Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution
Usage
gev.ll(par, dat)
gev.ll.optim(par, dat)
gev.score(par, dat)
gev.infomat(par, dat, method = c('obs','exp'))
gev.retlev(par, p)
gev.bias(par, n)
gev.Fscore(par, dat, method=c('obs','exp'))
gev.Vfun(par, dat)
gev.phi(par, dat, V)
gev.dphi(par, dat, V)
Functions
gev.ll
: log likelihoodgev.ll.optim
: negative log likelihood parametrized in terms of location,log(scale)
and shape in order to perform unconstrained optimizationgev.score
: score vectorgev.infomat
: observed or expected information matrixgev.retlev
: return level, corresponding to the \((1-p)\)th quantilegev.bias
: Cox-Snell first order biasgev.Fscore
: Firth's modified score equationgev.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEMgev.phi
: canonical parameter in the local exponential family approximationgev.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
References
Firth, D. (1993). Bias reduction of maximum likelihood estimates, Biometrika, 80(1), 27–38.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Cox, D. R. and E. J. Snell (1968). A general definition of residuals, Journal of the Royal Statistical Society: Series B (Methodological), 30, 248–275.
Cordeiro, G. M. and R. Klein (1994). Bias correction in ARMA models, Statistics and Probability Letters, 19(3), 169–176.