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Motivating example
The data waiting contain the time in seconds from 17:59 until the next metro train departs
from station Université de Montréal on the blue line of the Montreal subway, collected over
three months (62 week days). The observations are positive and range from  to  seconds.

Figure 1: Histogram of waiting time with rugs for the observations.

4 57
data(waiting, package = "hecstatmod")1
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Statistical model
Our starting point for a statistical model is a data generating process.

We postulate that the data  originates from a probability distribution with (unknown) -
dimensional parameter vector .

Assuming that data are independent, the joint density or mass function factorizes

If data are identically distributed, then all marginal densities are the same, meaning
.

y p
θ ∈ Θ ⊆ Rp

f(y; θ) = ( ; θ) = ( ; θ) × ⋯ × ( ; θ).∏
i=1

n

fi yi f1 y1 fn yn

(⋅) = ⋯ (⋅)f1 fn
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Exponential model for waiting times
To model the waiting time, we may consider for example an exponential distribution

 with scale , whose density is

The expected value equals the scale, so .

exp(λ)Yi ∼iid λ > 0

f(x) = exp(−x/λ), x ≥ 0.λ−1

E(Y ) = λ
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Exponential model density
Under the exponential model, the joint density for the observations  is

The sample space is  while the parameter space is 

To estimate the scale parameter  and obtain suitable uncertainty measures, we need a
modelling framework.

, … ,y1 yn

f(y) = f( ) = exp(− /λ) = exp(− /λ)∏
i=1

n

yi ∏
i=1

n

λ−1 yi λ−n ∑
i=1

n

yi

= [0, ∞ ,Rn
+ )n (0, ∞).

λ
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Likelihood
De�nition 1 (Likelihood) The likelihood  is a function of the parameter vector  that
gives the probability (or density) of observing a sample under a postulated distribution,
treating the observations as �xed,

where  denotes the joint density or mass function of the -vector containing the
observations.

In practice, we often work with the log likelihood .

L(θ) θ

L(θ; y) = f(y; θ),

f(y; θ) n

ℓ(θ; y) = ln L(θ; y)

6



Exponential log likelihood
The log likelihood function for independent and identically distributions observations is

so for the exponential model,

ℓ(θ; y) = ln f( ; θ)∑
i=1

n

yi

ℓ(λ) = −n ln λ − .
1
λ

∑
i=1

n

yi
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Maximum likelihood estimator
De�nition 2 The maximum likelihood estimator (MLE)  is the vector value that maximizes
the likelihood,1

θ̂

= L(θ; y) = ℓ(θ; y).θ̂ argmaxθ∈Θ argmaxθ∈Θ

1. The natural logarithm  is a monotonic transformation, so the MLE is best calculated on the log scale to avoid numerical
under�ow.

ln
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Intuition behind maximum likelihood
In the discrete setting, the mass function gives the probability of an outcome.

We want to �nd the parameter values that make the data the most likely to have been
generated.

Whatever we observe, we have expected to observe
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Deriving the MLE
We can use calculus to �nd the maximum of the function .

Taking �rst derivative and setting the result to zero, we �nd

and solving for  gives 

The second derivative of the log likelihood is  and

plugging  gives  which is negative. Therefore,  is indeed a maximizer.

ℓ(λ)

= − + = 0.
dℓ(λ)

dλ

n

λ

1
λ2 ∑

i=1

n

yi

λ = /n.λ̂ ∑n
i=1 yi

ℓ(λ)/d = n( − 2 ),d2 λ2 λ−2 λ−3 ȳ̄̄

λ = ȳ̄̄ −n/ ,ȳ̄̄
2

λ̂
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Exponential log likelihood and MLE

Figure 2: Exponential log likelihood function for the waiting time, with the maximum likelihood estimate at dashed vertical line
(right).
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Invariance of maximum likelihood estimators
If  for  is a function of the parameter vector, then  is the
maximum likelihood estimator of .

For example, we could compute the maximum likelihood estimate of the probability of

waiting more than one minute,  or using R built-in
distribution function pexp.

Pick whichever parametrization is most convenient for the optimization!

g(θ) : ↦Rp Rk k ≤ p g( )θ̂
g(θ)

Pr(T > 60) = exp(−60/ ) = 0.126,λ̂

# Note: default R parametrization for the exponential is 1

# in terms of rate, i.e., the inverse scale parameter2

pexp(q = 60, rate = 1/mean(waiting), lower.tail = FALSE)3

## [1] 0.1264
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Score vector
The gradient of the log likelihood

is termed score function.

Under regularity conditions (see Chapter 4 of Davison ( )), the MLE solves the score
equation

U(θ) =
∂ℓ(θ; y)

∂θ

2003

U( ) = 0.θ̂
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Information
How do we measure the precision of our estimator? The observation matrices encode the

curvature of the log likelihood and provide information about the variability of 

The observed information matrix is the hessian of the negative log likelihood

evaluated at the maximum likelihood estimate  so  Under regularity conditions, the
expected information, also called Fisher information matrix, is

Both the Fisher (or expected) and the observed information matrices are symmetric.

.θ̂

j(θ; y) = − ,
ℓ(θ; y)∂2

∂θ∂θ⊤

,θ̂ j( ).θ̂

i(θ) = E {U(θ; Y )U(θ; Y } = E {j(θ; Y )})⊤
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Observed and expected information matrix for exponential data
The observed and expected information of the exponential model for a random sample

 parametrized in terms of scale  are

since  and expectation is a linear operator. Both expected and observed
information matrix coincide when evaluated at the maximum likelihood estimator,

 for  (i.e., the sample mean), but this isn’t the case in general.

, … , ,Y1 Yn λ,

j(λ; y)

i(λ)

= − = +
ℓ(λ)∂2

∂λ2

n

λ2

2
nλ3 ∑

i=1

n

yi

= + E( ) =
n

λ2

2
nλ3 ∑

i=1

n

Yi
n

λ2

E( ) = λYi

i( ) = j( ) = n/λ̂ λ̂ ȳ̄̄
2 =λ̂ ȳ̄̄
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Maximization of the likelihood

• To obtain the maximum likelihood estimator, we will typically �nd the value of the vector 

that solves the score vector, meaning 

• This amounts to solving simultaneously a -system of equations by setting the derivative
with respect to each element of  to zero.

• If  is a positive de�nite matrix (i.e., all of it’s eigenvalues are positive), then the vector

 is the maximum likelihood estimator.

θ

U( ) = .θ̂ 0p

p
θ

j( )θ̂

θ̂
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Gradient-based optimization (Newton–Raphson algorithm)
If we consider an initial value  then under suitable regularity conditions, a �rst order

Taylor series expansion of the score in a neighborhood  of the MLE  gives

and solving this for  (provided the  matrix  is invertible), we get

which suggests an iterative procedure from a starting value  in the vicinity of the mode
until the gradient is approximately zero.

,θ†

θ† θ̂

0p = U( ) + ( − )θ̂ ≃⋅ ∂ℓ(θ)
∂θ

∣
∣
∣
θ=θ†

ℓ(θ)∂2

∂θ∂θ⊤

∣

∣
∣
θ=θ†

θ̂ θ†

= U( ) − j( )( − )θ† θ† θ̂ θ†

θ̂ p × p j( )θ̂

+ ( )U( ),θ̂ ≃⋅
θ† j−1 θ† θ†

θ†
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Weibull distribution
The distribution function of a Weibull random variable with scale  and shape  is

while the corresponding density is

The Weibull distribution includes the exponential as special case when  The expected
value of  is 

λ > 0 α > 0

F(x; λ, α) = 1 − exp{−(x/λ }, x ≥ 0, λ > 0, α > 0,)α

f(x; λ, α) = exp{−(x/λ }, x ≥ 0, λ > 0, α > 0.
α

λα
xα−1 )α

α = 1.
Y ∼ Weibull(λ, α) E(Y ) = λΓ(1 + 1/α).
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Maximum likelihood of a Weibull sample
The log likelihood for the  model is

The gradient of this function is easily obtained by differentiation

Numerical optimization to obtain the maximum likelihood estimate of the Weibull distribution (no closed-form expression for the MLE).

Weibull(λ, α)

ℓ(λ, α) = n ln(α) − nα ln(λ) + (α − 1) ln − .∑
i=1

n

yi λ−α ∑
i=1

n

yα
i

∂ℓ(λ, α)
∂λ

∂ℓ(λ, α)
∂α

= − + α
nα

λ
λ−α−1 ∑

i=1

n

yα
i

= − n ln(λ) + ln − × ln( ).
n

α
∑
i=1

n

yi ∑
i=1

n

( )yi

λ

α yi

λ

R demo
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Quantile quantile plot
A quantile-quantile plot shows

• on the -axis, the theoretical quantiles , where  denotes the
quantile function of the estimated model

• on the -axis, the ordered empirical quantiles 

If the model is adequate, the ordered values should follow a straight line with unit slope
passing through the origin.

x {i/(n + 1)}F̂
−1

F̂
−1

y ≤ ⋯y(1) y(n)
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Optimization routines
The MASS package includes some wrappers to estimate models

# Estimate parameters via optimization routine1

fit_weibull <- MASS::fitdistr(x = waiting, densfun = "weibull")2

# Extract parameters3

fit_weibull$estimate4

## shape scale 5

##   2.6  32.66

7

# Compute positions for QQ plot8

n <- length(waiting) # sample size9

xpos <- qweibull( # quantile function10

p = ppoints(n), # pseudo uniform variables11

shape = fit_weibull$estimate['shape'],12

scale = fit_weibull$estimate['scale'])13

ypos <- sort(waiting)14

#plot(x = xpos, y = ypos, panel.first = {abline(a = 0, b = 1)})15
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Goodness-of-�t checks

Figure 3: Quantile-quantile plots for exponential (left) and Weibull (right) models, with 95% pointwise simulation intervals.

22



Sampling distribution
The sampling distribution of an estimator  is the probability distribution induced by the
underlying data (recall that the data inputs are random, so the output is random too).

Denote the true value of the parameter vector  Under suitable regularity conditions, an
application of the central limit gives

Similar approximations for the sampling distribution of  show that

where the covariance matrix is the inverse of the Fisher information.1

θ̂

.θ0

i( U( ) ( , ).θ0)−1/2 θ0 ∼⋅ normalp 0p Ip

θ̂

{ , (θ)}θ̂ ∼⋅ normalp θ0 i−1

1. In practice, the true parameter value  is unknown, so we evaluate the information at the MLE . This is justi�ed by the fact that

both the expected and observed information,  and , converge to  as 

θ0 θ̂

i( )θ̂ j( )θ̂ i( )θ0 n → ∞
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Covariance matrix and standard errors for the Weibull distribution
We can use these results for statistical inference! The standard errors are simply the square

root of the diagonal entries of the inverse Hessian matrix, .se( ) = [diag{ ( )}θ̂ j−1 θ̂ ]1/2

# 'opt_weibull' is the result of the optimization routine1

# which minimizes the negative of the log likelihood2

# The Hessian matrix of the negative log likelihood3

# is evaluated at the MLE (observed information)4

(mle_weibull <- opt_weibull$par)5

## [1] 32.6  2.66

(obsinfo_weibull <- opt_weibull$hessian)7

##        [,1]   [,2]8

## [1,]  0.396 -0.8189

## [2,] -0.818 16.99810

# Covariance matrix is inverse of information11

(vmat_weibull <- solve(obsinfo_weibull))12

##       [,1]   [,2]13

## [1,] 2.804 0.134914

## [2,] 0.135 0.065315

# Standard errors16

(se_weibull <- sqrt(diag(vmat_weibull)))17

## [1] 1.675 0.25618
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Wald-based con�dence intervals
From these, one can readily  Wald-based con�dence intervals for parameters from

, where for ,

where  is the  quantile of the standard normal distribution.

These con�dence intervals are symmetric.

(1 − α)
θ θj (j = 1, … , p)

± se( ),θ̂ j z1−α/2 θ̂ j

z1−α/2 1 − α/2
# Confidence intervals for lambda and alpha1

mle_weibull[1] + qnorm(c(0.025, 0.975))*se_weibull[1]2

## [1] 29.3 35.83

mle_weibull[2] + qnorm(c(0.025, 0.975))*se_weibull[2]4

## [1] 2.1 3.15
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Delta-method and transformations
The asymptotic normality result can be used to derive standard errors for other quantities
of interest.

If , where  for  is a differentiable function of  non-vanishing
at  then

where

The variance matrix and the jacobian are evaluated at the maximum likelihood estimate 

ϕ = g(θ) g : →Rp Rk k ≤ p θ
θ0

normal( , ∇ i( ∇ϕ),ϕ̂ ∼⋅ ϕ0 ϕ⊤ θ0)−1

∇ϕ = [∂ϕ/∂ , … , ∂ϕ/∂ .θ1 θp]⊤

.θ̂
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Probability of waiting for exponential model.
Consider the probability of waiting more than one minute,  The
maximum likelihood estimate is, by invariance,  and the gradient of  with respect to
the scale parameter is 

ϕ = g(λ) = exp(−60/λ).
0.126 g

∇ϕ = ∂ϕ/∂λ = 60 exp(−60/λ)/ .λ2

lambda_hat <- mean(waiting)1

phi_hat <- exp(-60/lambda_hat)2

# Derivative of phi wrt lambda3

dphi <- function(lambda){60*exp(-60/lambda)/(lambda^2)}4

# Inverse of observed information5

V_lambda <- lambda_hat^2/length(waiting)6

# Variance of phi7

V_phi <- dphi(lambda_hat)^2 * V_lambda8

# Standard error of phi9

(se_phi <- sqrt(V_phi))10

## [1] 0.033111
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Comparison of nested models

• We consider a null hypothesis  that imposes restrictions on the possible values of 
can take, relative to an unconstrained alternative 

• There are two nested models: a full model (alternative), and a reduced or null model that is
a subset of the full model where we impose  restrictions on the parameters.

• For example, the exponential distribution is a special case of the Weibull distribution if
.

H0 θ
.Ha

q

α = 1
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Likelihood tests
Recall that the null hypothesis  tested is “the reduced model is an adequate
simpli�cation of the full model”.

The likelihood provides three main classes of statistics for testing this hypothesis, namely

• likelihood ratio tests statistics, denoted  which measure the drop in log likelihood

(vertical distance) from  and 

• Wald tests statistics, denoted  which consider the standardized horizontal distance

between  and 

• score tests statistics, denoted  which looks at the scaled slope of  evaluated only at 
(derivative of ).

where  is the MLE with the constraints under the null, and  the MLE of the full model.

H0

R,
ℓ( )θ̂ ℓ( ).θ̂0

W ,
θ̂ .θ̂0

S, ℓ, θ̂0
ℓ

θ̂0 θ̂
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Visualizing likelihood tests

Figure 4: Log-likelihood curve and the three likelihood-based tests, namely Wald, likelihood ratio and score tests.
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Likelihood-based test statistics
The three main classes of statistics for testing a simple null hypothesis  against
the alternative  are1

If  is true, the three test statistics follow asymptotically a  distribution under a null

hypothesis  where the degrees of freedom  are the number of restrictions.

: θ =H0 θ0
: θ ≠Ha θ0

W( )θ0

R( )θ0

S( )θ0

= ( − j( )( − ),θ̂ θ0)⊤ θ̂ θ̂ θ0

= 2 {ℓ( ) − ℓ( )} ,θ̂ θ0

= ( ) ( )U( ).U ⊤ θ0 i−1 θ0 θ0

(Wald)

(likelihood ratio)

(score)

H0 χ2
q

,H0 q

1. If , then we replace  by , optimizing over the remaining unconstrained parameters.q ≠ p θ θ̂
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Unidimensional version of likelihood statistics
For scalar  with  signed versions of these statistics exist,

If the null hypothesis  holds true, then , etc.

θ q = 1,

w( )θ0

r( )θ0

s( )θ0

= ( − )/se( )θ̂ θ0 θ̂

= sign( − θ)θ̂ [2 {ℓ( ) − ℓ(θ)}]θ̂
1/2

= ( )U( )i−1/2 θ0 θ0

(wald test)

(directed likelihood root)

(score test)

: θ =H0 θ0 w( ) normal(0, 1)θ0 ∼⋅
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Comparisons of tests
Asymptotically, all the test statistics are equivalent (in the sense that they lead to the same
conclusions about ) but they are not born equal.

• The likelihood ratio test statistic is normally the most powerful of the three tests
(preferable).

• The likelihood ratio test is invariant to interest-preserving reparametrizations

• The score statistic  only requires calculation of the score and information under 

(because by de�nition ), so it can be useful in problems where calculations of
the maximum likelihood estimator under the alternative is costly or impossible.

• The Wald test is easiest to derive, but it’s coverage can be dismal if the sampling

distribution of  is strongly asymmetric.

H0

S H0
U( ) = 0θ̂

θ̂
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Likelihood surface and con�dence regions

Figure 5: Log likelihood surface for the Weibull model with 10%, 20%, , 90% likelihood ratio con�dence regions (white contour
curves). Higher log likelihood values are indicated by darker colors.
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Wald test to compare exponential vs Weibull model
We can test whether the exponential model is an adequate simpli�cation of the Weibull
distribution by imposing the restriction . We compare the squared Wald
statistics to a .

We reject the null hypothesis, meaning the exponential submodel is not an adequate
simpli�cation of the Weibull ).

: α = 1H0
χ2

1
# Calculate Wald statistic1

wald_exp <- (mle_weibull[2] - 1)/se_weibull[2]2

# Compute p-value3

pchisq(wald_exp^2, df = 1, lower.tail = FALSE)4

## [1] 3.61e-105

# p-value less than 5%, reject null6

# Obtain 95% confidence intervals7

mle_weibull[2] + qnorm(c(0.025, 0.975))*se_weibull[2]8

## [1] 2.1 3.19

# 1 is not inside the confidence interval, reject null10

(α ≠ 1
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Likelihood tests for scalar parameters

• Sometimes, we may want to perform hypothesis test or derive con�dence intervals for
selected components of the model if we are interested in a single component of the model
(or a scalar transformation .

• In this case, the null hypothesis only restricts part of the space and the other parameters,
termed nuisance, are left unspeci�ed — the question then is what values to use for
comparison with the full model.

• It turns out that the values that maximize the constrained log likelihood are what one
should use for the test, and the particular function in which these nuisance parameters are
integrated out is termed a pro�le likelihood.

ϕ = g(θ)
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Pro�le likelihood
Consider a parametric model with log likelihood function  whose -dimensional
parameter vector  can be decomposed into a -dimensional parameter of
interest  and a -dimensional nuisance vector 

We can consider the pro�le likelihood  a function of  alone, which is obtained by

maximizing the likelihood pointwise at each �xed value  over the nuisance vector 

ℓ(θ) p
θ = (ψ, φ) q

ψ (p − q) φ.
,ℓp ψ

ψ0 ,φψ0

(ψ) = ℓ(ψ, φ) = ℓ(ψ, ).ℓp max
φ

φ̂ψ
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Pro�le likelihood for shape of a Weibull model
Consider the shape parameter  as parameter of interest, and the scale  as
nuisance parameter. Using the gradient,

we �nd that the value of the scale that maximizes the log likelihood for given  is

and plugging in this value gives a function of  alone, thereby also reducing the optimization
problem for the Weibull to a line search along .

ψ ≡ α φ ≡ λ

∂ℓ(λ, α)
∂λ

= − + α
nα

λ
λ−α−1 ∑

i=1

n

yα
i

α

= .λ̂α ( )1
n

∑
i=1

n

yα
i

1/α

α
(α)ℓp
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Pro�le for the shape

Figure 6: Pro�le log likelihood for , shown as a dashed gray line (left) and as a transect (right). The pro�le on the right hand panel
has been shifted vertically to be zero at the MLE; the dashed horizontal lines denote the cutoff points for the 95% and 99%
con�dence intervals.

α
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Analogy for the pro�le log likelihood

• If one thinks of these contours lines as those of a topographic map, the pro�le likelihood
corresponds in this case to walking along the ridge of both mountains along the 
direction, with the right panel showing the elevation gain/loss.

• The corresponding elevation pro�le on the right of  with cutoff values.

• We would need to obtain numerically using a root �nding algorithm the limits of the
con�dence interval on either side of , but it’s clear that  is not inside even the 99%
con�dence interval.

ψ

Figure 6

α̂ α = 1
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Pro�le log likelihood for the Weibull expected value

• As an alternative, we can use numerical optimization to compute the pro�le for another
function. Suppose we are interested in the expected waiting time, which according to the
model is .

• To this effect, we reparametrize the model in terms of , where .

• We then make a wrapper function that optimizes the log likelihood for �xed value of ,
then returns ,  and .

Create a function to compute the pro�le-based con�dence intervals.

μ = E(Y ) = λΓ(1 + 1/α)

(μ, α) λ = μ/Γ(1 + 1/α)

μ
α̂μ μ (μ)ℓp

R demo
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Computation of con�dence intervals
To get the con�dence intervals for a scalar parameter, there is a trick that helps with the
derivation.

1. Compute the directed likelihood root

over a �ne grid of 

2. Fit a smoothing spline with response  and explanatory .

3. Predict the curve at the standard normal quantiles  and 

4. Return these values as con�dence interval.

r(ψ) = sign(ψ − ){2 ( ) − 2 (ψ)ψ̂ ℓp ψ̂ ℓp }1/2

ψ

y = ψ x = r(ψ)

zα/2 z1−α/2
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Pro�le for the mean of the Weibull

Figure 7: Signed likelihood root (left) and shifted pro�le log likelihood (right) as a function of the expected value  in the Weibull
model.

μ
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Comparison of models

• The likelihood can also serve as building block for model comparison: the larger , the
better the �t.

• However, the likelihood doesn’t account for model complexity in the sense that more
complex models with more parameters lead to higher likelihood.

• This is not a problem for comparison of nested models using the likelihood ratio test
because we look only at relative improvement in �t.

• There is a danger of over�tting if we only consider the likelihood of a model.

ℓ( )θ̂
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Information criteria
Information criteria combine the log likelihood, measuring how well the model �ts the data,
with a penalty for the number of parameters.

where  is the number of parameters in the model.

The smaller the value of Akaike’s information criterion  (or of the Bayesian information
criterion ), the better the model �t.

Note that information criteria do not constitute formal hypothesis tests on the parameters,
but they can be used to compare models that are not nested (but noisy proxy!)

AIC

BIC

= −2ℓ( ) + 2pθ̂

= −2ℓ( ) + p ln(n),θ̂

p

AIC
BIC
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Learning objectives

• Learn the terminology associated with likelihood-based inference

• Derive closed-form expressions for the maximum likelihood estimator in simple models

• Using numerical optimization, obtain parameter estimates and their standards errors using maximum likelihood

• Use large-sample properties of the likelihood to derive con�dence intervals and tests

• Use information criteria for model selection

Learning objectives
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