mediation effect (also called indirect effect), is the main quantity of
interest in mediation analysis. It is obtained by looking at changes in the outcome for a
fixed intervention due to changing the values of the mediator to those it would take under
the treatment and control group, respectively Mi(1) and Mi(0).

ACME(x) = E[Yi | do{X = x, M = Mi(1)}]− E[Yi | do{X = x, M = Mi(0)}]
= E[Yi{x, Mi(1)} − Yi{x, Mi(0)}]

The total effect measures the average overall impact of changes in outcome Y (both through
M and directly) when experimentally manipulating X,

TEi = E[Yi | do(X = 1)]− E[Yi | do(X = 0)]
= E[Yi{1, M(1)}]− E[Yi{0, M(0)}],

This is what we retrieve if we randomize treatment assignment and consider the average
change in average response. The total effect is obtained as TE = ACME(X) + ADE(1−X)
for X = 0, 1. If there is no interaction between the treatment and the mediator, then the
values of the average causal mediation effect and the average direct effect are the same
regardless of the treatment assignment x.

Definition 13.2 (Sequential ignorability assumption for mediation). To draw valid con-
clusions and build suitable estimation procedures, we need an assumption which can be
decomposed into two components. The first component is: given pre-treatment covariates
Z, treatment assignment is independent of potential outcomes for mediation and outcome,

Yi(x′, m), Mi(x)⊥⊥Xi | Zi = z.
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In order words, the values taken by the mediator and by the response exist independently
of the treatment assignment and don’t change.2

The second component of the sequential ignorability assumption is as follows: given
pre-treatment covariates and observed treatment, mediation is independent of potential
outcomes,

Yi(x′, m) ⊥⊥Mi(x) | Xi = x, Zi = z

The set of assumptions from Imai, Keele, and Tingley (2010) and Pearl (2014) are equivalent
under randomization of treatment assignment, as we consider thereafter.

We assume also that any value of X given covariates Z is possible (which is trivially satisfied
when randomizing with equal probability), and that likewise any value of the mediator M
is possible for any combination of covariates Z and treatment assignement X.

\ Measurement error

When measuring effects in psychology and marketing, it will often be the case that
the conceptual causal model includes variables that cannot be directly measured.
Proxies, as in Figure 13.5, add an additional layer of complexity and potential sources
of confounding.

13.3 Linear mediation model

One of the most popular model in social sciences is the linear mediation model, popularized
by Baron and Kenny (1986). Hayes’ PROCESS macros for SAS, SPSS and R have lead to the
widespread adoption by researchers (Preacher and Hayes 2004). Bullock, Green, and Ha
(2010) list limitations of the approach and provide examples in which the model does not
have a meaningful causal interpretation.

The linear mediation model assumes that the effect of mediation and treatment is additive
and that the response measurement is continuous. Consider an experimental factor X
corresponding to treatments with control or reference x0 and postulated mediator variable

2The dependence on Z is used for situations where we can perform randomization based on pre-treatment
assignment (i.e., we specify a mechanisms that is not equal based, but the probability of assignment is
known for each individual).
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Figure 13.5: xkcd comic 2652 (Proxy Variable) by Randall Munroe. Alt text: Our work has
produced great answers. Now someone just needs to figure out which questions
they go with. Cartoon reprinted under the CC BY-NC 2.5 license.

M , assumed continuous. Given uncorrelated unobserved noise variables εM and εY , we
specify linear regression models,

M | X = x = cM + αx + εM ,

Y | X = x, M = m = cY + βx + γm + εY

where we use the contrasts parametrization, so that the reference category for the intercept
corresponds to control (group x0) and x the other category of interest, with α capturing the
difference between x and x0. The model for Y | X, M should include additional covariates
z to control for confounding between M and Y if the latter is suspected.

The average value for M(1) = cM + α and that of M(0) = cM . If we substitute the first
equation in the second equation, we get that

ACME(x) = E[Y {x, M(1)} − Y {x, M(0)}] = αγ

ADE(x) = E[Y {1, M(x)} − Y {0, M(x)}] = β

TE = E[Y {1, M(1)} − Y {0, M(0)}] = β + αγ

The parameters can be interpreted as the direct (β), conditional mediation effect (αγ) and
total (β + αγ) effects. These parameters can be estimated using structural equation models
(SEM), or more typically by running a series of linear regression.

The “sequential ignorability” assumption in the linear mediation models boils down to “no
unmeasured confounders” in the relations X → Y , X →M and M → Y : the first two are
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13.3 Linear mediation model

satisfied in experimental studies due to randomization if we can manipulate X, as shown
in Figure 13.8. This means εM and εY must be independent of one another and, as a result,
error terms should also be uncorrelated.

In the linear mediation model, we can estimate the conditional direct effect corresponding
to the product of coefficients αγ. Absence of mediation implies the product is zero. Baron
and Kenny (1986) recommended using Sobel’s test statistic, of the form

S = α̂γ̂ − 0
se(α̂γ̂)

= α̂γ̂√
γ̂2Va(α̂) + α̂2Va(γ̂) + Va(γ̂)Va(α̂)

where α̂, γ̂ and their variance Va(α̂) and Va(γ̂) can be obtained from the estimated coeffi-
cients and standard errors.3 The Sobel’s statistic S is approximately standard normal in
large samples, S

·∼ Normal(0, 1), but the approximation is sometimes poor in small samples.
Other test statistics are listed in MacKinnon et al. (2002).

Example 13.2 (Null distribution of Sobel statistic). To see this, let’s generate data with a
binary treatment and normally distributed mediators and response with no confounding,
so that the data generating process matches exactly the formulation of Baron–Kenny. We
set α = 2, β = 1/2 and γ = 0. This is an instance where the null hypothesis is true (X affects
both M and Y , but there is no mediation effect).

If we knew exactly the model that generated X, M , Y and the relations between them, we
could simulate multiple datasets like in Figure 13.6 with n = 20 observations and compare
the test statistic we obtained with the simulation-based null distribution with αγ = 0. In
practice we do not know the model that generated the data and furthermore we have a
single dataset at hand.

In the linear mediation causal model, we can estimate the total causal effect of X , labelled τ ,
by running the linear regression of Y on X as there is no confounding affecting treatment X
in a completely randomized experimental design. This strategy isn’t valid with observational
data unless we adjust for confounders.

Remark 13.1 (Historical note on Baron and Kenny). Baron and Kenny (1986) suggested for
M and Y continuous breaking down the task in three separate steps:

1) fit a linear regression of M on X to estimate α
2) fit a linear regression of Y on X and M to estimate β and γ.

3Sobel derived the asymptotic variance using a first-order Taylor series expansion assuming both α and γ are
non-zero (hence the tests!)
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Figure 13.6: Null distribution of Sobel’s statistic against approximate asymptotic normal
distribution with 20 observations α = 0, γ = 0.1 and normal random errors.

3) fit a linear regression of Y on X to estimate τ

In the “Baron and Kenny (1986) approach”, we test H0 : α = 0, H0 : τ = 0 and H0 : γ = 0
against the two-sided alternative. This approach is somewhat flawed since mediation refers
to the relation X →M → Y , so we only need to consider (joint tests of) αγ (the total effect
could be zero because β = −αγ even if there is mediation). In practice, thus, we only need
steps 1) and 2) and the models should include potential confounders of the pair (M, Y ).

Definition 13.3 (Typology of mediation). The following characterization was proposed by
Zhao, Lynch, and Chen (2010):

1. complementary mediation when both direct and indirect effects are of the same sign
and non-zero.

2. competitive mediation when direct and indirect effects are of opposite signs.
3. indirect-only mediation when the direct effect of X → Y is null, but the effect X →

M → Y isn’t.

Previous definitions popularized by Baron and Kenny (1986) still found in old papers include
“full mediation” for instances where β = 0 and partial mediation if the direct effect is less
than the total effect, meaning β < τ .

230
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13.3.1 Nonparametric bootstrap

An alternative for inference to large-sample approximations to the null distribution used
as benchmark to establish whether a test statistic is ‘large’ is the bootstrap, a form of
simulation-based inference (Efron 1979). The latter is conceptually easy to understand: we
generate new datasets by resampling from the ones observed (as if it was the population).
Since we want the sample size to be identical and our objective is to get heterogeneity, we
sample with replacement: from one bootstrap dataset to the next, we will have multiple
copies, or none, of each observation. See Efron and Tibshirani (1993) and Davison and
Hinkley (1997) for a more thorough treatment of the bootstrap and alternative sampling
schemes for regression models. The nonparametric bootstrap procedure advocated by
Preacher and Hayes (2004) consists in repeating the following B times:

1) sample n observations with replacement, i.e., a tuple (Xi, Mi, Yi), from the original
data .

2) compute the natural indirect effect α̂ · γ̂ on each simulated sample

There are different approaches to computing confidence intervals, but the simplest is the
percentile method. For a two-sided test at level α, compute the α/2 and 1− α/2 quantiles
of the bootstrap statistics {α̂bγ̂b}Bb=1. For example, if the level is α = 5% and we generate
B = 1000 bootstrap samples, the percentile confidence intervals bounds are the 25th and
975th ordered observations.

Nowadays, the asymptotic approximation (sometimes misnamed delta method4) has fallen
out of fashion among practitioners for getting confidence intervals for the ACME (not
Sobel’s statistic), who prefer the nonparametric bootstrap coupled with the percentile
method. Figure 13.7 shows that the sampling distribution of α̂γ̂ (unstandardized) is indeed
not symmetric, unlike the distribution of Sobel’s statistic.

The nonparametric percentile bootstrap confidence interval for αγ is [−0.08, 1.71] and thus
we fail to reject the null hypothesis H0 : αγ = 0.

13.4 Model assumptions

We can unpack the model assumptions for the linear mediation model.

1. The no unmeasured confounders assumption. Plainly stated, there are no unobserved
confounders and thus the error terms εM and εY are independent. Additionally, when
we consider observational data, we must make sure there is hidden confounders

4The latter is the name of the method used to derive the denominator of Sobel’s statistic.
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Figure 13.7: Bootstrap distribution of average conditional mediation effect (aka indirect
effect) with estimate and percentile 95% confidence intervals (vertical red lines)
for the simulated example.

affecting either the M → X and the X → Y relation, as shown in Figure 13.8. We
can include covariates in the regression models to palliate to this, but we must only
include the minimal set of confounders (and no additional mediator or collider chain).

Another problem would be to claim that variable M is a mediator when in truth part of
the effect on the outcome is due to change in another mediator. Figure 13.9 shows an
instance with no confounding, but multiple mediators, say M1 and M2: the latter mediates
the relation M1 → Y . The linear mediation model would capture the total effect of M1, but
it would be incorrect to claim that the mediation effect on X is due to M1.

2. The linearity assumption implies that the linear models are correctly specified and
that the effect of the covariates are linear. This means that, ceteris paribus, the effect
of an increase of one unit of M on Y is the same regardless of the value of M . It
also doesn’t depend on the level of other variables (no interaction). If the model isn’t
properly specified, the linear model coefficients will capture the best linear predictor
given the design and the coefficients may not be meaningful. There must thus be no
interaction between treatment and the mediator; see Definition 13.4 for the relaxation.

The linearity assumption also implies that the effect is the same for every individual, so
there is no treatment heterogeneity or measurement error which could lead to attenuation
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Figure 13.8: Directed acyclic graph representing observational settings (left) and experi-
mental settings in which assignment is random given covariates measured
pre-treatments (right). The ‘no unmeasured confounder’ assumption postu-
lates such confounders are included (with the correct parametric form) in the
regression models.

Figure 13.9: Directed acyclic graph showing multiple mediators.

bias.

Following Bullock, Green, and Ha (2010), we index the regression equations by individual
i

Mi | Xi = x = cM + αix + εM,i,

Yi | Xi = x, Mi = m = cY + βix + γim + εY,i

If αi differ from one observation to the next, the average estimated by the regression could
be positive, negative or null. Even in the latter case, we could have γi and αi positive for
some observation, or both negatives so that they cancel out even if there is complementary
mediation.

The main benefit of experimental designs is that it remove confounding in the relationship
between treatment and other variables. Adding spurious variables could create feedback (if
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some of those variables are colliders) and lead to inconsistent conclusions. It’s not clear
that the mediator can be manipulated experimentally, and even if it could be to estimate
the γ, one must make sure the relation is the same absent of X. For example, we could
estimate the indirect effect term by manipulating jointly (if possible) (X, M ) but even then
the linearity assumption must hold for the estimates to correspond to our linear causal
mediation model.

13.4.1 Sensitivity analysis

The no-unmeasured confounders assumption should be challenged. One way to assess the
robustness of the conclusions to this is to consider correlation between errors, as in Bullock,
Green, and Ha (2010). Indeed, one can show that the average parameter in the equation for
the response of the linear mediation model satisfies

E(γ̂) = γ + Cov(εm, εy)
Va(εm) ,

which introduces bias in the ACME(x). Even if the true covariance is unknown, we can vary
ρ = Cor(εm, εy) to assess the sensitivity of our conclusions to confounding. The medsens
function in the R package mediation implements the diagnostic of Imai, Keele, and Tingley
(2010) for the linear mediation model.

Definition 13.4 (Moderated mediation). We consider a more complex setting where the
effect of the experimental factor X depends on the mediator, a case termed moderated
mediator (Judd and Kenny 1981).

In this case, the equation for the response variable becomes

E(Y |M = m, X = x, Z = z) = cY + βx + γm + κxm + zω

Upon substituting the equations for both inside the definition of average causal mediation
effect, we find that the latter equals

ACME(x) = (γ + κx){M(1)−M(0)} = α(γ + κx).

and thus the value differs depending on experimental regime (treatment or control), due
to the presence of the interaction. Both the average direct and total effects now depend
on the theoretical average values of the covariates Z added to the model to control for
confounding.

Example 13.3 (Pain as a social glue). We consider an example from Experiment 1 of Bastian,
Jetten, and Ferris (2014), who experienced the effect of the effect of shared pain (through a
manipulation) on bonding.
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Table 13.2: Coefficients and standard errors of the linear regression model for Bastian,
Jetten, and Ferris (2014)

(a) mediation model

term coef. std. error

(Intercept) -0.16 0.59
condition [pain] 0.30 0.12
gender [female] -0.05 0.13
group size -0.07 0.05
age 0.07 0.02

(b) outcome model

term coef. std. error

(Intercept) 2.66 1.47
condition [pain] 0.66 0.32
threat -0.24 0.36
gender [female] -0.02 0.33
group size 0.02 0.13
age 0.03 0.07

This effect of pain remained when controlling for age (p = .048), gender (p =
.052), and group size (p = .050). None of these variables were significantly
correlated with experimental condition (ps > .136) or perceived bonding (ps >
.925). To determine whether the marginal tendency for the pain tasks to be
viewed as more threatening than the control tasks mediated the effect of pain on
perceived bonding, we conducted a bootstrap analysis (Preacher & Hayes, 2008)
using 5,000 resamples. The results of this analysis revealed that threat was not a
significant mediator, indirect effect =−0.11, SE = 0.09, 95% CI = [−0.34, 0.03].

The response variable Y is bonding, the experimental factor condition and threat, the
average ALES subscale about the perception of the physical task, is the postulated mediator.

We use the mediation package (Tingley et al. 2014) for the model; the package certainly
isn’t needed (nor the PROCESS macros) to run the bootstrap, which we could obtain with a
single for-loop. However, it has utilities, notably for checking model assumptions, that are
convenient.

library(mediation, quietly = TRUE)
data(BJF14_S1, package = "hecedsm")
# Mediation and response models
MsX <- lm(threat ~ condition + gender + groupsize + age,

data = BJF14_S1)
YsXM <- lm(bonding ~ condition + threat + gender + groupsize + age,

data = BJF14_S1)

Both of the threat and bonding measures are average of Likert scales. We include the con-
trols in the regression for the response to account for potential confounding between threat
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level and shared bonding: it is unclear whether the authors used the control covariates or
whether these make sense.

It is instructive to perform calculations by hand. We write a little function that takes as
input the coefficients and variance of the parameters α and γ from the linear mediation
model and returns the Sobel statistic, and the p-value and 95% confidence intervals based
on the (large-sample) normal approximation.

# Function to calculate Sobel's statistic for binary treatment
sobel <- function(alpha, gamma, alpha_var, gamma_var){

# Compute point estimate (product of alpha and gamma)
pe_sob <- as.numeric(alpha*gamma)
# Obtain standard error of alpha_hat*gamma_hat
se_sob <- as.numeric(sqrt(gammaˆ2 * alpha_var + alphaˆ2 * gamma_var + gamma_var*alpha_var))
# Wald statistic
stat <- pe_sob/se_sob
data.frame(estimate = pe_sob,

se = se_sob,
stat = stat, # Sobel test statistic
pvalue = 2*pnorm(abs(stat), lower.tail = FALSE), # two-sided p-value
lowerCI = pe_sob + qnorm(p = 0.025)*se_sob,
upperCI = pe_sob + qnorm(p = 0.975)*se_sob

)
}

# Create a function that returns the statistic for any given data
# This way, we can pass a bootstrap sample and get the same quantity
stat <- function(data, peOnly = TRUE){

# Fit models
mod_med <- lm(threat ~ condition + gender + groupsize + age,

data = data) # mediator model
mod_resp <- lm(bonding ~ condition + threat + gender + groupsize + age,

data = data) # response model
# Use 'coef' to extract estimated coefficients
# and 'vcov' to get the estimated covariance matrix of coefficients
coef_alpha <- coef(mod_med)['conditionPain']
coef_gamma <- coef(mod_resp)['threat']
var_alpha <- vcov(mod_med)['conditionPain','conditionPain']
var_gamma <- vcov(mod_resp)['threat','threat']

# Compute Sobel's statistic
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S <- sobel(alpha = coef_alpha,
alpha_var = var_alpha,
gamma = coef_gamma,
gamma_var = var_gamma)

if(!isTRUE(peOnly)){
return(S)

} else{
return(as.vector(S[,'estimate']))

}
}
# Values for the paper - using large-sample approximation
vals <- stat(data = BJF14_S1, peOnly = FALSE)

Next, we turn to the nonparametric bootstrap to get a comparison of how the results would
differ. We fix the seed and provide data sampled with replacement, using a simple for-loop.
The number of bootstrap samples should be large enough to avoid additional variability
due to resampling.

# Nonparametric bootstrap analysis
set.seed(80667) # set random seed for reproducibility
B <- 1000L #number of bootstrap replications
n <- nrow(BJF14_S1) # number of observations
results <- numeric(B) # create container
for(b in seq_len(B)){

# Sample row indices with replacement at random uniformly
bootdata <- BJF14_S1[sample.int(n, n, replace = TRUE),]
# Compute the test statistic on the bootstrap sample
results[b] <- stat(data = bootdata, peOnly = TRUE)

}
# Percentile confidence intervals
boot_perc_confint <- quantile(results, prob = c(0.025, 0.975))
# If we have B a multiple of 40, then we can use the sorted observations
# sort(results)[B*c(0.025,0.975)]
# Bootstrap p-value for test alpha*gamma=0
M_over_B <- mean(results < 0)
boot_pval <- 2*min(c(M_over_B, 1-M_over_B))
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Table 13.3: Average causal mediation effect for Bastian, Jetten, and Ferris (2014), with p-
values and 95% confidence intervals based on the normal approximation (top)
and nonparametric bootstrap with percentile confidence intervals (bottom).

estimate std. error p-value lower CL upper CL

-0.071 0.119 0.549 -0.305 0.162
-0.071 0.126 0.534 -0.342 0.132

The differences between the large-sample approximation and the bootstrap, reported in
Table 13.3, are negligible.

We can also use software to perform the calculations without coding manually effects.

set.seed(80667)
linmed <- mediate(

model.m = MsX,
model.y = YsXM,
sims = 1000L, # number of bootstrap simulations
boot = TRUE, # use bootstrap
boot.ci.type = "perc", # type of bootstrap: percentile
mediator = "threat", # name of mediator
treat = "condition", # name of treatment
control.value = "Control", # name of control (level of 'condition')
treat.value = "Pain") # name of treatment (level of 'condition')

summary(linmed)

Table 13.4: Linear causal mediation analysis: parameter estimates, nonparametric boot-
strap 95% confidence intervals and p-values with the percentile method based
on 5000 bootstrap samples.

estimate lower 95% CI upper 95% CI p-value

ACME -0.071 -0.363 0.146 0.548
ADE 0.660 -0.012 1.257 0.056
total effect 0.588 0.012 1.145 0.048
prop. mediated -0.121 -1.501 0.615 0.564

The first line of Table 13.6 gives the average conditional mediated effect (labelled ACME),
the second the average direct effect (ADE) and the third the total effect (ADE + ACME). The
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point estimate for ACME, αγ is α̂γ̂ = −0.07. The bootstrap sampling distribution is skewed
to the left, a fact reflected by the asymmetric percentile confidence interval.
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Figure 13.10: Density of the 1000 nonparametric bootstrap estimates of the average condi-
tional mediation effect αγ, with point estimate and 95% percentile bootstrap
confidence intervals (vertical dashed lines).

The sequential ignorability assumption cannot be verified, but we can see what impacts
violations would have on the coefficients: the expected value of the coefficient γ̂ is γ +
Cov(εM , εY )/Va(εM ); the second component is a bias term that does not vanish, even when
the sample size grows (Bullock, Green, and Ha 2010). The variance of the error of the medi-
ation and response models can be estimated, and we can vary the correlation coefficient,
ρ = Cor(εM , εY ), to assess the sensitivity of our conclusions if there was confounding.

linmed_sensitivity <- medsens(linmed)
summary(linmed_sensitivity)

Mediation Sensitivity Analysis for Average Causal Mediation Effect
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Sensitivity Region

Rho ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~
[1,] -0.4 0.2533 -0.0236 0.5302 0.16 0.1144
[2,] -0.3 0.1626 -0.0723 0.3975 0.09 0.0644
[3,] -0.2 0.0805 -0.1288 0.2898 0.04 0.0286
[4,] -0.1 0.0034 -0.1969 0.2037 0.01 0.0072
[5,] 0.0 -0.0714 -0.2788 0.1360 0.00 0.0000
[6,] 0.1 -0.1462 -0.3748 0.0825 0.01 0.0072
[7,] 0.2 -0.2233 -0.4850 0.0385 0.04 0.0286

Rho at which ACME = 0: -0.1
R^2_M*R^2_Y* at which ACME = 0: 0.01
R^2_M~R^2_Y~ at which ACME = 0: 0.0072

plot(linmed_sensitivity)
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The medsens function implements the sensitivity diagnostic presented in Section 5.1 of Imai,
Keele, and Yamamoto (2010) for the linear mediation model. By default, the correlation ρ
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varies in 0.1 increments. We can see the wide range of the ACME if there was correlation
between residuals from the mediation and the response model, highlighting the wide range
of values that could be returned: the ACME could go from 0.2 to−0.288 for correlations in
the range ρ ∈ [−0.4, 0.4]. In this example, nearly any correlation in this range would lead to
“insignificant results”, mostly because of the small sample size. In a situation where we had
found a significant (sic) result, we could observe how much correlation btween would be
needed for this effect to be an artifact of correlation and vanish.

According to the documentation of the medsens function (?medsens), there are two variants
of the estimated effect size, either computing the proportion of the total (tilde, Rˆ2_M~Rˆ2_Y)
or residual (starred, Rˆ2_M*Rˆ2_Y*) variance from the mediation and outcome models that
are due to hypothetical unobserved confounders.

\ Pitfall

There are several problems with the description of Bastian, Jetten, and Ferris (2014):
while it seems that some covariates (age, gender, group size) were added to regression
models, it is unclear whether they could be confounders, whether their effect is linear
and in which (if any) model they are included. Stating “bootstrap analysis” is the
equivalent of “running a statistical test”, so vague it could mean anything, and the fact
the output is random does not help with reproducibility.

Example 13.4 (Fluency as mediator of product evaluation). Study 2 of Lee and Choi (2019)
focus on inconsistency of photos and text descriptions for online descriptions and how this
impact the product evaluation.

The experimental variable is the consistency of the product description and depiction, with
fluency leading to “processing disfluency” that is expected to impact negatively judgment
ratings. Familiarity with the product brand and product is included as covariate in both
mediator and outcome model (see Table 1 of Lee and Choi (2019)).

data(LC19_S2, package = "hecedsm")
LC19_S2 <- LC19_S2 |> # transform consistency into
dplyr::mutate(consistency = ifelse(consistency == "inconsistent", 0, 1))

YsMX <- lm(prodeval ~ fluency + consistency + familiarity,
data = LC19_S2)

MsX <- lm(fluency ~ consistency + familiarity,
data = LC19_S2)
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Table 13.5: Model coefficients

(a) mediation

term estimate std.error

(Intercept) 5.23 0.27
consistency 0.48 0.24
familiarity 0.08 0.06

(b) outcome

term estimate std.error

(Intercept) 3.04 0.53
fluency 0.60 0.09
consistency 0.29 0.22
familiarity 0.09 0.05

We can extract the effects directly from the outcome: the natural indirect effect estimate is
α̂γ̂ = 0.48× 0.60 and the direct effect is β̂ = 0.29.

To get confidence intervals, we can use the mediate package (Tingley et al. 2014). The
function requires the parametric model for the mediation and outcome, as well as a series
of specification (the number of bootstrap samples, the type of confidence interval, the
names of the levels for categorical treatment, etc.)

set.seed(80667)
library(mediation, quietly = TRUE)
linmed <- mediate(

model.m = MsX,
model.y = YsMX,
treat = "consistency",
mediator = "fluency",
sims = 5000L,
boot = TRUE,
boot.ci.type = "perc", # percentile method

## with original factor, we could specify the levels for control and treatment
# control.value = "inconsistent",
# treat.value = "consistent"
)

Table 13.6: Linear causal mediation analysis: parameter estimates, nonparametric boot-
strap 95% percentile confidence intervals and p-values based on 5000 nonpara-
metric bootstrap samples.

estimate lower 95% CI upper 95% CI p-value
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ACME 0.286 0.015 0.595 0.037
ADE 0.287 -0.165 0.737 0.218
total effect 0.573 0.047 1.091 0.030
prop. mediated 0.499 -0.051 1.938 0.057

Using the summary method, we can print the table of estimates and confidence intervals.
We can see that the results are consistent with those reported in the article. We can also
use the medsens function to perform the sensitivity analysis, but this only works for binary
(numerical) treatments.

plot(mediation::medsens(x = linmed))

13.5 General average causal mediation effect estimation

The linear mediation model is popular, but is limited to the case with no interaction,
continuous mediators, constant (i.e., linear) treatment effect, and continuous response. It
also hides model assumptions.

We could also rely on different models and use the definitions of the causal effects to
perform simulation-based inference; see Appendix D of Imai, Keele, and Tingley (2010).
The average causal mediation effect can be estimated empirically based on the simulated
potential outcomes. Using Definition 13.1, the method of Imai, Keele, and Tingley (2010)
relies on Monte Carlo simulations.

1. Modelling. Specify models to each relationship

a. a mediator model fM (x, z; θM ) that includes X and potential confounders Z
b. an outcome model fY (x, m, z; θY ) with both treatment indicator X, mediator

M5 and potential confounders Z.

2. Draw B realizations of the mediation model for each observation i = 1, . . . , n, giving
M

(b)
i (1) and M

(b)
i (0) for b = 1, . . . , B. Use these resulting to obtain one draw from the

outcome model for each of

a. Y
(b)

i {0, M
(b)
i (0)},

b. Y
(b)

i {0, M
(b)
i (1)},

5Optionally, add their interaction X : M in case of moderated mediation.
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Figure 13.11: Causal effects and confidence intervals for the difference between inconsis-
tency (control) and consistency (treatement).

c. Y
(b)

i {1, M
(b)
i (0)} and

d. Y
(b)

i {1, M
(b)
i (1)}.

3. Plug these quantities in the definitions of ACME(x), ADE(x) and TE, averaging over
the nM replications, over both observations i = 1, . . . , n and replications b = 1, . . . , B,
e.g.,

TE = 1
nB

B∑
b=1

n∑
i=1

[
Y

(b)
i {1, M

(b)
i (1)} − Y

(b)
i {0, M

(b)
i (0)}

]
4. Estimation uncertainty: Either use nonparametric bootstrap or a large-sample ap-

proximation to the distribution of model parameters θM and Y to get J copies of
parameters, and repeat steps 2. and 3. to get J copies of the causal estimates. Use
the J replications to compute a 95% percentile interval and return the sample means
over J for the average causal effects.

The benefit of this method is that it naturally account for nonlinear effects, different natures
of the mediator (binary, categorical, etc.) and the response, through suitable models, e.g., a
logistic regression for a binary outcome. With repeated measures, one could also consider
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Figure 13.12: Sensitivity analysis showing the variation of the average causal mediation
effect as a function of the correlation between outcome and mediation errors,
with pointwise 95% confidence intervals.

interactions between individuals and mediator using random effects, and still retrieve an
effect. The framework easily handles interactions between X : M added to the outcome
model, in which case we get different values of average causal mediation effect and average
direct effect for each value of X.
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In small samples or in the presence of very skewed outcome responses, often combined with
extreme observations, the conclusions drawn from the large-sample approximations for
t-tests or analysis of variance models need not hold. This chapter presents nonparametric
tests.

If our responses are numeric (or at least ordinal, such as those measured by Likert scales),
we could subtitute them by their ranks. Ranks give the relative ordering in a sample of size
n, where rank 1 denotes the smallest observation and rank n the largest. Ranks are not
affected by outliers and are more robust (contrary to averages), but discard information.
For example, ranking the set of four observations (8, 2, 1, 2) gives ranks (4, 2.5, 1, 2.5) if we
assign the average rank to ties.

When are nonparametric tests used? The answer is that they are robust (meaning their
conclusions are less affected) by departure from distributional assumptions (e.g., data are
normally distributed) and by outliers. In large samples, the central limit theorem kicks in
and the behaviour of most group average is normal. However, in small samples, the quality
of the p-value approximate depends more critically on whether the model assumptions
hold or not.

All of what has been covered so far is part of parametric statistics: we assume summary
statistics behave in a particular way and utilize the probabilistic model from which these
originate to describe the range of likely outcomes under the null hypothesis. As ranks are
simply numbers between 1 to n (if there are no ties), no matter how data are generated,
we can typically assess the repartition of those integers under the null hypothesis. There
is no free lunch: while rank-based tests require fewer modelling assumptions, they have
lower power than their parametric counterparts if the assumption underlying these tests
are validated.

In short: the more assumptions you are willing to assume, the more information you can
squeeze out of your problem. However, the inference can be fragile so you have to decide on
a trade-off between efficiency (keeping all numerical records) and robustness (e.g., keeping
only the signs or the ranking of the data).

The following list nonparametric tests and their popular parametric equivalent.
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• sign test: an alternative to a one-sample t-test (also valid for paired measurements,
where we subtract the two measurements and rank differences). Only uses the sign of
the difference, minimal assumptions but not particularly powerful.

• Wilcoxon’s signed rank test: idem, but using the ranks of the observations
• Mann–Whitney U or Wilcoxon’s rank-sum test: the nonparametric analog of two-

sample t-test, which ranks all observations in the sample (abstracting from group
levels) and compares them between groups. This test is meant for between-subject
designs.

These can be extended with repeated measurements to more than two groups:

• Friedman’s rank sum test for completely randomized block design: ranks are com-
puted within each block (one block, one experimental factor) and we consider the
sum of the ranks for each treatment level. Equivalent of sign test with more samples;
also Quade’s test

• Kruskal–Wallis test: one-way analysis of variance model with ranks, obtained by pool-
ing all observations, computing the ranks, and splitting them back by experimental
condition.

For more than 15 observations, the normal, student or Fisher approximation obtained
by running the tests from the linear model or ANOVA function yield more or less the
same benchmarks for all useful purposes: see J. K. Lindeløv cheatsheet and examples for
indications.

14.1 Wilcoxon signed rank test

The most common use of the signed rank test is for paired samples for which the response
is measured on a numeric or ordinal scale. Let Yij denote measurement j of person i and
the matching observation Ykj . For each pair i = 1, . . . , n, we can compute the difference
Di = Yij − Yik.1 If we assume there is no difference between the distributions of the values
taken, then the distribution of the difference Dj is symmetric around zero under the null
hypothesis.2 The statistic tests thus tests whether the median is zero.3

Once we have the new differences D1, . . . , Dn, we take absolute values and compute their
ranks, Ri = rank|Di|. The test statistic is formed by computing the sum of the ranks Ri

associated with positive differences Di > 0. How does this test statistic work as a summary
of evidence? If there was no difference we expect roughly half of the centered observations

1With one sample, we postulate a median µ0 and set Di = Yi − µ0.
2We could subtract likewise µ0 from the paired difference if we assume the distributions are µ0 units apart.
3When using ranks, we cannot talk about the mean of the distribution, but rather about quantiles.
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14.1 Wilcoxon signed rank test

or paired difference to be positive and half to be negative. The sum of positive ranks should
be close to the average rank: for a two-sided test, large or small sums are evidence against
the null hypothesis that there is no difference between groups.

In management sciences, Likert scales are frequently used as response. The drawback of
this approach, unless the response is the average of multiple questions, is that there will be
ties and potentially zero differences Dj = 0. There are subtleties associated with testing,
since the signed rank assumes that all differences are either positive or negative. The coin
package in R deals correctly with such instances, but it is important to specify the treatment
of such values.4

Example 14.1 (Smartwatches and other distractions). We consider a within-subject design
from Brodeur et al. (2021), who conducted an experiment at Tech3Lab to check distraction
while driving from different devices including smartwatches using a virtual reality environ-
ment. The authors wanted to investigate whether smartwatches were more distracting than
cellphones while driving. Using a simulator, they ran a within-subject design where each
participant was assigned to a distraction (phone, using a speaker, texting while driving or
smartwatch) while using a driving simulator. The response is the number of road safety
violations conducted on the segment. Each task was assigned in a random order. The data
can be found in the BRLS21_T3 dataset in package hecedsm.

A quick inspection reveals that the data are balanced with four tasks and 31 individuals.
We can view the within-subject design with a single replication as a complete block design
(with id as block) and task as experimental manipulation. The data here are clearly far
from normally distributed and there are notable outliers in the upper right tail. While
conclusions probably wouldn’t be affected by using an analysis of variance to compare the
average time per task, but it may be easier to convince reviewers that the findings are solid
by ressorting to nonparametric procedures.

Both the Friedman and the Quade tests are obtained by computing ranks within each block
(participant) and then performing a two-way analysis of variance. The Friedman test is less
powerful than Quade’s with a small number of groups. Both are applicable for block designs
with a single factor.

4For example, are zero difference discarded prior to ranking, as suggested by Wilcoxon, or kept for the
ranking and discarded after, as proposed by Pratt (1959)? We also need to deal with ties, as the distribution
of numbers changes with ties. If this seems complicated to you, well it is. . . so much that the default
implementation in R is unreliable. Charles Geyer illustrate the problems with the zero fudge, but the point
is quite technical. His notes make a clear case that you can’t trust default software, even if it’s been sitting
around for a long time.
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data(BRLS21_T3, package = "hecedsm")
friedman <- coin::friedman_test(

nviolation ~ task | id,
data = BRLS21_T3)

quade <- coin::quade_test(
nviolation ~ task | id,
data = BRLS21_T3)

eff_size <- effectsize::kendalls_w(
x = "nviolation",
groups = "task",
blocks = "id",
data = BRLS21_T3)

The Friedman test is obtained by replacing observations by the rank within each block (so
rather than the number of violations per task, we compute the rank among the four tasks).
Friedman’s test statistic is 18.97 and is compared to a benchmark χ2

3 distribution, yielding a
p-value of 3× 10−4.

We can also obtain effect sizes for the rank test, termed Kendall’s W. A value of 1 indicates
complete agreement in the ranking: here, this would occur if the ranking of the number of
violations was the same for each participant. The estimated agreement (effect size) is 0.2.

The test reveals significant differences in the number of road safety violations across tasks.
We could therefore perform all pairwise differences using the signed-rank test and adjust
p-values to correct for the fact we have performed six hypothesis tests.

To do this, we modify the data and map them to wide-format (each line corresponds to an
individual). We can then feed the data to compute differences, here for phone vs watch. We
could proceed likewise for the five other pairwise comparisons and then adjust p-values.

smartwatch <- tidyr::pivot_wider(
data = BRLS21_T3,
names_from = task,
values_from = nviolation)

coin::wilcoxsign_test(phone ~ watch,
data = smartwatch)

Asymptotic Wilcoxon-Pratt Signed-Rank Test
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14.2 Wilcoxon rank sum test and Kruskal–Wallis test

data: y by x (pos, neg)
stratified by block

Z = 0.35399, p-value = 0.7233
alternative hypothesis: true mu is not equal to 0

You can think of the test as performing a paired t-test for the 31 signed ranks Ri =
sign(Di)rank(|Di|) and testing whether the mean is zero. The p-value obtained by doing
this after discarding zeros is 0.73, which is pretty much the same as the more complicated
approximation.

14.2 Wilcoxon rank sum test and Kruskal–Wallis test

These testing procedures are the nonparametric analog of the one-way analysis in a
between-subject design. One could be interested in computing the differences between
experimental conditions (pairwise) or overall if there are K ≥ 2 experimental conditions.
To this effect, we simply pool all observations, rank them and compare the average rank in
each group. We can track what should be the repartition of data if there was no difference
between groups (all ranks should be somehow uniformly distributed among the K groups).
If there are groups with larger averages than others, than this is evidence.

In the two-sample case, we may also be interested in providing an estimator of the difference
between condition. To this effect, we can compute the average of pairwise differences
between observations of each pair of groups: those are called Walsh’s averages. The Hodges–
Lehmann estimate of location is simply the median of Walsh’s averages and we can use the
Walsh’s averages themselves to obtain a confidence interval.

Example 14.2 (Virtual communications). Brucks and Levav (2022) measure the attention of
participants based on condition using an eyetracker. We compare the time spend looking
at the partner by experimental condition (face-to-face or videoconferencing). The authors
used a Kruskal–Wallis test, but this is equivalent to Wilcoxon’s rank-sum test.

data(BL22_E, package = "hecedsm")
mww <- coin::wilcox_test(

partner_time ~ cond,
data = BL22_E,
conf.int = TRUE)

welch <- t.test(partner_time ~ cond,
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data = BL22_E,
conf.int = TRUE)

mww

Asymptotic Wilcoxon-Mann-Whitney Test

data: partner_time by cond (f2f, video)
Z = -6.4637, p-value = 1.022e-10
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-50.694 -25.908

sample estimates:
difference in location

-37.808

The output of the test includes, in addition to the p-value for the null hypothesis that both
median time are the same, a confidence interval for the time difference (in seconds). The
Hodges–Lehmann estimate of location is−37.81 seconds, with a 95% confidence interval
for the difference of [−50.69,−25.91] seconds.

These can be compared with the usual Welch’s two-sample t-test with unequal variance.
The estimated mean difference is −39.69 seconds for face-to-face vs group video, with a
95% confidence interval of [−52.93,−26.45].

In either case, it’s clear that the videoconferencing translates into longer time spent gazing
at the partner than in-person meetings.
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15 Count data

Many experiments can have binary outcomes. If we manipulate one or more experimental
factors, we can aggregate these results by subcategories. This leads to contingency tables,
which contain the total count per factor combination. These data can be understood in the
same way as other ANOVA models, but with the aggregated responses as counts rather than
averages. The following section is meant as both an introduction to the topic, showcasing
examples of tests and their application.

With count data, we typically model observations as arising from a Poisson distribution,
which takes values in 0, 1, . . .. The Poisson distribution has mean and variance µ > 0 and,
to ensure the fitted average are positive, regression models typically consider the natural
logarithm.

To make things concrete, consider a two-way between-subject design with crossed factors
having I and J categories, respectively. The mean equation would be

ln µij = α + βi + γj + (βγ)ij , i = 1, . . . , I; j = 1, . . . , J

where β, γ, (βγ)’s are subject to sum-to-zero categories. One major difference with regular
ANOVA is that there will be at most IJ counts (one for each cell). If we fit a model with an
interaction, we will overfit the data and predict back the entries. This is possible for the
Poisson distribution because the variance is fully determined by the mean.

There are direct analog to the tests we normally consider: we can compare the full model
with all interactions (termed saturated model) with simpler alternatives. The deviance
statistic assesses whether the simpler model (null hypothesis) provides adequate fit, relative
to the full model (alternative hypothesis).

We can compare different models in the same way than for multi-way between-subject
designs. We fit two competing models (one simpler null model, say without interaction)
and the alternative which includes the same specification, plus additional terms. We
then compare the log-likelihood, a measure of fit, and form a statistic. As for ANOVA, the
alternative models fit better (no matter what), but we can assess whether this improvement,
due to including ν additional parameters, could be due to chance alone. The likelihood
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ratio statistic assess this change, and our large-sample benchmark. we compare it to a
chi-square random variable with ν degrees of freedom, denoted χ2

ν .

In contingency tables, we can use Pearson’s χ2 test to compare observed counts to postu-
lated expected counts, comparing the statistic to a chi-square distribution.

The statistic is of the form

P =
I∑

i=1

J∑
j=1

(Oij − Eij)2

Eij

where Eij is the expected count under the null hypothesis, and Oij are the observed entries.
The degrees of freedom are N (here IJ = N , the number of cells) minus the number
of parameters under the null hypothesis. The large-sample approximation is adequate
provided that the expected counts in each subgroup, Eij ’s, are larger than 5.

For contingency tables, the usual effect size is Cramér’s V , which is a transformation
of the chi-square statistic to remove the dependence on sample size and varies from 0
(no association) to 1 (fully determined data). The estimator is typically biased upward,
so slightly different estimators (recipe) are available, including many with small-sample
corrections.

Example 15.1 (The importance of selling format). We revisit data from Duke and Amir
(2023) on selling formats, which compare integrated purchases (e.g., proposing to choose
first the item, then choosing the combination) or having a menu at checkout for the quantity
(sequential). We look at whether the person purchased the item and aggregate counts in a
2× 2 table. We are again testing for an interaction versus only main effects.

In the paper, all participants were included for this test, but other were excluded at a latter
stage. The database DA23_E2 only includes the 325 participants who were present at all
stages.

data(DA23_E2, package = "hecedsm")
tabs <- with(DA23_E2, table(purchased, format))
tabs

format
purchased quantity-integrated quantity-sequential

0 100 133
1 66 26
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# Chi-square test for interaction
chisq.test(tabs)

Pearson's Chi-squared test with Yates' continuity correction

data: tabs
X-squared = 20.786, df = 1, p-value = 5.135e-06

The integrated quantity lead to a higher proportion of sales, and this difference is statistically
significant at level 1%. The effect size (estimated with a small-sample correction of V = 0.25
indicates a moderate effect, even if the p-value is small since we have 39.8% who bought for
quantity-integrated, versus 16.4% for sequential.

Example 15.2 (Spontaneous verbal rehersal of memory tasks). We consider Elliott et al.
(2021) multi-lab replication of Flavell, Beach, and Chinsky (1966) study on spontaneous
verbalization of children when asked to identify pictures of objects. We pool data from all
labs and study the counts as a function of age and frequency. We are interested in assessing
whether there is an interaction between the two. Using Pearson χ2 test, we can fit the model
in which counts in each cell Eij , which corresponds to the average predicted with a model
with main effect only (overall average + row i and column j estimated deviation, from the
main model).

data(MULTI21_D1, package = "hecedsm")
contingency <- xtabs(

count ~ age + frequency,
data = MULTI21_D1)

# Use chi-square directly - the correction is not applied
# to get the same result as with the Poisson regression model
chisqtest <- chisq.test(contingency, correct = FALSE)
chisqtest

Pearson's Chi-squared test

data: contingency
X-squared = 87.467, df = 6, p-value < 2.2e-16
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# Effect size (with adjustment for small sample)
effectsize::cramers_v(chisqtest)$Cramers_v_adjusted

[1] 0.2043891

# Aggregate data into long format
MULTI21_D1_long <- MULTI21_D1 |>

dplyr::group_by(age, frequency) |>
dplyr::summarize(total = sum(count))

mod_main <- glm(total ~ age + frequency,
family = poisson,
data = MULTI21_D1_long)

PearsonX2 <- sum(residuals(mod_main, type = "pearson")ˆ2)
# p-value for Pearson chi-square test
pval_score <- pchisq(PearsonX2, df = mod_main$df.residual, lower.tail = FALSE)
# p-value for likelihood ratio test
pval_lrt <- pchisq(deviance(mod_main), df = mod_main$df.residual, lower.tail = FALSE)

The two statistics, likelihood ratio test and Pearson’s chi-square tests, give similar answers
(they are two ways of assessing the same hypothesis, and both have χ2 distributions under
the null hypothesis of no interaction.

Given our large sample size, it is unsurprising to find differences. Perhaps more interesting
is looking only at 5 years old versus 7 years old, as this is the age range where most changes
occur. We also report effect sizes.

# Take only a subset of the levels for age
counts_5vs7 <- xtabs(

count ~ age + frequency,
data = MULTI21_D1,
subset = age %in% c("5yo", "7yo"),
drop.unused.levels = TRUE)

counts_5vs7
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frequency
age never sometimes usually

5yo 53 80 87
7yo 19 73 177

# Compute chi-square test with 2x3 sub-table
chisq.test(counts_5vs7)

Pearson's Chi-squared test

data: counts_5vs7
X-squared = 42.575, df = 2, p-value = 5.688e-10

# Even stronger evidence of more verbalization

# compute effect size - Cramer's V without small sample adjustment
effectsize::cramers_v(chisq.test(counts_5vs7), adjust = FALSE)$Cramers_v

[1] 0.2950689

Example 15.3 (Racial discrimination in hiring). We consider a study from Bertrand and
Mullainathan (2004), who study racial discrimination in hiring based on the consonance
of applicants names; a similar example was recently featured in selection at the M.Sc.
level from Ondes. The authors created curriculum vitae for four applicants and randomly
allocated them a name, either one typical of a white person or a black person. The response
is a count indicating how many of the applicants were called back (out of two black and
two white) depending on their origin.

If there was no racial discrimination (null hypothesis), we would expect the average number
of times a white applicant was called back (but no black applicant) to be the same as a
single black applicant (but no white). Only the entries for different numbers of call-back
(either 0 vs 2, 0 vs 1 or 1 vs 2 for either race) are instructive about our question of interest.
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Table 15.1: Table 2 of Bertrand and Mullainathan (2004), with counts of callbacks out of four
CV (two white, two black) per combination.

no white 1 white 2 white

no black 1103 74 19
1 black 33 46 18
2 black 6 7 17

Under the null hypothesis, the model would have equal off-diagonal entries in Table 15.1.
We can test this null hypothesis of symmetry by creating a factor that has similar levels for
off-diagonal entries.

data(BM04_T2, package = "hecedsm")
# Fit the Poisson regression models
# Saturated model - one average per cell, 9 parameters
mod_alt <- glm(count ~ white*black,

data = BM04_T2,
family = poisson) # default log-link

# Symmetric model with 6 parameters (3 diag + 3 upper triangular)
mod_null <- glm(count ~ gnm::Symm(black, white),

data = BM04_T2,
family = poisson)

# Compare the two nested models using a likelihood ratio test
anova(mod_null, mod_alt, test = "LRT")

Analysis of Deviance Table

Model 1: count ~ gnm::Symm(black, white)
Model 2: count ~ white * black

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 3 28.232
2 0 0.000 3 28.232 3.246e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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# The saturated model need not be fitted - use deviance and residuals directly
pval <- pchisq(deviance(mod_null), df = mod_null$df.residual, lower.tail = FALSE)

We could use Pearson’s χ2 test too. In our example, the entries Eij for off-diagonal average
counts entries E01, E12, E02, etc., are obtained as the average of counts Eij = (Oij + Oji)/2
(i ̸= j), etc. The numeric value of the test statistic is 0, yielding a p-value less than 10−5.
There is thus strong evidence of racial discrimination.

## Alternative test (Pearson)
# Compute observed counts minus expected counts under model sum_i (O_i-E_i)ˆ2/E_i
# E_i is the expected count, estimated via average of non-diagonal entries 0.5*mu(0,2) + 0.5*mu(2,0)
PearsonX2 <- sum(residuals(mod_null, type = "pearson")ˆ2)
pchisq(PearsonX2, df = 3, lower.tail = FALSE)

We can also compute contrasts. Because the model is multiplicative, it makes sense to
report departures of symmetry by computing ratios µ̂ji/µ̂ij for i, j = 0, 1, 2 and i ̸= j. The
grid specification is as usual. Wald tests (computed on the log scale) are also reported.

library(emmeans)
# Compute contrasts as ratios counts01/counts10
emmeans(mod_alt, specs = c("black", "white")) |>

# Compute custom contrasts - USE THIS ORDER FOR CONTRASTS
contrast(method = # Compute joint test of

list("0vs1" = c(0,1,0,-1,0,0,0,0,0),
#(1 white, 0 black) vs (0 white, 1 black)
"0vs2" = c(0,0,1,0,0,0,-1,0,0),
"1vs2" = c(0,0,0,0,0,1,0,-1,0)),

type = "response")

contrast ratio SE df null z.ratio p.value
0vs1 0.446 0.0933 Inf 1 -3.858 0.0001
0vs2 0.316 0.1479 Inf 1 -2.461 0.0138
1vs2 0.389 0.1732 Inf 1 -2.120 0.0340

Tests are performed on the log scale
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In more general regression models, we build a design matrix with explanatory variables
X1, . . . , Xp. The mean model then reads

µ = exp(β0 + β1X1 + · · ·+ βpXp),

so the mean is multiplied by exp(βj) for an increase of one unit of Xj , ceteris paribus. If
βj < 0, exp(βj) < 1 and so we have a decrease of 100 · (1− exp(βj))% of the mean response.
Likewise, if βj > 0, the mean number increases by 100 · (exp(βj)− 1)%.

Example 15.4 (Road accidents and speed limits on the motorway in Sweden). Sweden is a
worldwide leader in road safety and has a long history of countermeasures to increase road
traffic safety, including the Vision Zero program. Back in the 1960s, a study was conducted
by the authorities to investigate the potential of speed limits on motorways to reduce the
number of accidents. The sweden data contains the number of accidents on 92 matching
days in both 1961 and 1962 (Svensson 1981); speed limits were in place on selected days in
either year.

To study the impact of the restrictions we can fit a Poisson model. Let Yi1 (respectively Yi2)
denote the number of accidents in 1961 (1962) on day i and let limitij denote a binary
indicator equal to one if speed limits were enforced on day i of year j. We set

Yi1 ∼ Po{exp(δi + αlimiti1)},
Yi2 ∼ Po{exp(δi + γ + αlimiti2)}, i = 1, . . . , 92.

The nuisance parameters δ1, . . . , δ92 control for changes in background number of accidents
and are of no practical interest, while γ denotes the change from 1961 to 1962. We are
interested here in assessing changes in the number of accidents due to the policy, α; of
secondary interest is γ, which determines whether there has been a change in the number
of accident in 1962 relative to 1961.

data(sweden, package = "hecedsm")
modswed <- glm(accidents ~ -1 + day + limit + year,

family = poisson("log"),
data = sweden)

tab <- car::Anova(modswed, type = 3)

The residual deviance is 107.95 for 90 degrees of freedom, suggests the overall fit is good,
despite the large number of nuisance parameters δ1, . . . , δ92. The coefficient associated to
limit is strongly significant: the estimated coefficient is α̂ = −0.29, indicates that speed
limits reduce the mean number of accidents by 25.3% on average. In contrast, the likelihood
ratio test reported in Table 15.2 shows that the change in the yearly number of accident
from 1961 to 1962, γ, is not significantly different from zero.
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Table 15.2: Analysis of deviance table (Type 3 decomposition) for the Poisson regression
model fitted to the Sweden traffic restrictions data: the table gives the p-value
for likelihood ratio tests comparing the full model including all covariates with
models in which a single explanatory is removed.

variable stat df p-value

day 9395.22 92 < 10−5

limit 46.29 1 < 10−5

year 0.70 1 0.401
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