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Model assumptions
There are four main assumptions of the linear model speci�cation

• linearity and additivity: the mean of  is .

• homoscedasticity: the error variance  is constant

• independence of the errors/observations conditional on covariates

• normality

∣ ∼ normal( β, ).Yi xi xi σ2

∣Yi xi + + ⋯ +β0 β1xi1 βpxip

σ2
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Read the �ne prints
Our strategy is to create graphical diagnostic tools or perform hypothesis tests to ensure
that there is no gross violation of the model underlying assumptions.

• When we perform an hypothesis test, we merely fail to reject the null hypothesis, either
because the latter is true or else due to lack of evidence.

• The same goes for checking the validity of model assumptions.

• Beware of over-interpreting diagnostic plots: the human eye is very good at �nding
spurious patterns…
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Assumption 1 - mean model speci�cation
The mean is

Implicitly,

• All interactions are included.

• There are no omitted explanatories from the model,

• The relationship between  and  is linear.

• The effect is additive.

E( ∣ ) = + + ⋯ + .Yi xi β0 β1xi1 βpxip

Yi Xj
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Diagnostic plots for linearity
Use ordinary residuals , which are uncorrelated with �tted values  and explanatory
variables (i.e., columns of ).

• Plots of residuals  against �tted values 

• Plot of residuals  against columns from the model matrix, 

• Plot of residuals  against omitted variables

Any local pattern or patterns (e.g., quadratic trend, cycles, changepoints, subgroups) are
indicative of misspeci�cation of the mean model.

Use local smoother (GAM or LOESS) to detect trends.
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Examples of residual plots
Look for pattern in the -axis, not the -axis!

Figure 1: Scatterplots of residuals against �tted values. The �rst two plots show no departure from linearity (mean zero). The third
plot shows a clear quadratic pattern, suggesting the mean model is misspeci�ed. Note that the distribution of the �tted value need
not be uniform, as in the second panel which shows more high �tted values.

y x
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Examples

Figure 2: Scatterplot of residuals against explanatory (left) and an omitted covariate (right). We can pick up a forgotten interaction
between BMI and smoker/obese and a linear trend for the number of children.
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Examples for the college data
data(college, package = "hecstatmod")1

linmod.college1 <- lm(salary ~ rank + field + sex + service + years, data = college)2

car::residualPlots(linmod.college1, test = FALSE, layout = c(2,3))3
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Remedy for mean model speci�cation
Fix the mean model

• Add covariates that are important explanatories

• Include interactions if necessary

• For residual patterns, specify the effect of nonlinear terms via penalized splines

• Transformations
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Assumption 2: homoskedasticity (equal variance)
The variance is the same for all observations, 

Typical heteroscedasticity patterns arise when

• Variance varies per levels of a categorical variable

• Variance increases with the response (typically multiplicative models)

• Data are drawn from a distribution whose variance depends on the mean, e.g., Poisson

Va( ∣ ) =Yi xi σ2
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Diagnostic for equal variance
Use externally studentized residuals , which have equal variance.

Hypothesis tests:

• Levene test (�t ANOVA to  as a function of group index )

• Breusch–Pagan test (popular in economics, �ts linear regression to )

• Bartlett test (normal likelihood ratio test for different variance, but very sensitive to
normality assumption so not recommended)

Graphical diagnostics

• Plot (absolute value of)  against �tted values (spread-level plot)

ri

| − |rij rj
¯ ¯¯̄ j ∈ {1, … , J}

e2
i

ri
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Examples of spread level plots

Figure 3: Plot of externally studentized residuals against �tted value (left) and categorical explanatory (right). Both clearly display
heteroscedasticity.
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Heteroscedasticity tests for college data
# Fit ANOVA to |rstudent - mean|rstudent||1

r <- rstudent(linmod.college1)2

car::leveneTest(r ~ rank, center = "mean", data = college)3

## Levene's Test for Homogeneity of Variance (center = "mean")4

##        Df F value Pr(>F)    5

## group   2      50 <2e-16 ***6

##       394                   7

## ---8

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 19

# Breusch-Pagan (with a score test)10

car::ncvTest(linmod.college1, var.formula = ~ rank)11

## Non-constant Variance Score Test 12

## Variance formula: ~ rank 13

## Chisquare = 70, Df = 2, p = 6e-1614
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Consequences of unequal variance

Figure 4: Histogram of the null distribution of -values obtained through simulation using the classical analysis of variance -test
(left) and Welch’s unequal variance alternative (right), based on 10 000 simulations. Each simulated sample consist of 50
observations from a  distribution and 10 observations from . The uniform distribution would have 5% in
each of the 20 bins used for the display.

p F

normal(0, 1) normal(0, 9)
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Remedy 1 - specify the variance structure
Specify a function for the variance, e.g.,

•  for level  of a categorical variable,

•  for some suitable transformation , some covariate
vector  and parameter .

A model speci�cation enables the use of likelihood ratio tests.

The model can be �tted via restricted maximum likelihood using the function gls from
package nlme.

σj j

( ) = g( ; θ)σ2 vi vi g(⋅) : R → (0, ∞)
v θ
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Example of heteroscedasticity for the college data
For the college data, we set  with three different variance

parameters. This seemingly corrects the heteroscedasticity.

∼ normal( β, )Yi xi σ2
ranki

library(nlme) # R package for mixed models and variance specification1

linmod.college2 <- nlme::gls(2

model = salary ~ rank + field + sex + service, # mean specification3

weights = nlme::varIdent(form = ~1 | rank), # constant variance per rank4

data = college)5

plot(linmod.college2)6
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Remedy 2 - use a sandwich matrix for the errors
Economists often use sandwich estimators ( ), whereby we replace the estimator

of the covariance matrix of , usually , by a sandwich estimator of the form

with  a diagonal matrix.

Popular choices are heteroscedastic consistent matrices ( ), e.g.,
taking , the so-called HC .

White 1980

β̂ ( XS2 X⊤ )−1

( ) = ( X ΩX( XVâHCE β̂ X⊤ )−1X⊤ X⊤ )−1

Ω
MacKinnon and White 1985

diag(Ω = /(1 −)i e2
i hii)2

3
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Example of sandwich matrix
Replace  by  in the formula of Wald tests.Va( )β̂ ( )VâHCE β̂

vcov_HCE <- car::hccm(linmod.college1)1

# Wald tests with sandwich matrix2

w <- coef(linmod.college1) / sqrt(diag(vcov_HCE))3

# Variance ratios4

diag(vcov_HCE) / diag(vcov(linmod.college1))5

##      (Intercept)    rankassociate         rankfull fieldtheoretical 6

##             0.27             0.29             0.62             0.99 7

##         sexwoman          service            years 8

##             0.41             2.19             1.769

# Compute p-values10

pval <- 2*pt(abs(w), 11

df = linmod.college1$df.residual,12

lower.tail = FALSE)13
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Multiplicative structure
Multiplicative data of the form

tend to have higher variability when the response is larger.

( ) × ( )quantity depending
on the treatment used

quantity depending only 
on the particular unit
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Remedy 3 - Variance-stabilizing transformations
A log-transformation of the response, , makes the model additive, assuming .

Write the log-linear model

in the original response scale as

and thus

ln Y Y > 0

ln Y = + + + ⋯ + + εβ0 β0 β1X1 βpXp

Y = exp( + + ⋯ + ) ⋅ exp(ε),β0 β1X1 βpXp

E(Y ∣ X) = exp( + + ⋯ + ) × E{exp(ε) ∣ X}.β0 β1X1 βpXp
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Lognormal model
If , then  and  follows a
log-normal distribution.

An increase of one unit of  leads to a  increase of  without interaction or nonlinear

term for , and this translates into a multiplicative increase of a factor  on the

original data scale for .

• If ,  and there is no change

• If ,  and the mean decreases with 

• If ,  and the mean increases with 

ε ∣ x ∼ normal(μ, )σ2 E{exp(ε) ∣ x} = exp(μ + /2)σ2 exp(ε)

Xj βj ln Y

Xj exp( )βj

Y

= 0βj exp( ) = 1βj

< 0βj exp( ) < 1βj Xj

> 0βj exp( ) > 1βj Xj
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Interpretation of log linear models
Compare the ratio of  to ,

Thus,  represents the ratio of the mean of  when  in comparison to
that when , ceteris paribus (and provided this statement is meaningful).

The percentage change is

•  if  and

•  if .

E(Y ∣ = x + 1)X1 E(Y ∣ = x)X1

= = exp( ).
E(Y ∣ = x + 1, , … , )X1 X2 Xp

E(Y ∣ = x, , … , )X1 X2 Xp

exp{ (x + 1)}β1

exp( x)β1
β1

exp( )β1 Y = x + 1X1
= xX1

1 − exp( )βj < 0βj

exp( ) − 1βj > 0βj
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More general transformations
Consider the case where both  and  is log-transformed, so that

Taking the derivative of the left hand side with respect to , we get

and thus we can rearrange the expression so that

this is a partial elasticity, so  is interpreted as a  percentage change in  for each
percentage increase of , ceteris paribus.

Y X1

Y = exp( + + ⋯ + + ε)X
β1
1 β0 β2X2 βpXp

> 0X1

∂Y

∂X1
= exp( + + ⋯ + + ε) =β1X

−1β1
1 β0 β2X2 βpXp

Yβ1

X1

= ;
∂X1

X1
β1

∂Y

Y

β1 β1 Y
X1
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Independence assumption
Follows from sampling scheme (random sample), need context to infer whether this
assumption holds.

Typical violations include

• repeated measures (correlated observations).

• longitudinal data: repeated measurements are taken from the same subjects (few time
points)

• time series: observations observed at multiple time periods or in space.
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Consequences of dependence
Nearby things are more alike, so the amount of ‘new information’ is smaller than the sample
size.

When observations are positively correlated, the estimated standard errors reported by the
software are too small.

This means we are overcon�dent and will reject the null hypothesis more often then we
should if the null is true (in�ated Type I error, or false positive).
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Consequences of correlated data

Figure 5: Percentage of rejection of the null hypothesis for the -test of equality of means for the one way ANOVA with data
generated with equal mean and variance from an equicorrelation model (within group observations are correlated, between group
observations are independent). The nominal level of the test is 5%.

F
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Fixes for group structure and autocorrelation
Chapter 6 will deal with correlated data

The main idea is to assume instead that

and model explicitly the  variance matrix , parametrized in terms of covariance
parameters .

Y ∣ X ∼ (Xβ, Σ)normaln

n × n Σ
ψ
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Time series and longitudinal data
For time series, we can look instead at a correlogram, i.e., a bar plot of the correlation
between two observations  units apart as a function of the lag .

For  and constant time lags  units, the autocorrelation at lag  is
( , De�nition 1.4.4)

h h

, … ,y1 yn h = 0, 1, … h
Brockwell and Davis 2016

r(h) = , γ(h) = ( − )( − )
γ(h)
γ(0)

1
n

∑
i=1

n−|h|

yi ȳ̄̄ yi+h ȳ̄̄
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Example of correlogram

Figure 6: Correlogram of independent observations (left) and the ordinary residuals of the log-linear model �tted to the air
passengers data (right). While the mean model of the latter is seemingly correctly speci�ed, there is residual dependence between
monthly observations and yearly (at lag 12). The blue lines give approximate pointwise 95% con�dence intervals for white noise
(uncorrelated observations).
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Normality assumption
Without doubt the least important assumption.

Ordinary least squares are best linear unbiased estimators (BLUE) if the data are
independent and the variance is constant, regardless of normality.

They are still unbiased and consistent if the variance is misspeci�ed.

Tests for parameters are valid provided that each coef�cient estimator is based on a
suf�cient number of observations.

• watch out for interactions with categorical variables (small subgroups).
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Quantile-quantile plots
Produce Student quantile-quantile plots of externally studentized residuals

.

Figure 7: Histogram (left) and Student quantile-quantile plot (right) of the jackknife studentized residuals. The left panel includes a
kernel density estimate (black), with the density of Student distribution (blue) superimposed. The right panel includes pointwise
95% con�dence bands calculated using a bootstrap.

∼ Student(n − p − 2)Ri
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Interpretation of quantile-quantile plots

Figure 8: Quantile-quantile plots of non-normal data, showing typical look of behaviour of discrete (top left), heavy tailed (top right),
skewed (bottom left) and bimodal data (bottom right).

32



Remedy for normality

• If data arise from different families (Poisson or negative binomial counts, binomial data for
proportions and binary, etc.), use generalized linear models.

• Box–Cox type transformations
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Box–Cox transformation
For strictly positive data, one can consider a Box–Cox transformation,

The cases

•  (inverse),

•  (identity) and

•  (log-linear model)

are perhaps the most important because they yield interpretable models.

y(λ) = { ( − 1)/λ,yλ

ln(y),
λ ≠ 0
λ = 0.

λ = −1

λ = 1

λ = 0
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Inference for Box–Cox models
If we assume that , then the likelihood is

where  denotes the Jacobian of the Box–Cox transformation, .

Y (λ) ∼ normal(Xβ, )σ2In

L(λ, β, σ; y, X) = (2π J(λ, y)×σ2)−n/2

exp[− {y(λ) − Xβ {y(λ) − Xβ}],
1

2σ2 }⊤

J J(λ, y) = ∏n
i=1 yλ−1

i
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Pro�ling 
For each given value of , the maximum likelihood estimator is that of the usual regression
model, with  replaced by .

The pro�le log likelihood for  is

λ

λ
y y(λ)

λ

(λ) = − ln(2π ) − + (λ − 1) ln( )ℓp
n

2
σ̂2

λ

n

2
∑
i=1

n

yi
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Box–Cox transform for the poison data
Box and Cox ( ) considered survival time for 48 animals based on a randomized trial. The
poisons data are balanced, with 3 poisons were administered with 4 treatments to four
animals each.

We could consider a two-way ANOVA without interaction, given the few observations for
each combination. The model would be of the form

1964

Y = + + +β0 β1poison2 β2poison3 β3treatment2

+ + + εβ4treatment3 β5treatment4
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Diagnostic plots for poison data

Figure 9: Diagnostic plots for the poison data: ordinary residuals (jittered) for the linear model for survival time as a function of
poison and treatment and �tted values against residuals.
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Pro�le plot

The pro�le log likelihood for the Box–Cox transform parameter, suggests a value of 
would be within the 95% con�dence interval.

λ = −1
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Model with transformation
The reciprocal response  corresponds to the speed of action of the poison depending on
both poison type and treatment.

The diagnostics plot at the bottom right for this model show no residual structure.

Y −1
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Comment about transformations
We cannot compare models �tted to  versus  using, e.g., information criteria or test,
because models have different responses.

We can use however the Box–Cox likelihood, which includes the Jacobian of the
transformation, to assess the goodness of �t and compare the model with  versus

.

Yi ln Yi

λ = 0
λ = −1
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Diagnostics for outliers
Outliers can impact the �t, the more so if they have high leverage.

Plot the Cook distance  as a function of the leverage , whereCi hii

= .Ci

r2
i hii

(p + 1)(1 − )hii
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Diagnostic plots for the insurance data

Figure 10: Diagnostic plots for outliers.
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Remedies for outliers

• Remove them (not recommended)

• Use robust regression, which automatically downweights observations

Robust regression is less ef�cient (higher std. errors), but more robust to outliers.

The theory of robust statistics beyond the scope of the course.

rmod_ins <- MASS::rlm(data = insurance,1

  charges ~ splines::bs(age) + obesity*smoker*bmi + children)2
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