Self-concordant empirical likelihood for a vector mean
Arguments
- dat
nbydmatrix ofd-variate observations- mu
dvector of hypothesized mean ofdat- lam
starting values for Lagrange multiplier vector, default to zero vector
- eps
lower cutoff for \(-\log\), with default
1/nrow(dat)- M
upper cutoff for \(-\log\).
- thresh
convergence threshold for log likelihood (default of
1e-30is aggressive)- itermax
upper bound on number of Newton steps.
Value
a list with components
logelrlog empirical likelihood ratio.lamLagrange multiplier (vector of lengthd).wtsnvector of observation weights (probabilities).convboolean indicating convergence.niternumber of iteration until convergence.ndecNewton decrement.gradnormnorm of gradient of log empirical likelihood.