Exponent measure for multivariate generalized Pareto distributions
Source:R/mgplikelihoods.R
expme.Rd
Integrated intensity over the region defined by \([0, z]^c\) for logistic, Huesler-Reiss, Brown-Resnick and extremal Student processes.
Arguments
- z
vector at which to estimate exponent measure
- par
list of parameters
- model
string indicating the model family
- method
string indicating the package from which to extract the numerical integration routine
Note
The list par
must contain different arguments depending on the model. For the Brown--Resnick model, the user must supply the conditionally negative definite matrix Lambda
following the parametrization in Engelke et al. (2015) or the covariance matrix Sigma
, following Wadsworth and Tawn (2014). For the Husler--Reiss model, the user provides the mean and covariance matrix, m
and Sigma
. For the extremal student, the covariance matrix Sigma
and the degrees of freedom df
. For the logistic model, the strictly positive dependence parameter alpha
.
Examples
if (FALSE) {
# Extremal Student
Sigma <- stats::rWishart(n = 1, df = 20, Sigma = diag(10))[, , 1]
expme(z = rep(1, ncol(Sigma)), par = list(Sigma = cov2cor(Sigma), df = 3), model = "xstud")
# Brown-Resnick model
D <- 5L
loc <- cbind(runif(D), runif(D))
di <- as.matrix(dist(rbind(c(0, ncol(loc)), loc)))
semivario <- function(d, alpha = 1.5, lambda = 1) {
(d / lambda)^alpha
}
Vmat <- semivario(di)
Lambda <- Vmat[-1, -1] / 2
expme(z = rep(1, ncol(Lambda)), par = list(Lambda = Lambda), model = "br", method = "mvPot")
Sigma <- outer(Vmat[-1, 1], Vmat[1, -1], "+") - Vmat[-1, -1]
expme(z = rep(1, ncol(Lambda)), par = list(Lambda = Lambda), model = "br", method = "mvPot")
}