Statistical modelling 06. Linear models Léo Belzile, HEC Montréal 2024

Model assumptions

There are four main assumptions of the linear model specification

- linearity and additivity: the mean of $Y_i \mid \mathbf{x}_i$ is $\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$
- homoscedasticity: the error variance σ^2 is constant
- independence of the errors/observations conditional on covariates
- normality

$$
Y_i \mid \mathbf{x}_i \sim \mathsf{normal}(\mathbf{x}_i {\boldsymbol \beta}, \sigma^2).
$$

Read the �ne prints

Our strategy is to create graphical diagnostic tools or perform hypothesis tests to ensure that there is no gross violation of the model underlying assumptions.

- When we perform an hypothesis test, we merely fail to reject the null hypothesis, either because the latter is true or else due to lack of evidence.
- The same goes for checking the validity of model assumptions.
- Beware of over-interpreting diagnostic plots: the human eye is very good at finding spurious patterns…

- All interactions are included.
- There are no omitted explanatories from the model,
- \bullet The relationship between Y_i and X_j is linear.
- The effect is additive.

HEC MONTREAL

Assumption 1 - mean model specification

The mean is

$E(Y_i | \mathbf{x}_i) = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$

Implicitly,

Diagnostic plots for linearity

Use ordinary residuals \boldsymbol{e} , which are uncorrelated with fitted values $\widehat{\boldsymbol{y}}$ and explanatory variables (i.e., columns of \mathbf{X}).

- $\bullet\,$ Plots of residuals \bm{e} against fitted values $\widehat{\bm{y}}$
- \bullet Plot of residuals e against columns from the model matrix, $\mathbf X$
- Plot of residuals e against omitted variables

Any local pattern or patterns (e.g., quadratic trend, cycles, changepoints, subgroups) are indicative of misspecification of the mean model.

Use local smoother (GAM or LOESS) to detect trends.

Examples of residual plots

Look for pattern in the y -axis, not the x -axis!

Figure 1: Scatterplots of residuals against fitted values. The first two plots show no departure from linearity (mean zero). The third plot shows a clear quadratic pattern, suggesting the mean model is misspecified. Note that the distribution of the fitted value need not be uniform, as in the second panel which shows more high fitted values.

Examples

Figure 2: Scatterplot of residuals against explanatory (left) and an omitted covariate (right). We can pick up a forgotten interaction between BMI and smoker/obese and a linear trend for the number of children.

Examples for the college data

- [1](http://localhost:3851/?print-pdf=) data(college, package = "hecstatmod")
- [2](http://localhost:3851/?print-pdf=) linmod.college1 <- $lm(salary \sim rank + field + sex + service + years, data = college)$
- [3](http://localhost:3851/?print-pdf=) car::residualPlots(linmod.college1, test = FALSE, layout = $c(2,3)$)

Remedy for mean model specification

Fix the mean model

- Add covariates that are important explanatories
- Include interactions if necessary
- For residual patterns, specify the effect of nonlinear terms via penalized splines
- Transformations

Assumption 2: homoskedasticity (equal variance)

The variance is the same for all observations, $\mathsf{Va}(Y_i\mid\mathbf{x}_i)=\sigma^2$ Typical heteroscedasticity patterns arise when

- Variance varies per levels of a categorical variable
- Variance increases with the response (typically multiplicative models)
- Data are drawn from a distribution whose variance depends on the mean, e.g., Poisson

Diagnostic for equal variance

Use externally studentized residuals r_i , which have equal variance. Hypothesis tests:

- Levene test (fit ANOVA to $|r_{ij} \overline{r_j}|$ as a function of group index $j \in \{1, \ldots, J\})$
- Breusch–Pagan test (popular in economics, fits linear regression to e_i^2)
- Bartlett test (normal likelihood ratio test for different variance, but very sensitive to normality assumption so not recommended)

Graphical diagnostics

• Plot (absolute value of) r_i against fitted values (spread-level plot)

i

Examples of spread level plots

Figure 3: Plot of externally studentized residuals against �tted value (left) and categorical explanatory (right). Both clearly display heteroscedasticity.

Heteroscedasticity tests for college data

```
1 # Fit ANOVA to |rstudent - mean|rstudent||
 2 r <- rstudent(linmod.college1)
 3 car::leveneTest(r \sim rank, center = "mean", data = college)
 4 ## Levene's Test for Homogeneity of Variance (center = "mean")
 5 ## Df F value Pr(>F) 
 6 ## group 2 50 <2e-16 ***
 7 ## 394 
 8 ## ---
 9 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
10 # Breusch-Pagan (with a score test)
11 car::ncvTest(linmod.college1, var.formula = \sim rank)
12 ## Non-constant Variance Score Test 
13 ## Variance formula: ~ rank 
14 ## Chisquare = 70, Df = 2, p = 6e-16
```


Consequences of unequal variance

Figure 4: Histogram of the null distribution of p -values obtained through simulation using the classical analysis of variance F -test (left) and Welch's unequal variance alternative (right), based on 10 000 simulations. Each simulated sample consist of 50 observations from a $\sf normal(0,1)$ distribution and 10 observations from $\sf normal(0,9)$. The uniform distribution would have 5% in each of the 20 bins used for the display.

Remedy 1 - specify the variance structure

Specify a function for the variance, e.g.,

- σ_j for level j of a categorical variable,
- $\bullet~\sigma^2(\bm v_i)=g(\bm v_i;\bm\theta)$ for some suitable transformation $g(\cdot):\mathbb{R}\to (0,\infty)$, some covariate $\bm v$ $\bm v$ and parameter $\bm \theta$.

A model specification enables the use of likelihood ratio tests. The model can be �tted via restricted maximum likelihood using the function gls from package nlme.

Example of heteroscedasticity for the college data

For the college data, we set $Y_i \sim \mathsf{normal}(\mathbf{x}_i \boldsymbol \beta, \sigma_{\mathsf{rank}_i}^2)$ with three different variance rank*ⁱ*

parameters. This seemingly corrects the heteroscedasticity.

- [1](http://localhost:3851/?print-pdf=) library(nlme) # R package for mixed models and variance specification
- [2](http://localhost:3851/?print-pdf=) linmod.college2 <- nlme::gls(

```
3 model = salary \sim rank + field + sex + service, # mean specification
```

```
4 weights = nlme::varIdent(form = \sim 1 | rank), # constant variance per rank
```

```
5 data = college)
```

```
6 plot(linmod.college2)
```


Remedy 2 - use a sandwich matrix for the errors

Economists often use sandwich estimators (White 1980), whereby we replace the estimator of the covariance matrix of $\widehat{\bm{\beta}},$ usually $S^2(\mathbf{X}^\top\mathbf{X})^{-1}$, by a sandwich estimator of the form

$$
\widehat{\mathsf{Va}}_{\mathsf{HCE}}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \boldsymbol{\Omega} \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1}
$$

with $\boldsymbol{\Omega}$ a diagonal matrix.

Popular choices are heteroscedastic consistent matrices ([MacKinnon and White 1985](http://localhost:3851/?print-pdf=#/references)), e.g., $\text{taking diag}(\boldsymbol{\Omega})_i = e_i^2/(1-h_{ii})^2,$ the so-called HC $_3.$

Example of sandwich matrix

Replace $\mathsf{Va}(\widehat{\boldsymbol{\beta}})$ by $\widehat{\mathsf{Va}}_{\mathsf{HCE}}(\widehat{\boldsymbol{\beta}})$ in the formula of Wald tests.

```
1 vcov_HCE <- car::hccm(linmod.college1)
2 # Wald tests with sandwich matrix
3 w <- coef(linmod.college1) / sqrt(diag(vcov_HCE))
4 # Variance ratios
5 diag(vcov_HCE) / diag(vcov(linmod.college1))
6 ## (Intercept) rankassociate rankfull fieldtheoretical 
 7 ## 0.27 0.29 0.62 0.99 
8 ## sexwoman service years 
 9 ## 0.41 2.19 1.76
10 # Compute p-values
11 pval \langle -2 \times p(t) \rangle,
12 df = linmod.college1$df.residual,
13 lower.tail = FALSE)
```


Multiplicative data of the form

 $\left(\begin{array}{c}\text{quantity depending}\\ \text{on the two integers}\end{array}\right)\times\left(\begin{array}{c}\text{quantity depending only}\\ \text{on the positive number}\end{array}\right)$ on the treatment used

tend to have higher variability when the response is larger.

HEC MONTREAL

quantity depending only on the particular unit

Remedy 3 - Variance-stabilizing transformations

A log-transformation of the response, $\ln Y$, makes the model $\mathop{\sf additive}\nolimits,$ assuming $Y>0.$ Write the log-linear model

in the original response scale as

$$
Y=\exp(\beta_0+\beta_1X_1+\cdots+\beta_pX_p)\cdot\mathrm{e}
$$

and thus

$$
\mathsf{E}(Y\mid \mathbf{X})=\exp(\beta_0+\beta_1X_1+\cdots+\beta_pX_p)\times \mathsf{E}
$$

$\exp(\varepsilon),$

$\mathsf{E}\{\exp(\varepsilon) \mid \mathbf{X}\}.$

$$
\ln Y = \beta_0 + \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon
$$

Lognormal model

If $\varepsilon \mid \mathbf{x} \sim \mathsf{normal}(\mu, \sigma^2)$, then $\mathsf{E}\{\exp(\varepsilon) \mid \mathbf{x}\} = \exp(\mu + \sigma^2/2)$ and $\exp(\varepsilon)$ follows a log-normal distribution.

An increase of one unit of X_j leads to a β_j increase of $\ln Y$ without interaction or nonlinear $\mathop{\mathsf{term}}$ for X_j , and this translates into a multiplicative increase of a factor $\exp(\beta_j)$ on the original data scale for $Y.$

- If $\beta_j = 0$, $\exp(\beta_j) = 1$ and there is no change
- If $\beta_j < 0$, $\exp(\beta_j) < 1$ and the mean decreases with X_j
- If $\beta_j > 0$, $\exp(\beta_j) > 1$ and the mean increases with X_j

Interpretation of log linear models

Compare the ratio of $\mathsf{E}(Y \mid X_1 = x+1)$ to $\mathsf{E}(Y \mid X_1 = x)$,

Thus, $\exp(\beta_1)$ represents the ratio of the mean of Y when $X_1 = x+1$ in comparison to that when $X_1=x$, *ceteris paribus (*and provided this statement is meaningful). The percentage change is

- $1 \exp(\beta_j)$ if $\beta_j < 0$ and
- $\exp(\beta_j) 1$ if $\beta_j > 0$.

$$
\frac{\mathsf{E}(Y\ |\ X_1=x+1,X_2,\ldots,X_p)}{\mathsf{E}(Y\ |\ X_1=x,X_2,\ldots,X_p)}=\frac{\exp\{\beta_1(x+1)\}}{\exp(\beta_1 x)}=\exp(\beta_1).
$$

More general transformations

Consider the case where both Y and X_1 is log-transformed, so that

and thus we can rearrange the expression so that

-
-
- $\beta_1 Y$ *X*¹

$$
Y=X_1^{\beta_1}\exp(\beta_0+\beta_2X_2+\cdots+\beta_pX_p+\varepsilon)
$$

Taking the derivative of the left hand side with respect to $X_1>0,$ we get

$$
\frac{\partial Y}{\partial X_1}=\beta_1X_1^{\beta_1-1}\exp(\beta_0+\beta_2X_2+\cdots+\beta_pX_p+\varepsilon)=
$$

$$
\frac{\partial X_1}{X_1}\beta_1=\frac{\partial Y}{Y};
$$

 ${\mathsf t}$ his is a partial **elasticity**, so β_1 is interpreted as a β_1 percentage change in Y for each percentage increase of X_1 , *ceteris paribus.*

Independence assumption

Follows from sampling scheme (*random sample*), need context to infer whether this assumption holds.

- repeated measures (correlated observations).
- longitudinal data: repeated measurements are taken from the same subjects (few time points)
- time series: observations observed at multiple time periods or in space.

Typical violations include

24

Consequences of dependence

Nearby things are more alike, so the amount of 'new information' is smaller than the sample size.

This means we are overcon�dent and will reject the null hypothesis more often then we should if the null is true (inflated Type I error, or false positive).

When observations are positively correlated, the estimated standard errors reported by the software are too small.

Consequences of correlated data

Figure 5: Percentage of rejection of the null hypothesis for the F -test of equality of means for the one way ANOVA with data generated with equal mean and variance from an equicorrelation model (within group observations are correlated, between group observations are independent). The nominal level of the test is 5%.

HEC MONTREAL

25 observations per group

Fixes for group structure and autocorrelation

Chapter 6 will deal with **correlated data** The main idea is to assume instead that

$$
\boldsymbol{Y}\mid \mathbf{X} \sim \text{normal}_n(\mathbf{X}\boldsymbol{\beta},\boldsymbol{\Sigma})
$$

and model explicitly the $n \times n$ variance matrix $\boldsymbol{\Sigma}$, parametrized in terms of covariance parameters $\boldsymbol{\psi}$.

Time series and longitudinal data

For time series, we can look instead at a correlogram, i.e., a bar plot of the correlation between two observations h units apart as a function of the lag $h.$ For y_1,\ldots,y_n and constant time lags $h=0,1,\ldots$ units, the autocorrelation at lag h is ([Brockwell and Davis 2016](http://localhost:3851/?print-pdf=#/references), Definition 1.4.4)

$$
r(h)=\frac{\gamma(h)}{\gamma(0)}, \qquad \gamma(h)=\frac{1}{n}\sum_{i=1}^{n-|h|}(y_i-\overline{y})(y_{i+h}-\overline{y})
$$

Example of correlogram

Figure 6: Correlogram of independent observations (left) and the ordinary residuals of the log-linear model fitted to the air passengers data (right). While the mean model of the latter is seemingly correctly specified, there is residual dependence between monthly observations and yearly (at lag 12). The blue lines give approximate pointwise 95% confidence intervals for white noise (uncorrelated observations). **HEC MONTREAL** Without doubt the least important assumption.

Ordinary least squares are **best linear unbiased estimators** (BLUE) if the data are independent and the variance is constant, regardless of normality.

They are still unbiased and consistent if the variance is misspecified. Tests for **parameters** are valid provided that each coef�cient estimator is based on a **suf�cient number of observations**.

• watch out for interactions with categorical variables (small subgroups).

-
-

Quantile-quantile plots

Produce Student quantile-quantile plots of externally studentized residuals $R_i \sim \textsf{Student}(n-p-2).$

Figure 7: Histogram (left) and Student quantile-quantile plot (right) of the jackknife studentized residuals. The left panel includes a kernel density estimate (black), with the density of Student distribution (blue) superimposed. The right panel includes pointwise 95% confidence bands calculated using a bootstrap.

 \mathcal{S}

Interpretation of quantile-quantile plots

Figure 8: Quantile-quantile plots of non-normal data, showing typical look of behaviour of discrete (top left), heavy tailed (top right), skewed (bottom left) and bimodal data (bottom right).

Remedy for normality

- If data arise from different families (Poisson or negative binomial counts, binomial data for proportions and binary, etc.), use **generalized linear models**.
- Box–Cox type transformations

Box–Cox transformation

For strictly positive data, one can consider a Box–Cox transformation,

The cases

- $\lambda = -1$ (inverse),
- $\lambda = 1$ (identity) and
- $\lambda = 0$ (log-linear model)

are perhaps the most important because they yield interpretable models.

$$
y(\lambda)=\left\{\begin{matrix} (y^\lambda-1)/\lambda, & \lambda\neq 0\\ \ln(y), & \lambda=0. \end{matrix}\right.
$$

Inference for Box–Cox models

If we assume that $\boldsymbol{Y}(\lambda) \sim \mathsf{normal}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$, then the likelihood is

$$
L(\lambda, \boldsymbol\beta, \sigma; \boldsymbol{y}, \mathbf{X}) = (2\pi \sigma^2)^{-n/2} J(\lambda, \boldsymbol{y}) \times \\ \exp\biggl[-\frac{1}{2\sigma^2} \{ \boldsymbol{y}(\lambda) - \mathbf{X} \boldsymbol\beta \}^\top \{ \boldsymbol{y}(\lambda) \}
$$

where J denotes the Jacobian of the Box–Cox transformation, $J(\lambda, \bm y) = \prod_{i=1}^n y_i^{\lambda-1}.$

$\bm{y}(\lambda) - \mathbf{X}\bm{\beta}\}\bigg|,$

Pro�ling *λ*

For each given value of λ , the maximum likelihood estimator is that of the usual regression model, with \boldsymbol{y} replaced by $\boldsymbol{y}(\lambda).$

The profile log likelihood for λ is

$$
\ell_\mathsf{p}(\lambda) = -\frac{n}{2} \mathrm{ln}(2\pi \widehat{\sigma}_\lambda^2) - \frac{n}{2} + (\lambda - 1) \sum_{i=1}^n \mathrm{ln}(y_i)
$$

yi

36

Box–Cox transform for the poison data

Box and Cox (1964) considered survival time for 48 animals based on a randomized trial. The poisons data are balanced, with 3 poisons were administered with 4 treatments to four animals each.

We could consider a two-way ANOVA without interaction, given the few observations for each combination. The model would be of the form

$$
Y=\beta_0+\beta_1\texttt{poison}_2+\beta_2\texttt{poison}_3+\beta_3\texttt{treat} \\+\beta_4\texttt{treatment}_3+\beta_5\texttt{treatment}_4+\varepsilon
$$

${\tt readment_2}$

Diagnostic plots for poison data

Figure 9: Diagnostic plots for the poison data: ordinary residuals (jittered) for the linear model for survival time as a function of poison and treatment and fitted values against residuals.

Pro�le plot

The profile log likelihood for the Box–Cox transform parameter, suggests a value of $\lambda=-1$ would be within the 95% confidence interval.

Model with transformation

The reciprocal response $Y^{\mathrm{-1}}$ corresponds to the speed of action of the poison depending on both poison type and treatment.

The diagnostics plot at the bottom right for this model show no residual structure.

Comment about transformations

We cannot compare models fitted to Y_i versus $\ln Y_i$ using, e.g., information criteria or test, because models have different responses.

We can use however the Box–Cox likelihood, which includes the **Jacobian** of the $\operatorname{transformation}$, to assess the goodness of fit and compare the model with $\lambda=0$ versus $\lambda=-1.$

Diagnostics for outliers

Outliers can impact the fit, the more so if they have high leverage. Plot the Cook distance C_i as a function of the leverage h_{ii} , where

$$
C_i=\frac{r_i^2h_{ii}}{(p+1)(1-h_{ii})}.
$$

-
-
-
-
-
-
-
-
-
- -
-
-
-
- -
	-

Diagnostic plots for the insurance data

Figure 10: Diagnostic plots for outliers.

Remedies for outliers

- Remove them (not recommended)
- Use robust regression, which automatically downweights observations

```
rmod ins \leq MASS::rlm(data = insurance,
2 charges ~ splines::bs(age) + obesity*smoker*bmi + children)
```
Robust regression is less efficient (higher std. errors), but more robust to outliers.

The theory of robust statistics beyond the scope of the course.

References

Box, G. E. P., and D. R. Cox. 1964. "An Analysis of Transformations." *Journal of the Royal Statistical Society: Series B (Methodological)* 26 (2): 211–43. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x. Brockwell, P. J., and R. A. Davis. 2016. *Introduction to Time Series and Forecasting*. Springer Texts in Statistics. Springer. MacKinnon, James G, and Halbert White. 1985. "Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties[.](https://doi.org/10.1016/0304-4076(85)90158-7)" Journal of Econometrics 29 (3): 305-25. https://doi.org/10.1016/0304-4076(85)90158-7. White, Halbert. 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity."

Econometrica 48 (4): 817-38. https://doi.org/10.2307/1912934.