Profile log-likelihood for the generalized extreme value distribution
Source:R/profile.R
gev.pll.Rd
This function calculates the profile likelihood along with two small-sample corrections based on Severini's (1999) empirical covariance and the Fraser and Reid tangent exponential model approximation.
Usage
gev.pll(
psi,
param = c("loc", "scale", "shape", "quant", "Nmean", "Nquant"),
mod = "profile",
dat,
N = NULL,
p = NULL,
q = NULL,
correction = TRUE,
plot = TRUE,
...
)
Arguments
- psi
parameter vector over which to profile (unidimensional)
- param
string indicating the parameter to profile over
- mod
string indicating the model, one of
profile
,tem
ormodif
.See Details.- dat
sample vector
- N
size of block over which to take maxima. Required only for
param
Nmean
andNquant
.- p
tail probability. Required only for
param
quant
.- q
probability level of quantile. Required only for
param
Nquant
.- correction
logical indicating whether to use
spline.corr
to smooth the tem approximation.- plot
logical; should the profile likelihood be displayed? Default to
TRUE
- ...
additional arguments such as output from call to
Vfun
ifmode='tem'
.
Value
a list with components
mle
: maximum likelihood estimatepsi.max
: maximum profile likelihood estimateparam
: string indicating the parameter to profile overstd.error
: standard error ofpsi.max
psi
: vector of parameter \(psi\) given inpsi
pll
: values of the profile log likelihood atpsi
maxpll
: value of maximum profile log likelihood
In addition, if mod
includes tem
normal
:maximum likelihood estimate and standard error of the interest parameter \(psi\)r
:values of likelihood root corresponding to \(\psi\)q
:vector of likelihood modificationsrstar
:modified likelihood root vectorrstar.old
:uncorrected modified likelihood root vectortem.psimax
:maximum of the tangent exponential model likelihood
In addition, if mod
includes modif
tem.mle
: maximum of tangent exponential modified profile log likelihoodtem.profll
: values of the modified profile log likelihood atpsi
tem.maxpll
: value of maximum modified profile log likelihoodempcov.mle
: maximum of Severini's empirical covariance modified profile log likelihoodempcov.profll
: values of the modified profile log likelihood atpsi
empcov.maxpll
: value of maximum modified profile log likelihood
Details
The two additional mod
available are tem
, the tangent exponential model (TEM) approximation and
modif
for the penalized profile likelihood based on \(p^*\) approximation proposed by Severini.
For the latter, the penalization is based on the TEM or an empirical covariance adjustment term.
References
Fraser, D. A. S., Reid, N. and Wu, J. (1999), A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86(2), 249--264.
Severini, T. (2000) Likelihood Methods in Statistics. Oxford University Press. ISBN 9780198506508.
Brazzale, A. R., Davison, A. C. and Reid, N. (2007) Applied asymptotics: case studies in small-sample statistics. Cambridge University Press, Cambridge. ISBN 978-0-521-84703-2
Examples
if (FALSE) {
set.seed(123)
dat <- rgev(n = 100, loc = 0, scale = 2, shape = 0.3)
gev.pll(psi = seq(0,0.5, length = 50), param = 'shape', dat = dat)
gev.pll(psi = seq(-1.5, 1.5, length = 50), param = 'loc', dat = dat)
gev.pll(psi = seq(10, 40, length = 50), param = 'quant', dat = dat, p = 0.01)
gev.pll(psi = seq(12, 100, length = 50), param = 'Nmean', N = 100, dat = dat)
gev.pll(psi = seq(12, 90, length = 50), param = 'Nquant', N = 100, dat = dat, q = 0.5)
}