Profile log-likelihood for the generalized extreme value distribution
Source:R/profile.R
      gev.pll.RdThis function calculates the profile likelihood along with two small-sample corrections based on Severini's (1999) empirical covariance and the Fraser and Reid tangent exponential model approximation.
Usage
gev.pll(
  psi,
  param = c("loc", "scale", "shape", "quant", "Nmean", "Nquant"),
  mod = "profile",
  dat,
  N = NULL,
  p = NULL,
  q = NULL,
  correction = TRUE,
  plot = TRUE,
  ...
)Arguments
- psi
- parameter vector over which to profile (unidimensional) 
- param
- string indicating the parameter to profile over 
- mod
- string indicating the model, one of - profile,- temor- modif.See Details.
- dat
- sample vector 
- N
- size of block over which to take maxima. Required only for - param- Nmeanand- Nquant.
- p
- tail probability. Required only for - param- quant.
- q
- probability level of quantile. Required only for - param- Nquant.
- correction
- logical indicating whether to use - spline.corrto smooth the tem approximation.
- plot
- logical; should the profile likelihood be displayed? Default to - TRUE
- ...
- additional arguments such as output from call to - Vfunif- mode='tem'.
Value
a list with components
- mle: maximum likelihood estimate
- psi.max: maximum profile likelihood estimate
- param: string indicating the parameter to profile over
- std.error: standard error of- psi.max
- psi: vector of parameter \(\psi\) given in- psi
- pll: values of the profile log likelihood at- psi
- maxpll: value of maximum profile log likelihood
In addition, if mod includes tem
- normal: maximum likelihood estimate and standard error of the interest parameter \(\psi\)
- r: values of likelihood root corresponding to \(\psi\)
- q: vector of likelihood modifications
- rstar: modified likelihood root vector
- rstar.old: uncorrected modified likelihood root vector
- tem.psimax: maximum of the tangent exponential model likelihood
In addition, if mod includes modif
- tem.mle: maximum of tangent exponential modified profile log likelihood
- tem.profll: values of the modified profile log likelihood at- psi
- tem.maxpll: value of maximum modified profile log likelihood
- empcov.mle: maximum of Severini's empirical covariance modified profile log likelihood
- empcov.profll: values of the modified profile log likelihood at- psi
- empcov.maxpll: value of maximum modified profile log likelihood
Details
The two additional mod available are tem, the tangent exponential model (TEM) approximation and
modif for the penalized profile likelihood based on \(p^*\) approximation proposed by Severini.
For the latter, the penalization is based on the TEM or an empirical covariance adjustment term.
References
Fraser, D. A. S., Reid, N. and Wu, J. (1999), A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86(2), 249–264.
Severini, T. (2000) Likelihood Methods in Statistics. Oxford University Press. ISBN 9780198506508.
Brazzale, A. R., Davison, A. C. and Reid, N. (2007) Applied asymptotics: case studies in small-sample statistics. Cambridge University Press, Cambridge. ISBN 978-0-521-84703-2
Examples
if (FALSE) { # \dontrun{
set.seed(123)
dat <- rgev(n = 100, loc = 0, scale = 2, shape = 0.3)
gev.pll(psi = seq(0,0.5, length = 50), param = 'shape', dat = dat)
gev.pll(psi = seq(-1.5, 1.5, length = 50), param = 'loc', dat = dat)
gev.pll(psi = seq(10, 40, length = 50), param = 'quant', dat = dat, p = 0.01)
gev.pll(psi = seq(12, 100, length = 50), param = 'Nmean', N = 100, dat = dat)
gev.pll(psi = seq(12, 90, length = 50), param = 'Nquant', N = 100, dat = dat, q = 0.5)
} # }